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Abstract

BioSPLASH is a suite of representative applications that we have assembled from the com-
putational biology community, where the codes are carefully selected to span a breadth of
algorithms and performance characteristics. The main results of this paper are the assembly
of a scalable bioinformatics workload with impact to the DARPA High Produc-
tivity Computing Systems Program to develop revolutionarily-new economically-
viable high-performance computing systems, and analyses of the performance of
these codes for computationally demanding instances using the cycle-accurate IBM
MAMBO simulator and real performance monitoring on an Apple G5 system. Hence,
our work is novel in that it is one of the first efforts to incorporate life science application per-
formance for optimizing high-end computer system architectures.

1 Algorithms in Computational Biology

In the 50 years since the discovery of the structure of DNA, and with new techniques for sequencing
the entire genome of organisms, biology is rapidly moving towards a data-intensive, computational
science. Biologists are in search of biomolecular sequence data, for its comparison with other
genomes, and because its structure determines function and leads to the understanding of bio-
chemical pathways, disease prevention and cure, and the mechanisms of life itself. Computational
biology has been aided by recent advances in both technology and algorithms; for instance, the
ability to sequence short contiguous strings of DNA and from these reconstruct the whole genome
(e.g., see [34, 2, 33]) and the proliferation of high-speed micro array, gene, and protein chips (e.g.,
see [27]) for the study of gene expression and function determination. These high-throughput
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techniques have led to an exponential growth of available genomic data. Algorithms for solving
problems from computational biology often require parallel processing techniques due to the data-
and compute-intensive nature of the computations. Many problems use polynomial time algorithms
(e.g., all-to-all comparisons) but have long running times due to the large data volume to process;
for example, the assembly of an entire genome or the all-to-all comparison of gene sequence data.
Other problems are compute-intensive due to their inherent algorithmic complexity, such as pro-
tein folding and reconstructing evolutionary histories from molecular data, that are known to be
NP-hard (or harder) and often require approximations that are also complex. Algorithms and appli-
cations in this new computational field of biology, called computational biology and bioinformatics,
is now one of the biggest consumers of computational power. This is not clear; and hence, a part of
our research interest. Since current architectures have not been designed with these applications in
mind, we are interested in finding architectural trade-offs that can benefit computational biology
without degrading performance of other workloads.

To realize this, it is increasingly important that we analyze the algorithms and applications
used by the biological community.

We propose BioSplash with a wide variety of applications selected from computational biology
and bioinformatics as part of this endeavor. The codes have been selected from a consideration of
heterogeneity of algorithms, biological problems, popularity among the biological community, and
memory traits, seeking the suite to be of importance to both biologists and computer scientists. To
ease the portability of this suite to new architectures and systems, only freely available open-source
codes are included, with no commercial software included in this suite. For each of these codes,
we have assembled input datasets with varying sizes which can be used in conjunction with the
applications included in this suite. We have performed an exhaustive analysis of these codes on
the cycle-accurate IBM MAMBO simulator [9] and the Apple G5 (PowerPC G5) workstation. As
our results show, computational biology is an extremely data-intensive science with a very high
ratio of cache and memory accesses to computations. We are not only reporting the aggregate
performance characteristics at the end of the run, but also “live-graph”performance data which
show the variation of the performance exhibited during the execution of the application. Using
such data, we correlate the performance data with the algorithm in phases of the application, and
suggest optimizations targeted at separate regions of the application. We also compared these codes
on dual-core systems to quantify to what extent computational biology applications can utilized
and benefit from these commodity enhancements in computer architecture. We are actively using
this data to propose architectural features in the design of next generation petaflop computing
systems under the DARPA High Productivity Computing Systems (HPCS) Project [12]. We are
actively vetting this BioSplash suite with the computational biology community, for instance,
with a technical presentation at the Intelligent Systems of Molecular Biology (ISMB) 2005 [7].

2 Previous Work

One of the most successful attempts to create standardized benchmark suites is SPEC (Standard
Performance Evaluation Corporation), which started initially as an effort to deliver better bench-
marks for workstations. Over the years, SPEC evolved to cover different application classes, such
as the SPECSFS for the NFS performance and the SPECWeb for performance of Web servers.
Other examples of domain-specific benchmarks include transaction-processing benchmarks TPC,
benchmarks for embedded processors such as the EEMBC benchmarks and many others One of the
important benchmark suites in the scientific research community has been the SPLASH (Stanford
Parallel Applications for Shared Memory) suite [29], later updated to SPLASH-2 [35]. SPLASH-2
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included mostly codes from linear algebra and computational physics, and was designed to mea-
sure the performance of these applications on centralized and distributed memory-machines. Few
comprehensive suite of computationally-intensive computational biology applications are available
to the computer science community, and this works fills this needed gap.

3 BioSplash suite

Bioinformatics is a field for which problems itself have not been categorized thoroughly. Algorithms
and the applications are still being studied. Many of the problems themselves are NP-hard with
increasing input sets. This has led to heuristics being developed to solve the problems, which
give sub-optimal results to a reasonable degree of accuracy quickly. Thus, the field is still in
it’s infancy with problems, algorithms, applications, and even system architecture requirements,
changing everyday. The present suite of tools should therefore be treated as a starting point. As
the field evolves, we expect the list of codes to evolve to encompass important emerging trends.
We therefore plan to iterate over the list. Our endeavor is to finally find a representative set
of bioinformatics tools which encompasses the field of bioinformatics in terms of the problems it
represents and the solutions which are devised for those problems. We use this set of bioinformatics
applications to drive changes in computer architecture for high-performance computing systems
specifically targeted towards the computational biology applications.

Algorithms for solving problems from computational biology often require parallel processing
techniques due to the data- and compute-intensive nature of the computations. However many
problems in biology are integer-based using abstract data and irregular in structure making them
significantly more challenging to parallelize. Also, since the sequential algorithms have been not
been developed fully, their parallel solutions or implementations are themselves not available. Thus,
while our imperative is to identify parallel codes, we have included uniprocessor implementations
also in this suite as of now; for lack of parallel implementations in some cases. Out of the 8 codes
included in this suite, 4 of these codes are multi-threaded. As the field matures, we should find
increasing parallel implementations of the codes for bioinformatics sub-problems.

Most of the codes are handpicked from the following broad problems identified by the biological
community of interest to computer scientist’s.

• Sequence alignment – pairwise and multiple.

• Phylogeny Reconstruction.

• Protein structure prediction.

• Sequence Homology and Gene-finding.

The codes in BioSplash v1.0 consist of the following 8 codes along with their brief description.

• BLAST (blastp) – (Basic Local Alignment Search Tool) [1] suite of programs are the most
widely used computational tool by the biology community. BLAST includes several programs
in it’s suite – blastp is a multithreaded implementation which is used for searching amino
acid sequences against databases of amino acid sequences for identifying sequences which are
homologous to the query sequence. Other programs in the suite include looking up amino
acid sequences against nucleotide databases and vice-versa.

• ClustalW SMP (clustalw smp) – is a symmetric multiprocessors implementation of ClustalW
– ClustalW is a widely used heuristic tool for the multiple sequence alignment problem.
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ClustalW uses progressive alignments [32] which are perhaps the most practical and widely
used methods. Progressive alignments compare all sequences pairwise, perform cluster anal-
ysis on the pairwise data to generate a hierarchy for alignment (guide tree), and then build
the alignment step by step according to the guide tree.

• HMMER (hmmpfam) – HMMER, suite of programs uses profile HMM’s [16], which are
statistical descriptions of a sequence family’s consensus to do sensitive database searching.
hmmpfam compares one or more sequences to a database of profile hidden Markov models,
such as the Pfam library, in order to identify known domains within a sequence, using either
the Viterbi or the forward algorithm.

• Glimmer (glimmer2) – Glimmer is a widely used gene-finding tool for microbial DNA, es-
pecially for bacteria, archea, and viruses [13]. Glimmer uses interpolated Markov models
(IMM’s) [26] to identify the coding regions and distinguish them from non coding DNA. The
program consists of essentially two steps – the first step trains the IMM from an input set
of sequences, the second step uses this trained IMM for finding putative genes in the input
genome. them. Glimmer’s predictions are used as input to the BLAST and FASTA programs
is therefore used for gene annotation.

• GRAPPA (grappa) – (Genome Rearrangements Analysis under Parsimony and other Phy-
logenetic Algorithms), a software for phylogeny reconstruction [23]. To date, almost every
model of speciation and genomic evolution used in phylogenetic reconstruction has given
rise to NP-hard optimization problems. GRAPPA is a reimplementation of the breakpoint
analysis [8] developed by Blanchette and Sankoff, and also provides the first linear-time im-
plementation of inversion distances improving upon Hannenhalli and Pevzner’s polynomial
time approach [5].Currently, GRAPPA also handles inversion phylogeny and unequal gene
content.

• Phylip (proml) – PHYLIP is a collection of programs for inferring phylogenies [18]. Methods
that are available in the package include parsimony, distance matrix, and likelihood methods
[17], including bootstrapping and consensus trees. Data types that can be handled include
molecular sequences, gene frequencies, restriction sites, distance matrices, and 0/1 discrete
characters.

• Predator (predator) – [20, 21] is a tool for finding protein structures. Predator is based on
the calculated propensities of every 400 amino-acid pairs [19] to interact inside an α-helix
or one upon three types of β-bridges. It then incorporates non-local interaction statistics.
PREDATOR also uses propensities for α-helix, β-strand and coil derived form a nearest-
neighbor approach. To use information coming from homologous proteins, PREDATOR
relies on local pairwise alignments for input.

4 Experimental Environment

Our experimental environment consisted of the Mambo [28] simulator from IBM and the Apple
PowerMac G5 having PowerPC G5 processor. Mambo is an IBM proprietary full-system simula-
tion tool for the PowerPC architecture and is used within IBM to model future systems, support
early software development, and design new system software [28, 9]. Importantly Mambo is being
used for the DARPA High Productivity Computing Systems program aimed at bringing sustained
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multi-petaflop and autonomic capabilities to commercial supercomputers. Such sustained perfor-
mance improvement is being made possible by research into architectures, high-end programming
environments, software tools, and hardware components. Mambo shares some of its roots with the
PowerPC extensions added to the SimOS [24] simulator. The system is designed for multiple con-
figuration options. Mambo can be used to design uniprocessor or shared memory multiprocessors
with various user-specific PowerPC extensions and attributes such as VMX support, hypervisor,
cache geometries, segment lookaside buffers (SLBs) and translation lookaside buffers (TLBs), and
thereafter collecting and dumping cache statistics at selected execution points of the program.
PowerPC G5 processor is 64-bit, dual-core processor designed for symmetric multiprocessing. It
has a superscalar execution core based on the IBM Power processor with up to 215 inflight in-
structions and a velocity engine for accelerated SIMD processing. Other features include advanced
3-bit component branch prediction logic to increase processing efficiency, and dual frontside buses
for enhanced bandwidth. We used the MONster tool, part of the Apple’s native graphical perfor-
mance analysis tool CHUD (Computer Hardware Understanding Development) for the performance
analysis [3]. MONster provides direct access to performance counters; it can collect samples at a
system-wide or process-specific level and display the metrics for the collected data. Besides the
extreme accuracy in their collected performance data, another advantage of both of these tools is
the “live graph”capabilities of both MONster and Mambo, reporting accumulated data not only
at the end of each run, but also at chosen regular sampling intervals. Such temporal data helps
to visualize the performance as it varies during the execution of the code, and can be used to
inspect specific intervals of the run. We compiled the codes using gcc-3.3 on the PowerMac G5,
and using powerpc64-linux-gcc on the Mambo simulator, typically with default switches given by
the makefiles associated with each program. No additional optimization switches were added for
these architectures. Along with the selection of the codes and the experimental environment, an-
other important consideration was the input sets for each program. For meaningful impact to the
biologists, the input sets must be motivated by real world biological data, actual instances of the
data that biologists collect experimentally and use with these codes. Since our performance plat-
forms are a contemporary architecture and a simulator, this created different requirements on the
size of the input datasets. Mambo entailed a sizable slowdown simulating a complex architecture
(requiring 2000 seconds of wallclock time to simulate 1 second of the operation of the system under
investigation), the size of the input sets had to be small. However since small runtimes create a
possibility of skewed results, we decided to use extremely long-running instances of the datasets
for each code. The sequences we chose in PowerMac runs are among the longest in Genbank and
Swissprot, database searches were performed against complete databases such as the Genbank,
Swissprot, and PFAM, databases. We therefore created a size varying set of input sets for each
code, with the inputs categorized as small, medium and large.

PowerMac G5 was booted into a single processor for uniprocessor runs (nvram boot-args=1 ) for
the uniprocessor runs, for dual processor runs the system was again booted with both processors.
The multithreaded codes are run with two threads for dual core processor runs.

The following is a brief description for the codes used, their availability, their running options
along with the input datasets used for the runs.
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5 Synopsis of Included Software in BioSplash v0.1

Name Domain URL Parallelisation

BLAST (blastp)
[1] [11]

Heuristic-based local sequence alignment ftp://ftp.ncbi.nlm.nih.gov/toolbox/
ncbi tools/ncbi.tar.gz

POSIX threads MPI [11]

ClustalW SMP
(clustalw)

Progressive multiple sequence alignment http://abs.cit.nih.gov/clustalw/ POSIX threads version.[14]. MPI ver-
sions of ClustalW ([22] and [15]). POSIX
threads [14]. Cache-friendly distributed
version [10].

T-Coffee (tcof-
fee)

Progressive multiple sequence alignment http://igs-server.cnrs-mrs.fr/∼cnotred/
Projects\ home\ page/t\ coffee\ home\
page.html

No

HMMER
(hmmpfam)

Sequence Homology http://hmmer.wustl.edu/ Multithreaded.

Glimmer (glim-
mer2)

Gene finding www.tigr.org/software/glimmer/ No

GRAPPA
(grappa)

Phylogeny Tree Construction www.cs.unm.edu/∼moret/GRAPPA Parallel version tested under linux.

Phylip (proml) Phylogeny Tree Construction http://evolution.gs.washington.edu/
phylip.html

No

Predator
(predator)

Protein Secondary Structure Prediction ftp://ftp.ebi.ac.uk/pub/software/unix/
predator/

No.

6 BioSplash programs and their Input Datasets

Code Input Datasets
BLAST
(blastp)

Search of 16 sequences each more than 5000 residues against database Swissprot

ClustalW SMP File 6000.seq included with the executable was used as input.
(clustalw smp) 318 sequences with average length of about 1450 residues
HMMER
(hmmpfam)

Aminoacid Sequence Q89F91 of almost 8800 residues searched against the PFAM
database.

GRAPPA
(grappa)

12 sequences of the bluebell flower species Campanlacae.

T-Coffee 1yge 1byt included extracted from the Prefab database.
(tcoffee) Consists of 50 sequences of average length 850.
Glimmer
(glimmer2)

Bacteria Genome NC 004463.fna consisting of more than 9200 kilobase pairs.

Predator
(predator)

5 sequences extracted from Swissprot each of almost 7500 residues.

Phylip Input is aligned dataset of 92 cyclophilins and cyclophilin-related
(proml) proteins from eukaryotes each of length 220.

Another table with the codes and their run-commands for generating the performance graphs is
included in [6].

7 Livegraph and Cumulative performance analysis for BioSplash

As we said earlier, the interesting feature of Mambo and MONster tool was their ability to generate
livegraphs during the run, which enables us to visualize the performance of the code as it varied
during the run. Data is collected at end of every user-defined sampling interval, thus generating
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tables of data for every hardware counter recorded. Such livegraphs can be used for suggesting
optimizations targeted at these separate phases. e.g. blast and tcoffee livegraph of instructions
per cycle with the L1 data miss rate and we can see the direct correlation, instructions per cycle
increases in the same cycle as the L1 data miss rate decreases. Hmmpfam shows the instructions
per cycle oscillating with the application showing only one phase in it’s entire run. This graph
agrees with the algorithm, since hmmpfam is a sensetive database searching tool comparing all the
sequences in a database with the input sequence, searching for homologues of the input sequence.

Figure 1: Blast (top), hmmpfam (bottom left), tcoffee (bottom right) performance Graphs: In-
structions per cycle show a direct correlation with L1 data miss rate

In the clustalw livegraphs, we find an interesting observation, the instructions per cycle increases
in the last phase of the application, even though L1 data miss rate increases in the same phase
suggesting that performance of clustalw might not be as directly correlated with L1 data miss
rate as we might have expected. However if we see the branch mispredicts, we find the branch
mispredicts decreasing in the same phase, implying that the performance of the last phase is more
closely related to branch mispredicts than L1 data miss rate.

Another useful livegraph is the data on instruction profiles, e.g. grappa data showing that the
branch and compare instructions are the main instructions profiles in the latter part of the program,
with the arithmetic instructions a negligible fraction, blast showing a uniform instruction profile,
with the number of arithmetic, load and branch instructions in the same order, though not by a
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Figure 2: Clustalw Performance Graphs: Instructions per cycle show a direct correlation with
branch mispredicts (left) as compared to the miss rate (right)

marked difference. Blast algorithm is a heuristic search method that seeks small words between the
query sequence and the database sequences (load), scores the small words (arithmetic instruction)
and subsequently extends the small words if they are greater than a predefined score(branch and
arithmetic instruction), which explains the instruction profile.. A significant part of our research

Figure 3: Grappa (left) and blast (right) graphs of instruction profiles

is correlating the performance metrics at the machine level with the higher-level algorithm the
phase is working on. Data can be separated for phases of the application, and could be looked
into individually with no relation to the other phases. This step is done with inserting Mambo
API’s into the source code of the application, collecting data separately for every phase and then
resetting the performance metrics after every phase, before recording data for the next phase. We
illustrate this technique with clustalw. Clustalw’s performance can basically be categorized into 3
regions: the first phase in which every sequence is compared against every other sequence by Smith
Waterman [30], a quadratic time complexity dynamic programming algorithm. The next step is
the neighbor joining method [25] in which comparison score of sequences is used to make a guide
tree with the sequences at the leaves of the tree. In the last step, the sequences are combined into
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a multiple sequence alignment according to the guide tree [31]. Clustalw livegraph plotted for the
first and the third phase shows an order of magnitude higher arithmetic instructions compared to
the second phase, denoting the higher time complexity of the algorithm in phase one and three.
L1 data cache misses are higher in the second phase, due to unpredictable access pattern; the
sequences with the lowest distance are joined together in the guide tree, with the other sequences
recomputing distance to the joined sequence. The heuristic is repeated, until all the sequences are
joined together into a guide tree formation.

Figure 4: ClustalW region I (top), II (bottom left) and III (bottom right) showing differences in
algorithmic complexity and memory access pattern

We are not able to include all the livegraphs in this document due to space constraints, fully
detailed analysis and all the livegraphs are included in [6]. For cumulative performance analysis,
we decided to use the data generated by the MONster tool, since the PowerPC G5 codes were run
for significantly larger input data sets. We have included the list of hardware counters available in
PowerPC G5 in the instruction and memory level analysis that we have collected for each code. We
performed several runs for each code, due to conflict of performance counters for collecting data.

• Instruction-level analysis: Instructions dispatched, instructions completed(including and ex-
cluding IO and load/store), branch mispredicts due to condition register value and target
address predict were recorded as part of this analysis.

• Memory-level analysis: L1 cand L2 cache loads and stores, L1 and L2 cache load and store
misses, TLB and SLB misses, read/write request bytes, number of memory transactions and
Load Miss Queue(LMQ) full events were included in this analysis.
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Application IPC Loads/Instr. Stores/Instr. Branch
mispre-
dicts/1000
instr.

TLB
misses/100k
cycles

L1d Hit
Rate

L2d Hit
Rate

% of
io,ld,st
instr.

blastp 0.835 0.264 0.088 21.95 5.83 95.93% 92.32% 7.345%
clustalw 0.952 0.574 0.041 19.74 1.47 99.24% 97.50% 3.71%
glimmer 0.688 0.242 0.114 8.53 6.63 95.48% 88.47% 7.299%
grappa 1.012 0.349 0.234 28.84 212.96 99.88% 96.78% 15.80%
hmmpfam 1.052 0.623 0.104 9.69 4.65 98.46% 97.96% 7.14%
predator 0.902 0.664 0.062 10.90 16.92 97.87% 90.63% 3.06%
proml 0.924 0.641 0.079 1.59 2.34 97.68% 99.89% 0.086%
tcoffee 1.007 0.570 0.089 4.05 5.76 98.90% 94.26% 1.592%

Table 4: Summary of critical statistics for each code based on their Apple PowerPC G5 runs.

Table 7 gives a summary of performance metrics for each code running on an Apple G5 system.
The instructions per cycle of BioSplash ranges from 0.688 (glimmer) to 1.012 (grappa, with a mean
of about 0.90 for all the codes. The common characterstics of these workloads is the high ratio of
data accesses to computation. In general, the number of loads and stores on a per-instruction basis
ranges from a low of 0.35 to a high of 0.72 with a mean of 0.59. The high ratio of loads/stores
doesn’t affect the performance of most codes; many applications with high instructions per cycle
also have a high percentage of loads/stores for instance hmmpfam, tcoffee, clustalw, proml all have
instructions per cycle greater than 0.90, yet also have ratio of loads to instructions to be more than
50%, on the opposite side, blast and glimmer have lower instructions per cycle (0.835 and 1.012)
despite the lower percentage of loads per instruction (0.264 and 0.349). The PowerPC G5 has 2
load/store units [4], which is fairly typical of modern-day processors, hence it is expected that the
high percentage of loads/stores will not lead to reduced performance on other class of families also.
The high instructions per cycle despite higher loads and stores can be partially explained by the
high L1 data hit rate of most codes; it also explains the lower performance of blast and glimmer
with their hit rates among the lowest of all codes (almost 96%). Infact glimmer has the lowest L1
and L2 hit rates which explains to a large extent, it’s lowest count of instructions per cycle. Grappa
has the second highest instructions per cycle count, despite having TLB misses of almost 2 orders
of magnitude compared to other codes, and the highest instruction percentage for load/store/io.
Based on this data, and other performance counters collected during the runs, we find that it is
difficult to pinpoint the performance of these codes on a single system parameter, but are rather
dependant on an interesting interplay of system parameters both at the memory and the instruction
level. This is because the bioinformatics applications are very heterogenous in nature, with wide
ranging differences in problems, algorithms and their implementations.

8 Dual-core runs of BioSplash parallel codes

Besides sequential runs, we also performed dual core runs of the parallel BioSplash codes; blast,
clustalw and hmmpfam showed almost linear speedup using both processors of the dual-core Apple
PowerPC G5. Grappa showed a small speedup using both processors as the only a part of grappa’s
algorithm was parallelized. ClustalW SMP was also not completely parallelized, but since the ini-
tial part of comparing every sequence against every other sequence was the major time-consuming
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speedup,clustalw showed an impressive speedup. This shows that parallel multithreaded bioinfor-
matics codes stand to benefit from dual-core processors. Below is the livegraphs of blast and grappa
with data for both processors.

Figure 5: Clustalw (left) and blast (right) graphs of parallel runs
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A BioSplash program options used running on Mambo

Code Summary Running Options
BLAST blastp searches for the homologues of ./blastall -p blastp -i Drosoph.txt -d
(blastp) an input amino acid sequence against a Drosoph/drosoph.aa -o outdd -p

database of amino acid -i input query file
-d Database
-o Output file

FASTA
(ssearch)

ssearch does an exact Smith-Watermann
of an input sequence with every sequence
of an input library

./ssearch34 t -a -b 20 -q -O <Output
Alignment File> < Input Sequence > <
Input Library File >

library printing the results -a Show entire length in alignment
-b Number of high scores to display
-q Quiet

ClustalW SMP Clustalw makes a multiple sequence align-
ment of the unaligned sequences given

./clustalw < Unaligned sequences file >

T-Coffee T-Coffee makes a multiple sequence align-
ment of unaligned sequences

./tcoffee < Input sequences file > -
dp mode = myers miller pair wise -in =
lalign id pair, clustalw pair -tree mode =
slow
-dp mode = Dynamic programming mode
is Myers and Miller, linear space and
quadratic time complexity
-in = methods used for library mak-
ing, lalign id pair is the local alignment
using FASTA function, clustalw pair is
the global alignment using the Smith-
Watermann.
tree mode = slow, similarity matrix con-
struction done using dynamic program-
ming mode.

HMMER hmmbuild makes a profile hidden ./hmmbuild <Output HMM file >
(hmmbuild) markov model from aligned sequences < Input aligned sequences file >

hmmpfam searches for a sequence in a ./hmmpfam < HMM database >
(hmmpfam) database of profile HMM’s < Input sequence >
Glimmer Finds genes in microbial DNA especially

bacteria and archae
./run-glimmer2 < genome file >

Grappa Tool for phylogeny reconstruction ./grappa -f < Input file > -o < Output file
> -m
-m Tighten circular lower bound

Phylip
(ProML)

Protein Maximum Likelihood Program ./proml < scriptproml > < output >

Protein Maximum Likelihood Program ./proml < scriptproml > < output >
(ProMLK ) with molecular clock
Predator Predicts the 3D structure of a protein tak-

ing an amino acid sequence as input
./predator < Input Sequence > -u -h -a
-f< Ouput file >

15



-u Do not copy assignment directly from
the PDB database if query sequence is
found in PDB
-h Indicate progress by dots
-a Make prediction for all sequences in in-
put file
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B Mambo LiveGraphs

B.1 BLAST

Figure 6: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 7: Bus-wait (left) and Cycles (right) livegraphs
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Figure 8: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 9: Cache (left) and Compare (right) instructions livegraphs
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Figure 10: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 11: Load (left) and Logical (right) instructions livegraphs
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Figure 12: Other (left) and Store (right) instructions livegraphs

Figure 13: Trans (left) and VMX (right) instructions livegraphs
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Figure 14: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 15: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs
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Figure 16: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 17: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs
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Figure 18: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 19: Memory-read (left) and Memory-Write (right) livegraphs
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Figure 20: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 21: Unique Instructions (left) and User Instructions (right) livegraphs

24



Figure 22: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 23: User TLB Instruction Miss livegraphs
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B.2 CLUSTALW

Figure 24: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 25: Bus-wait (left) and Cycles (right) livegraphs
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Figure 26: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 27: Cache (left) and Compare (right) instructions livegraphs
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Figure 28: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 29: Load (left) and Logical (right) instructions livegraphs
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Figure 30: Other (left) and Store (right) instructions livegraphs

Figure 31: Trans (left) and VMX (right) instructions livegraphs
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Figure 32: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 33: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs
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Figure 34: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 35: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs
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Figure 36: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 37: Memory-read (left) and Memory-Write (right) livegraphs
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Figure 38: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 39: Unique Instructions (left) and User Instructions (right) livegraphs
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Figure 40: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 41: User TLB Instruction Miss livegraphs
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B.3 FASTA

Figure 42: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 43: Bus-wait (left) and Cycles (right) livegraphs
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Figure 44: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 45: Cache (left) and Compare (right) instructions livegraphs
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Figure 46: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 47: Load (left) and Logical (right) instructions livegraphs
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Figure 48: Other (left) and Store (right) instructions livegraphs

Figure 49: Trans (left) and VMX (right) instructions livegraphs
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Figure 50: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 51: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs
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Figure 52: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 53: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs
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Figure 54: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 55: Memory-read (left) and Memory-Write (right) livegraphs
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Figure 56: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 57: Unique Instructions (left) and User Instructions (right) livegraphs
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Figure 58: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 59: User TLB Instruction Miss livegraphs
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B.4 GLIMMER

Figure 60: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 61: Bus-wait (left) and Cycles (right) livegraphs
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Figure 62: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 63: Cache (left) and Compare (right) instructions livegraphs
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Figure 64: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 65: Load (left) and Logical (right) instructions livegraphs
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Figure 66: Other (left) and Store (right) instructions livegraphs

Figure 67: Trans (left) and VMX (right) instructions livegraphs
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Figure 68: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 69: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs
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Figure 70: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 71: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs
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Figure 72: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 73: Memory-read (left) and Memory-Write (right) livegraphs
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Figure 74: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 75: Unique Instructions (left) and User Instructions (right) livegraphs
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Figure 76: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 77: User TLB Instruction Miss livegraphs
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B.5 GRAPPA

Figure 78: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 79: Bus-wait (left) and Cycles (right) livegraphs
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Figure 80: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 81: Cache (left) and Compare (right) instructions livegraphs
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Figure 82: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 83: Load (left) and Logical (right) instructions livegraphs
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Figure 84: Other (left) and Store (right) instructions livegraphs

Figure 85: Trans (left) and VMX (right) instructions livegraphs
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Figure 86: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 87: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs
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Figure 88: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 89: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs
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Figure 90: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 91: Memory-read (left) and Memory-Write (right) livegraphs
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Figure 92: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 93: Unique Instructions (left) and User Instructions (right) livegraphs
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Figure 94: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 95: User TLB Instruction Miss livegraphs

61



B.6 HMMER

Figure 96: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 97: Bus-wait (left) and Cycles (right) livegraphs
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Figure 98: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 99: Cache (left) and Compare (right) instructions livegraphs
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Figure 100: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 101: Load (left) and Logical (right) instructions livegraphs
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Figure 102: Other (left) and Store (right) instructions livegraphs

Figure 103: Trans (left) and VMX (right) instructions livegraphs

65



Figure 104: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 105: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs
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Figure 106: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 107: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs
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Figure 108: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 109: Memory-read (left) and Memory-Write (right) livegraphs
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Figure 110: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 111: Unique Instructions (left) and User Instructions (right) livegraphs
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Figure 112: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 113: User TLB Instruction Miss livegraphs
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B.7 PHYLIP

Figure 114: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 115: Bus-wait (left) and Cycles (right) livegraphs
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Figure 116: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 117: Cache (left) and Compare (right) instructions livegraphs
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Figure 118: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 119: Load (left) and Logical (right) instructions livegraphs
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Figure 120: Other (left) and Store (right) instructions livegraphs

Figure 121: Trans (left) and VMX (right) instructions livegraphs
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Figure 122: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 123: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs
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Figure 124: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 125: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs
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Figure 126: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 127: Memory-read (left) and Memory-Write (right) livegraphs
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Figure 128: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 129: Unique Instructions (left) and User Instructions (right) livegraphs
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Figure 130: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 131: User TLB Instruction Miss livegraphs
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B.8 PREDATOR

Figure 132: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 133: Bus-wait (left) and Cycles (right) livegraphs
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Figure 134: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 135: Cache (left) and Compare (right) instructions livegraphs
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Figure 136: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 137: Load (left) and Logical (right) instructions livegraphs
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Figure 138: Other (left) and Store (right) instructions livegraphs

Figure 139: Trans (left) and VMX (right) instructions livegraphs
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Figure 140: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 141: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs
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Figure 142: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 143: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs
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Figure 144: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 145: Memory-read (left) and Memory-Write (right) livegraphs
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Figure 146: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 147: Unique Instructions (left) and User Instructions (right) livegraphs
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Figure 148: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 149: User TLB Instruction Miss livegraphs
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C Apple G5 CHUD

C.1 BLAST
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Figure 150: Instructions(ppc) (left) and Instructions (total) (right) livegraphs
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Figure 151: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs
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Figure 152: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs
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Figure 153: Loads (left) and Load Misses (right) livegraphs
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Figure 154: L1 data misses (left) and L2 data hits (right) livegraphs
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Figure 155: L2 data misses (left) and L2 data hitrate (right) livegraphs
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Figure 156: Data TLB misses (left) and Memory Transactions (right) livegraphs
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Figure 157: Read/Writes (left) and VM Page Cache Hits (right) livegraphs
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Figure 158: Disk Reads (left) and Disk Writes (right) livegraphs
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C.2 CLUSTALW
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Figure 159: Instructions(ppc) (left) and Instructions (total) (right) livegraphs
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Figure 160: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs
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Figure 161: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs
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Figure 162: Loads (left) and Load Misses (right) livegraphs
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Figure 163: L1 data misses (left) and L2 data hits (right) livegraphs
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Figure 164: L2 data misses (left) and L2 data hitrate (right) livegraphs
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Figure 165: Data TLB misses (left) and Memory Transactions (right) livegraphs
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Figure 166: Read/Writes (left) and VM Page Cache Hits (right) livegraphs
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Figure 167: Disk Reads (left) and Disk Writes (right) livegraphs
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C.3 GLIMMER
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Figure 168: Instructions(ppc) (left) and Instructions (total) (right) livegraphs
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Figure 169: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs
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Figure 170: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs
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Figure 171: Loads (left) and Load Misses (right) livegraphs
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Figure 172: L1 data misses (left) and L2 data hits (right) livegraphs
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Figure 173: L2 data misses (left) and L2 data hitrate (right) livegraphs
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Figure 174: Data TLB misses (left) and Memory Transactions (right) livegraphs
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Figure 175: Read/Writes (left) and VM Page Cache Hits (right) livegraphs
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Figure 176: Disk Reads (left) and Disk Writes (right) livegraphs
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C.4 GRAPPA
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Figure 177: Instructions(ppc) (left) and Instructions (total) (right) livegraphs
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Figure 178: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs
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Figure 179: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs
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Figure 180: Loads (left) and Load Misses (right) livegraphs
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Figure 181: L1 data misses (left) and L2 data hits (right) livegraphs

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  500  1000  1500  2000  2500  3000

dL2-miss

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  500  1000  1500  2000  2500  3000

l2d-hitrate

Figure 182: L2 data misses (left) and L2 data hitrate (right) livegraphs
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Figure 183: Data TLB misses (left) and Memory Transactions (right) livegraphs
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Figure 184: Read/Writes (left) and VM Page Cache Hits (right) livegraphs
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Figure 185: Disk Reads (left) and Disk Writes (right) livegraphs

108



C.5 HMMER
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Figure 186: Instructions(ppc) (left) and Instructions (total) (right) livegraphs
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Figure 187: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs
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Figure 188: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs
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Figure 189: Loads (left) and Load Misses (right) livegraphs
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Figure 190: L1 data misses (left) and L2 data hits (right) livegraphs
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Figure 191: L2 data misses (left) and L2 data hitrate (right) livegraphs
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Figure 192: Data TLB misses (left) and Memory Transactions (right) livegraphs
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Figure 193: Read/Writes (left) and VM Page Cache Hits (right) livegraphs
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Figure 194: Disk Reads (left) and Disk Writes (right) livegraphs
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C.6 PHYLIP
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Figure 195: Instructions(ppc) (left) and Instructions (total) (right) livegraphs
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Figure 196: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs
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Figure 197: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs
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Figure 198: Loads (left) and Load Misses (right) livegraphs
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Figure 199: L1 data misses (left) and L2 data hits (right) livegraphs
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Figure 200: L2 data misses (left) and L2 data hitrate (right) livegraphs
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Figure 201: Data TLB misses (left) and Memory Transactions (right) livegraphs
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Figure 202: Read/Writes (left) and VM Page Cache Hits (right) livegraphs
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Figure 203: Disk Reads (left) and Disk Writes (right) livegraphs
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C.7 PREDATOR
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Figure 204: Instructions(ppc) (left) and Instructions (total) (right) livegraphs
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Figure 205: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs
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Figure 206: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs
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Figure 207: Loads (left) and Load Misses (right) livegraphs
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Figure 208: L1 data misses (left) and L2 data hits (right) livegraphs
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Figure 209: L2 data misses (left) and L2 data hitrate (right) livegraphs
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Figure 210: Data TLB misses (left) and Memory Transactions (right) livegraphs

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0  50  100  150  200  250  300  350  400  450  500

read-write

 0

 20

 40

 60

 80

 100

 120

 0  50  100  150  200  250  300  350  400  450  500

vm-cache-hits

Figure 211: Read/Writes (left) and VM Page Cache Hits (right) livegraphs
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Figure 212: Disk Reads (left) and Disk Writes (right) livegraphs
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C.8 TCOFFEE
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Figure 213: Instructions(ppc) (left) and Instructions (total) (right) livegraphs
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Figure 214: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs
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Figure 215: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 0  200  400  600  800  1000  1200  1400  1600  1800

load-0-1

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0  200  400  600  800  1000  1200  1400  1600  1800

loadmiss-0-1

Figure 216: Loads (left) and Load Misses (right) livegraphs
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Figure 217: L1 data misses (left) and L2 data hits (right) livegraphs
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Figure 218: L2 data misses (left) and L2 data hitrate (right) livegraphs
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Figure 219: Data TLB misses (left) and Memory Transactions (right) livegraphs
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Figure 220: Read/Writes (left) and VM Page Cache Hits (right) livegraphs
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Figure 221: Disk Reads (left) and Disk Writes (right) livegraphs
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