
BioSPLASH: A sample workload for bioinformatics and
computational biology for optimizing next-generation

high-performance computer systems

David A. Bader∗ Vipin Sachdeva
Department of Electrical and Computer Engineering
University of New Mexico, Albuquerque, NM 87131

Virat Agarwal Gaurav Goel Abhishek N. Singh
Indian Institute of Technology, New Delhi

May 1, 2005

Abstract

BioSPLASH is a suite of representative applications that we have assembled from the com-
putational biology community, where the codes are carefully selected to span a breadth of
algorithms and performance characteristics. The main results of this paper are the assembly
of a scalable bioinformatics workload with impact to the DARPA High Produc-
tivity Computing Systems Program to develop revolutionarily-new economically-
viable high-performance computing systems, and analyses of the performance of
these codes for computationally demanding instances using the cycle-accurate IBM
MAMBO simulator and real performance monitoring on an Apple G5 system. Hence,
our work is novel in that it is one of the first efforts to incorporate life science application per-
formance for optimizing high-end computer system architectures.

1 Algorithms in Computational Biology

In the 50 years since the discovery of the structure of DNA, and with new techniques for sequencing
the entire genome of organisms, biology is rapidly moving towards a data-intensive, computational
science. Biologists are in search of biomolecular sequence data, for its comparison with other
genomes, and because its structure determines function and leads to the understanding of bio-
chemical pathways, disease prevention and cure, and the mechanisms of life itself. Computational
biology has been aided by recent advances in both technology and algorithms; for instance, the
ability to sequence short contiguous strings of DNA and from these reconstruct the whole genome
(e.g., see [34, 2, 33]) and the proliferation of high-speed micro array, gene, and protein chips (e.g.,
see [27]) for the study of gene expression and function determination. These high-throughput

∗Email: dbader@ece.unm.edu. This work was supported in part by DARPA Contract NBCH30390004; and
NSF Grants CAREER ACI-00-93039, NSF DBI-0420513, ITR ACI-00-81404, DEB-99-10123, ITR EIA-01-21377,
Biocomplexity DEB-01-20709, and ITR EF/BIO 03-31654.

1

techniques have led to an exponential growth of available genomic data. Algorithms for solving
problems from computational biology often require parallel processing techniques due to the data-
and compute-intensive nature of the computations. Many problems use polynomial time algorithms
(e.g., all-to-all comparisons) but have long running times due to the large data volume to process;
for example, the assembly of an entire genome or the all-to-all comparison of gene sequence data.
Other problems are compute-intensive due to their inherent algorithmic complexity, such as pro-
tein folding and reconstructing evolutionary histories from molecular data, that are known to be
NP-hard (or harder) and often require approximations that are also complex. Algorithms and appli-
cations in this new computational field of biology, called computational biology and bioinformatics,
is now one of the biggest consumers of computational power. This is not clear; and hence, a part of
our research interest. Since current architectures have not been designed with these applications in
mind, we are interested in finding architectural trade-offs that can benefit computational biology
without degrading performance of other workloads.

To realize this, it is increasingly important that we analyze the algorithms and applications
used by the biological community.

We propose BioSplash with a wide variety of applications selected from computational biology
and bioinformatics as part of this endeavor. The codes have been selected from a consideration of
heterogeneity of algorithms, biological problems, popularity among the biological community, and
memory traits, seeking the suite to be of importance to both biologists and computer scientists. To
ease the portability of this suite to new architectures and systems, only freely available open-source
codes are included, with no commercial software included in this suite. For each of these codes,
we have assembled input datasets with varying sizes which can be used in conjunction with the
applications included in this suite. We have performed an exhaustive analysis of these codes on
the cycle-accurate IBM MAMBO simulator [9] and the Apple G5 (PowerPC G5) workstation. As
our results show, computational biology is an extremely data-intensive science with a very high
ratio of cache and memory accesses to computations. We are not only reporting the aggregate
performance characteristics at the end of the run, but also “live-graph”performance data which
show the variation of the performance exhibited during the execution of the application. Using
such data, we correlate the performance data with the algorithm in phases of the application, and
suggest optimizations targeted at separate regions of the application. We also compared these codes
on dual-core systems to quantify to what extent computational biology applications can utilized
and benefit from these commodity enhancements in computer architecture. We are actively using
this data to propose architectural features in the design of next generation petaflop computing
systems under the DARPA High Productivity Computing Systems (HPCS) Project [12]. We are
actively vetting this BioSplash suite with the computational biology community, for instance,
with a technical presentation at the Intelligent Systems of Molecular Biology (ISMB) 2005 [7].

2 Previous Work

One of the most successful attempts to create standardized benchmark suites is SPEC (Standard
Performance Evaluation Corporation), which started initially as an effort to deliver better bench-
marks for workstations. Over the years, SPEC evolved to cover different application classes, such
as the SPECSFS for the NFS performance and the SPECWeb for performance of Web servers.
Other examples of domain-specific benchmarks include transaction-processing benchmarks TPC,
benchmarks for embedded processors such as the EEMBC benchmarks and many others One of the
important benchmark suites in the scientific research community has been the SPLASH (Stanford
Parallel Applications for Shared Memory) suite [29], later updated to SPLASH-2 [35]. SPLASH-2

2

included mostly codes from linear algebra and computational physics, and was designed to mea-
sure the performance of these applications on centralized and distributed memory-machines. Few
comprehensive suite of computationally-intensive computational biology applications are available
to the computer science community, and this works fills this needed gap.

3 BioSplash suite

Bioinformatics is a field for which problems itself have not been categorized thoroughly. Algorithms
and the applications are still being studied. Many of the problems themselves are NP-hard with
increasing input sets. This has led to heuristics being developed to solve the problems, which
give sub-optimal results to a reasonable degree of accuracy quickly. Thus, the field is still in
it’s infancy with problems, algorithms, applications, and even system architecture requirements,
changing everyday. The present suite of tools should therefore be treated as a starting point. As
the field evolves, we expect the list of codes to evolve to encompass important emerging trends.
We therefore plan to iterate over the list. Our endeavor is to finally find a representative set
of bioinformatics tools which encompasses the field of bioinformatics in terms of the problems it
represents and the solutions which are devised for those problems. We use this set of bioinformatics
applications to drive changes in computer architecture for high-performance computing systems
specifically targeted towards the computational biology applications.

Algorithms for solving problems from computational biology often require parallel processing
techniques due to the data- and compute-intensive nature of the computations. However many
problems in biology are integer-based using abstract data and irregular in structure making them
significantly more challenging to parallelize. Also, since the sequential algorithms have been not
been developed fully, their parallel solutions or implementations are themselves not available. Thus,
while our imperative is to identify parallel codes, we have included uniprocessor implementations
also in this suite as of now; for lack of parallel implementations in some cases. Out of the 8 codes
included in this suite, 4 of these codes are multi-threaded. As the field matures, we should find
increasing parallel implementations of the codes for bioinformatics sub-problems.

Most of the codes are handpicked from the following broad problems identified by the biological
community of interest to computer scientist’s.

• Sequence alignment – pairwise and multiple.

• Phylogeny Reconstruction.

• Protein structure prediction.

• Sequence Homology and Gene-finding.

The codes in BioSplash v1.0 consist of the following 8 codes along with their brief description.

• BLAST (blastp) – (Basic Local Alignment Search Tool) [1] suite of programs are the most
widely used computational tool by the biology community. BLAST includes several programs
in it’s suite – blastp is a multithreaded implementation which is used for searching amino
acid sequences against databases of amino acid sequences for identifying sequences which are
homologous to the query sequence. Other programs in the suite include looking up amino
acid sequences against nucleotide databases and vice-versa.

• ClustalW SMP (clustalw smp) – is a symmetric multiprocessors implementation of ClustalW
– ClustalW is a widely used heuristic tool for the multiple sequence alignment problem.

3

ClustalW uses progressive alignments [32] which are perhaps the most practical and widely
used methods. Progressive alignments compare all sequences pairwise, perform cluster anal-
ysis on the pairwise data to generate a hierarchy for alignment (guide tree), and then build
the alignment step by step according to the guide tree.

• HMMER (hmmpfam) – HMMER, suite of programs uses profile HMM’s [16], which are
statistical descriptions of a sequence family’s consensus to do sensitive database searching.
hmmpfam compares one or more sequences to a database of profile hidden Markov models,
such as the Pfam library, in order to identify known domains within a sequence, using either
the Viterbi or the forward algorithm.

• Glimmer (glimmer2) – Glimmer is a widely used gene-finding tool for microbial DNA, es-
pecially for bacteria, archea, and viruses [13]. Glimmer uses interpolated Markov models
(IMM’s) [26] to identify the coding regions and distinguish them from non coding DNA. The
program consists of essentially two steps – the first step trains the IMM from an input set
of sequences, the second step uses this trained IMM for finding putative genes in the input
genome. them. Glimmer’s predictions are used as input to the BLAST and FASTA programs
is therefore used for gene annotation.

• GRAPPA (grappa) – (Genome Rearrangements Analysis under Parsimony and other Phy-
logenetic Algorithms), a software for phylogeny reconstruction [23]. To date, almost every
model of speciation and genomic evolution used in phylogenetic reconstruction has given
rise to NP-hard optimization problems. GRAPPA is a reimplementation of the breakpoint
analysis [8] developed by Blanchette and Sankoff, and also provides the first linear-time im-
plementation of inversion distances improving upon Hannenhalli and Pevzner’s polynomial
time approach [5].Currently, GRAPPA also handles inversion phylogeny and unequal gene
content.

• Phylip (proml) – PHYLIP is a collection of programs for inferring phylogenies [18]. Methods
that are available in the package include parsimony, distance matrix, and likelihood methods
[17], including bootstrapping and consensus trees. Data types that can be handled include
molecular sequences, gene frequencies, restriction sites, distance matrices, and 0/1 discrete
characters.

• Predator (predator) – [20, 21] is a tool for finding protein structures. Predator is based on
the calculated propensities of every 400 amino-acid pairs [19] to interact inside an α-helix
or one upon three types of β-bridges. It then incorporates non-local interaction statistics.
PREDATOR also uses propensities for α-helix, β-strand and coil derived form a nearest-
neighbor approach. To use information coming from homologous proteins, PREDATOR
relies on local pairwise alignments for input.

4 Experimental Environment

Our experimental environment consisted of the Mambo [28] simulator from IBM and the Apple
PowerMac G5 having PowerPC G5 processor. Mambo is an IBM proprietary full-system simula-
tion tool for the PowerPC architecture and is used within IBM to model future systems, support
early software development, and design new system software [28, 9]. Importantly Mambo is being
used for the DARPA High Productivity Computing Systems program aimed at bringing sustained

4

multi-petaflop and autonomic capabilities to commercial supercomputers. Such sustained perfor-
mance improvement is being made possible by research into architectures, high-end programming
environments, software tools, and hardware components. Mambo shares some of its roots with the
PowerPC extensions added to the SimOS [24] simulator. The system is designed for multiple con-
figuration options. Mambo can be used to design uniprocessor or shared memory multiprocessors
with various user-specific PowerPC extensions and attributes such as VMX support, hypervisor,
cache geometries, segment lookaside buffers (SLBs) and translation lookaside buffers (TLBs), and
thereafter collecting and dumping cache statistics at selected execution points of the program.
PowerPC G5 processor is 64-bit, dual-core processor designed for symmetric multiprocessing. It
has a superscalar execution core based on the IBM Power processor with up to 215 inflight in-
structions and a velocity engine for accelerated SIMD processing. Other features include advanced
3-bit component branch prediction logic to increase processing efficiency, and dual frontside buses
for enhanced bandwidth. We used the MONster tool, part of the Apple’s native graphical perfor-
mance analysis tool CHUD (Computer Hardware Understanding Development) for the performance
analysis [3]. MONster provides direct access to performance counters; it can collect samples at a
system-wide or process-specific level and display the metrics for the collected data. Besides the
extreme accuracy in their collected performance data, another advantage of both of these tools is
the “live graph”capabilities of both MONster and Mambo, reporting accumulated data not only
at the end of each run, but also at chosen regular sampling intervals. Such temporal data helps
to visualize the performance as it varies during the execution of the code, and can be used to
inspect specific intervals of the run. We compiled the codes using gcc-3.3 on the PowerMac G5,
and using powerpc64-linux-gcc on the Mambo simulator, typically with default switches given by
the makefiles associated with each program. No additional optimization switches were added for
these architectures. Along with the selection of the codes and the experimental environment, an-
other important consideration was the input sets for each program. For meaningful impact to the
biologists, the input sets must be motivated by real world biological data, actual instances of the
data that biologists collect experimentally and use with these codes. Since our performance plat-
forms are a contemporary architecture and a simulator, this created different requirements on the
size of the input datasets. Mambo entailed a sizable slowdown simulating a complex architecture
(requiring 2000 seconds of wallclock time to simulate 1 second of the operation of the system under
investigation), the size of the input sets had to be small. However since small runtimes create a
possibility of skewed results, we decided to use extremely long-running instances of the datasets
for each code. The sequences we chose in PowerMac runs are among the longest in Genbank and
Swissprot, database searches were performed against complete databases such as the Genbank,
Swissprot, and PFAM, databases. We therefore created a size varying set of input sets for each
code, with the inputs categorized as small, medium and large.

PowerMac G5 was booted into a single processor for uniprocessor runs (nvram boot-args=1) for
the uniprocessor runs, for dual processor runs the system was again booted with both processors.
The multithreaded codes are run with two threads for dual core processor runs.

The following is a brief description for the codes used, their availability, their running options
along with the input datasets used for the runs.

5

5 Synopsis of Included Software in BioSplash v0.1

Name Domain URL Parallelisation

BLAST (blastp)
[1] [11]

Heuristic-based local sequence alignment ftp://ftp.ncbi.nlm.nih.gov/toolbox/
ncbi tools/ncbi.tar.gz

POSIX threads MPI [11]

ClustalW SMP
(clustalw)

Progressive multiple sequence alignment http://abs.cit.nih.gov/clustalw/ POSIX threads version.[14]. MPI ver-
sions of ClustalW ([22] and [15]). POSIX
threads [14]. Cache-friendly distributed
version [10].

T-Coffee (tcof-
fee)

Progressive multiple sequence alignment http://igs-server.cnrs-mrs.fr/∼cnotred/
Projects\ home\ page/t\ coffee\ home\
page.html

No

HMMER
(hmmpfam)

Sequence Homology http://hmmer.wustl.edu/ Multithreaded.

Glimmer (glim-
mer2)

Gene finding www.tigr.org/software/glimmer/ No

GRAPPA
(grappa)

Phylogeny Tree Construction www.cs.unm.edu/∼moret/GRAPPA Parallel version tested under linux.

Phylip (proml) Phylogeny Tree Construction http://evolution.gs.washington.edu/
phylip.html

No

Predator
(predator)

Protein Secondary Structure Prediction ftp://ftp.ebi.ac.uk/pub/software/unix/
predator/

No.

6 BioSplash programs and their Input Datasets

Code Input Datasets
BLAST
(blastp)

Search of 16 sequences each more than 5000 residues against database Swissprot

ClustalW SMP File 6000.seq included with the executable was used as input.
(clustalw smp) 318 sequences with average length of about 1450 residues
HMMER
(hmmpfam)

Aminoacid Sequence Q89F91 of almost 8800 residues searched against the PFAM
database.

GRAPPA
(grappa)

12 sequences of the bluebell flower species Campanlacae.

T-Coffee 1yge 1byt included extracted from the Prefab database.
(tcoffee) Consists of 50 sequences of average length 850.
Glimmer
(glimmer2)

Bacteria Genome NC 004463.fna consisting of more than 9200 kilobase pairs.

Predator
(predator)

5 sequences extracted from Swissprot each of almost 7500 residues.

Phylip Input is aligned dataset of 92 cyclophilins and cyclophilin-related
(proml) proteins from eukaryotes each of length 220.

Another table with the codes and their run-commands for generating the performance graphs is
included in [6].

7 Livegraph and Cumulative performance analysis for BioSplash

As we said earlier, the interesting feature of Mambo and MONster tool was their ability to generate
livegraphs during the run, which enables us to visualize the performance of the code as it varied
during the run. Data is collected at end of every user-defined sampling interval, thus generating

6

tables of data for every hardware counter recorded. Such livegraphs can be used for suggesting
optimizations targeted at these separate phases. e.g. blast and tcoffee livegraph of instructions
per cycle with the L1 data miss rate and we can see the direct correlation, instructions per cycle
increases in the same cycle as the L1 data miss rate decreases. Hmmpfam shows the instructions
per cycle oscillating with the application showing only one phase in it’s entire run. This graph
agrees with the algorithm, since hmmpfam is a sensetive database searching tool comparing all the
sequences in a database with the input sequence, searching for homologues of the input sequence.

Figure 1: Blast (top), hmmpfam (bottom left), tcoffee (bottom right) performance Graphs: In-
structions per cycle show a direct correlation with L1 data miss rate

In the clustalw livegraphs, we find an interesting observation, the instructions per cycle increases
in the last phase of the application, even though L1 data miss rate increases in the same phase
suggesting that performance of clustalw might not be as directly correlated with L1 data miss
rate as we might have expected. However if we see the branch mispredicts, we find the branch
mispredicts decreasing in the same phase, implying that the performance of the last phase is more
closely related to branch mispredicts than L1 data miss rate.

Another useful livegraph is the data on instruction profiles, e.g. grappa data showing that the
branch and compare instructions are the main instructions profiles in the latter part of the program,
with the arithmetic instructions a negligible fraction, blast showing a uniform instruction profile,
with the number of arithmetic, load and branch instructions in the same order, though not by a

7

Figure 2: Clustalw Performance Graphs: Instructions per cycle show a direct correlation with
branch mispredicts (left) as compared to the miss rate (right)

marked difference. Blast algorithm is a heuristic search method that seeks small words between the
query sequence and the database sequences (load), scores the small words (arithmetic instruction)
and subsequently extends the small words if they are greater than a predefined score(branch and
arithmetic instruction), which explains the instruction profile.. A significant part of our research

Figure 3: Grappa (left) and blast (right) graphs of instruction profiles

is correlating the performance metrics at the machine level with the higher-level algorithm the
phase is working on. Data can be separated for phases of the application, and could be looked
into individually with no relation to the other phases. This step is done with inserting Mambo
API’s into the source code of the application, collecting data separately for every phase and then
resetting the performance metrics after every phase, before recording data for the next phase. We
illustrate this technique with clustalw. Clustalw’s performance can basically be categorized into 3
regions: the first phase in which every sequence is compared against every other sequence by Smith
Waterman [30], a quadratic time complexity dynamic programming algorithm. The next step is
the neighbor joining method [25] in which comparison score of sequences is used to make a guide
tree with the sequences at the leaves of the tree. In the last step, the sequences are combined into

8

a multiple sequence alignment according to the guide tree [31]. Clustalw livegraph plotted for the
first and the third phase shows an order of magnitude higher arithmetic instructions compared to
the second phase, denoting the higher time complexity of the algorithm in phase one and three.
L1 data cache misses are higher in the second phase, due to unpredictable access pattern; the
sequences with the lowest distance are joined together in the guide tree, with the other sequences
recomputing distance to the joined sequence. The heuristic is repeated, until all the sequences are
joined together into a guide tree formation.

Figure 4: ClustalW region I (top), II (bottom left) and III (bottom right) showing differences in
algorithmic complexity and memory access pattern

We are not able to include all the livegraphs in this document due to space constraints, fully
detailed analysis and all the livegraphs are included in [6]. For cumulative performance analysis,
we decided to use the data generated by the MONster tool, since the PowerPC G5 codes were run
for significantly larger input data sets. We have included the list of hardware counters available in
PowerPC G5 in the instruction and memory level analysis that we have collected for each code. We
performed several runs for each code, due to conflict of performance counters for collecting data.

• Instruction-level analysis: Instructions dispatched, instructions completed(including and ex-
cluding IO and load/store), branch mispredicts due to condition register value and target
address predict were recorded as part of this analysis.

• Memory-level analysis: L1 cand L2 cache loads and stores, L1 and L2 cache load and store
misses, TLB and SLB misses, read/write request bytes, number of memory transactions and
Load Miss Queue(LMQ) full events were included in this analysis.

9

Application IPC Loads/Instr. Stores/Instr. Branch
mispre-
dicts/1000
instr.

TLB
misses/100k
cycles

L1d Hit
Rate

L2d Hit
Rate

% of
io,ld,st
instr.

blastp 0.835 0.264 0.088 21.95 5.83 95.93% 92.32% 7.345%
clustalw 0.952 0.574 0.041 19.74 1.47 99.24% 97.50% 3.71%
glimmer 0.688 0.242 0.114 8.53 6.63 95.48% 88.47% 7.299%
grappa 1.012 0.349 0.234 28.84 212.96 99.88% 96.78% 15.80%
hmmpfam 1.052 0.623 0.104 9.69 4.65 98.46% 97.96% 7.14%
predator 0.902 0.664 0.062 10.90 16.92 97.87% 90.63% 3.06%
proml 0.924 0.641 0.079 1.59 2.34 97.68% 99.89% 0.086%
tcoffee 1.007 0.570 0.089 4.05 5.76 98.90% 94.26% 1.592%

Table 4: Summary of critical statistics for each code based on their Apple PowerPC G5 runs.

Table 7 gives a summary of performance metrics for each code running on an Apple G5 system.
The instructions per cycle of BioSplash ranges from 0.688 (glimmer) to 1.012 (grappa, with a mean
of about 0.90 for all the codes. The common characterstics of these workloads is the high ratio of
data accesses to computation. In general, the number of loads and stores on a per-instruction basis
ranges from a low of 0.35 to a high of 0.72 with a mean of 0.59. The high ratio of loads/stores
doesn’t affect the performance of most codes; many applications with high instructions per cycle
also have a high percentage of loads/stores for instance hmmpfam, tcoffee, clustalw, proml all have
instructions per cycle greater than 0.90, yet also have ratio of loads to instructions to be more than
50%, on the opposite side, blast and glimmer have lower instructions per cycle (0.835 and 1.012)
despite the lower percentage of loads per instruction (0.264 and 0.349). The PowerPC G5 has 2
load/store units [4], which is fairly typical of modern-day processors, hence it is expected that the
high percentage of loads/stores will not lead to reduced performance on other class of families also.
The high instructions per cycle despite higher loads and stores can be partially explained by the
high L1 data hit rate of most codes; it also explains the lower performance of blast and glimmer
with their hit rates among the lowest of all codes (almost 96%). Infact glimmer has the lowest L1
and L2 hit rates which explains to a large extent, it’s lowest count of instructions per cycle. Grappa
has the second highest instructions per cycle count, despite having TLB misses of almost 2 orders
of magnitude compared to other codes, and the highest instruction percentage for load/store/io.
Based on this data, and other performance counters collected during the runs, we find that it is
difficult to pinpoint the performance of these codes on a single system parameter, but are rather
dependant on an interesting interplay of system parameters both at the memory and the instruction
level. This is because the bioinformatics applications are very heterogenous in nature, with wide
ranging differences in problems, algorithms and their implementations.

8 Dual-core runs of BioSplash parallel codes

Besides sequential runs, we also performed dual core runs of the parallel BioSplash codes; blast,
clustalw and hmmpfam showed almost linear speedup using both processors of the dual-core Apple
PowerPC G5. Grappa showed a small speedup using both processors as the only a part of grappa’s
algorithm was parallelized. ClustalW SMP was also not completely parallelized, but since the ini-
tial part of comparing every sequence against every other sequence was the major time-consuming

10

speedup,clustalw showed an impressive speedup. This shows that parallel multithreaded bioinfor-
matics codes stand to benefit from dual-core processors. Below is the livegraphs of blast and grappa
with data for both processors.

Figure 5: Clustalw (left) and blast (right) graphs of parallel runs

9 Acknowledgments

We would like to thank Ram Rajamony of IBM Austin Research Laboratories for his help with the
Mambo simulator and the CHUD performance tools and performance metrics.

11

References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment
search tool. J. Molecular Biology, 215:403–410, 1990.

[2] E. Anson and E.W. Myers. Algorithms for whole genome shotgun sequencing. In Proc. 3rd
Ann. Int’l Conf. on Computational Molecular Biology (RECOMB99), Lyon, France, April
1999. ACM.

[3] Apple Computer, Inc. C.H.U.D. performance tools. http://developer.apple.com/
performance/.

[4] Apple Computer, Inc. PowerPC G5: White Paper, June 2004. images.apple.com/powermac/
pdf/PowerPCG5 WP 06092004.pdf.

[5] D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for computing inversion
distance between signed permutations with an experimental study. In Proc. 7th Int’l Workshop
on Algorithms and Data Structures (WADS 2001), volume 2125 of Lecture Notes in Computer
Science, pages 365–376, Providence, RI, 2001. Springer-Verlag.

[6] D.A. Bader, V. Sachdeva, V. Agarwal, G. Goel, and A.N. Singh. BioSPLASH: A sample
workload for bioinformatics and computational biology for optimizing next-generation high-
performance computer systems. Technical report, University of New Mexico, Albuquerque,
NM, April 2005.

[7] D.A. Bader, V. Sachdeva, A. Trehan, V. Agarwal, G. Gupta, and A.N. Singh. BioSPLASH: A
sample workload from bioinformatics and computational biology for optimizing next-generation
high-performance computer systems. In Proc. 13th Int’l Conf. on Intel. Sys. for Mol. Bio.
(ISMB 2005), Detroit, MI, June 2005. Poster Session.

[8] M. Blanchette, G. Bourque, and D. Sankoff. Breakpoint phylogenies. In S. Miyano and T. Tak-
agi, editors, Genome Informatics, pages 25–34. University Academy Press, Tokyo, Japan, 1997.

[9] P. Bohrer, M. Elnozahy, A. Gheith, C. Lefurgy, T. Nakra, J. Peterson, R. Rajamony, R. Rock-
hold, H. Shafi, R. Simpson, E. Speight, K. Sudeep, E. Van Hensbergen, and L. Zhang. Mambo
– a full system simulator for the PowerPC architecture. ACM SIGMETRICS Performance
Evaluation Review, 31(4):8–12, 2004.

[10] U. Catalyurek, E. Stahlberg, R. Ferreira, T. Kurc, and J. Saltz. Improving performance of
multiple sequence alignment analysis in multi-client environments. In Proc. 1st Workshop on
High Performance Computational Biology (HiCOMB 2002), Fort Lauderdale, FL, April 2002.

[11] A.E. Darling, L. Carey, and W. Feng. The design, implementation and performance of mpi-
BLAST. In Proc. ClusterWorld Conf. and Expo. 2003, San Jose, CA, June 2003.

[12] Defense Advanced Research Projects Agency (DARPA). High productivity computing systems
program. http://www.darpa.mil/ipto/programs/hpcs/.

[13] A.L. Delcher, D. Harmon, S. Kasif, O. White, and S.L. Salzberg. Improved microbial gene
identification with GLIMMER. Nucleic Acids Res., 27(23):4636–4641, 1998.

[14] O. Duzlevski. SMP version of ClustalW 1.82. http://bioinfo.pbi.nrc.ca/clustalw-smp/,
2002.

12

[15] J. Ebedes and A. Datta. Multiple sequence alignment in parallel on a workstation cluster.
Bioinformatics, 20(7):1193–1195, 2004.

[16] S. R. Eddy. Profile hidden Markov models. Bioinformatics, 25:755–763, 1998.

[17] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood approach. J.
Mol. Evol., 17:368–376, 1981.

[18] J. Felsenstein. PHYLIP – phylogeny inference package (version 3.2). Cladistics, 5:164–166,
1989.

[19] D. Frishman and P. Argos. Knowledge-based secondary structure assignment. Proteins: struc-
ture, function and genetics, 23:566–579, 1995.

[20] D. Frishman and P. Argos. Incorporation of long-distance interactions into a secondary struc-
ture prediction algorithm. Protein Engineering, 9:133–142, 1996.

[21] D. Frishman and P. Argos. 75% accuracy in protein secondary structure prediction. Proteins,
27:329–335, 1997.

[22] K.B. Li. ClustalW-MPI: ClustalW analysis using distributed and parallel computing. Bioin-
formatics, 19(12):1585–1586, 2003.

[23] B. M.E. Moret, D.A. Bader, T. Warnow, S.K. Wyman, and M. Yan. GRAPPA: a high-
performance computational tool for phylogeny reconstruction from gene-order data. In Proc.
Botany, Albuquerque, NM, August 2001.

[24] M. Rosenblum, S.A. Herrod, E. Witchel, and A. Gupta. Complete computer system simula-
tion: The SimOS approach. IEEE Parallel & Distributed Technology: Systems & Technology,
3(4):34–43, 1995.

[25] N. Saitou and M. Nei. The neighbor-joining method: A new method for reconstruction of
phylogenetic trees. Molecular Biological and Evolution, 4:406–425, 1987.

[26] S. Salzberg, A. Delcher, S. Kasif, and O. White. Microbial gene identification using interpolated
Markov models. Nucleic Acids Res., 26(2):544–548, 1998.

[27] M. Schena, D. Shalon, R.W. Davis, and P.O. Brown. Quantitative monitoring of gene expres-
sion patterns with a complementary DNA microarray. Science, 270(5235):467–470, 1995.

[28] H. Shafi, P. Bohrer, J. Phelan, C. Rusu, and J. Peterson. Design and validation of a perfor-
mance and power simulator for PowerPC systems. IBM J. Research and Development, 47(5/6),
2003.

[29] J.P. Singh, W.-D. Weber, and A. Gupta. SPLASH: Stanford parallel applications for shared
memory. Computer Architecture News, 20(1):5–44, 1992.

[30] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences. J.
Molecular Biology, 147:195–197, 1981.

[31] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTALW: improving the senstivity
of progressive multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res., 22:4673–4680, 1994.

[32] J. D. Thompson, F. Plewniak, and O. Poch. A comprehensive comparison of multiple sequence
alignment programs. Nucleic Acids Res., 27:2682–2690, 1999.

13

[33] J.C. Venter and et al. The sequence of the human genome. Science, 291(5507):1304–1351,
2001.

[34] J.L. Weber and E.W. Myers. Human whole-genome shotgun sequencing. Genome Research,
7(5):401–409, 1997.

[35] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2 programs:
Characterization and methodological considerations. In Proc. 22nd Ann. Int’l Symp. Computer
Architecture, pages 24–36, June 1995.

14

A BioSplash program options used running on Mambo

Code Summary Running Options
BLAST blastp searches for the homologues of ./blastall -p blastp -i Drosoph.txt -d
(blastp) an input amino acid sequence against a Drosoph/drosoph.aa -o outdd -p

database of amino acid -i input query file
-d Database
-o Output file

FASTA
(ssearch)

ssearch does an exact Smith-Watermann
of an input sequence with every sequence
of an input library

./ssearch34 t -a -b 20 -q -O <Output
Alignment File> < Input Sequence > <
Input Library File >

library printing the results -a Show entire length in alignment
-b Number of high scores to display
-q Quiet

ClustalW SMP Clustalw makes a multiple sequence align-
ment of the unaligned sequences given

./clustalw < Unaligned sequences file >

T-Coffee T-Coffee makes a multiple sequence align-
ment of unaligned sequences

./tcoffee < Input sequences file > -
dp mode = myers miller pair wise -in =
lalign id pair, clustalw pair -tree mode =
slow
-dp mode = Dynamic programming mode
is Myers and Miller, linear space and
quadratic time complexity
-in = methods used for library mak-
ing, lalign id pair is the local alignment
using FASTA function, clustalw pair is
the global alignment using the Smith-
Watermann.
tree mode = slow, similarity matrix con-
struction done using dynamic program-
ming mode.

HMMER hmmbuild makes a profile hidden ./hmmbuild <Output HMM file >
(hmmbuild) markov model from aligned sequences < Input aligned sequences file >

hmmpfam searches for a sequence in a ./hmmpfam < HMM database >
(hmmpfam) database of profile HMM’s < Input sequence >
Glimmer Finds genes in microbial DNA especially

bacteria and archae
./run-glimmer2 < genome file >

Grappa Tool for phylogeny reconstruction ./grappa -f < Input file > -o < Output file
> -m
-m Tighten circular lower bound

Phylip
(ProML)

Protein Maximum Likelihood Program ./proml < scriptproml > < output >

Protein Maximum Likelihood Program ./proml < scriptproml > < output >
(ProMLK) with molecular clock
Predator Predicts the 3D structure of a protein tak-

ing an amino acid sequence as input
./predator < Input Sequence > -u -h -a
-f< Ouput file >

15

-u Do not copy assignment directly from
the PDB database if query sequence is
found in PDB
-h Indicate progress by dots
-a Make prediction for all sequences in in-
put file

16

B Mambo LiveGraphs

B.1 BLAST

Figure 6: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 7: Bus-wait (left) and Cycles (right) livegraphs

17

Figure 8: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 9: Cache (left) and Compare (right) instructions livegraphs

18

Figure 10: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 11: Load (left) and Logical (right) instructions livegraphs

19

Figure 12: Other (left) and Store (right) instructions livegraphs

Figure 13: Trans (left) and VMX (right) instructions livegraphs

20

Figure 14: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 15: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs

21

Figure 16: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 17: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs

22

Figure 18: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 19: Memory-read (left) and Memory-Write (right) livegraphs

23

Figure 20: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 21: Unique Instructions (left) and User Instructions (right) livegraphs

24

Figure 22: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 23: User TLB Instruction Miss livegraphs

25

B.2 CLUSTALW

Figure 24: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 25: Bus-wait (left) and Cycles (right) livegraphs

26

Figure 26: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 27: Cache (left) and Compare (right) instructions livegraphs

27

Figure 28: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 29: Load (left) and Logical (right) instructions livegraphs

28

Figure 30: Other (left) and Store (right) instructions livegraphs

Figure 31: Trans (left) and VMX (right) instructions livegraphs

29

Figure 32: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 33: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs

30

Figure 34: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 35: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs

31

Figure 36: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 37: Memory-read (left) and Memory-Write (right) livegraphs

32

Figure 38: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 39: Unique Instructions (left) and User Instructions (right) livegraphs

33

Figure 40: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 41: User TLB Instruction Miss livegraphs

34

B.3 FASTA

Figure 42: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 43: Bus-wait (left) and Cycles (right) livegraphs

35

Figure 44: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 45: Cache (left) and Compare (right) instructions livegraphs

36

Figure 46: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 47: Load (left) and Logical (right) instructions livegraphs

37

Figure 48: Other (left) and Store (right) instructions livegraphs

Figure 49: Trans (left) and VMX (right) instructions livegraphs

38

Figure 50: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 51: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs

39

Figure 52: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 53: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs

40

Figure 54: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 55: Memory-read (left) and Memory-Write (right) livegraphs

41

Figure 56: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 57: Unique Instructions (left) and User Instructions (right) livegraphs

42

Figure 58: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 59: User TLB Instruction Miss livegraphs

43

B.4 GLIMMER

Figure 60: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 61: Bus-wait (left) and Cycles (right) livegraphs

44

Figure 62: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 63: Cache (left) and Compare (right) instructions livegraphs

45

Figure 64: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 65: Load (left) and Logical (right) instructions livegraphs

46

Figure 66: Other (left) and Store (right) instructions livegraphs

Figure 67: Trans (left) and VMX (right) instructions livegraphs

47

Figure 68: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 69: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs

48

Figure 70: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 71: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs

49

Figure 72: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 73: Memory-read (left) and Memory-Write (right) livegraphs

50

Figure 74: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 75: Unique Instructions (left) and User Instructions (right) livegraphs

51

Figure 76: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 77: User TLB Instruction Miss livegraphs

52

B.5 GRAPPA

Figure 78: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 79: Bus-wait (left) and Cycles (right) livegraphs

53

Figure 80: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 81: Cache (left) and Compare (right) instructions livegraphs

54

Figure 82: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 83: Load (left) and Logical (right) instructions livegraphs

55

Figure 84: Other (left) and Store (right) instructions livegraphs

Figure 85: Trans (left) and VMX (right) instructions livegraphs

56

Figure 86: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 87: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs

57

Figure 88: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 89: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs

58

Figure 90: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 91: Memory-read (left) and Memory-Write (right) livegraphs

59

Figure 92: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 93: Unique Instructions (left) and User Instructions (right) livegraphs

60

Figure 94: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 95: User TLB Instruction Miss livegraphs

61

B.6 HMMER

Figure 96: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 97: Bus-wait (left) and Cycles (right) livegraphs

62

Figure 98: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 99: Cache (left) and Compare (right) instructions livegraphs

63

Figure 100: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 101: Load (left) and Logical (right) instructions livegraphs

64

Figure 102: Other (left) and Store (right) instructions livegraphs

Figure 103: Trans (left) and VMX (right) instructions livegraphs

65

Figure 104: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 105: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs

66

Figure 106: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 107: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs

67

Figure 108: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 109: Memory-read (left) and Memory-Write (right) livegraphs

68

Figure 110: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 111: Unique Instructions (left) and User Instructions (right) livegraphs

69

Figure 112: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 113: User TLB Instruction Miss livegraphs

70

B.7 PHYLIP

Figure 114: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 115: Bus-wait (left) and Cycles (right) livegraphs

71

Figure 116: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 117: Cache (left) and Compare (right) instructions livegraphs

72

Figure 118: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 119: Load (left) and Logical (right) instructions livegraphs

73

Figure 120: Other (left) and Store (right) instructions livegraphs

Figure 121: Trans (left) and VMX (right) instructions livegraphs

74

Figure 122: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 123: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs

75

Figure 124: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 125: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs

76

Figure 126: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 127: Memory-read (left) and Memory-Write (right) livegraphs

77

Figure 128: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 129: Unique Instructions (left) and User Instructions (right) livegraphs

78

Figure 130: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 131: User TLB Instruction Miss livegraphs

79

B.8 PREDATOR

Figure 132: 32-bit (left) and 64-bit (right) instruction livegraphs

Figure 133: Bus-wait (left) and Cycles (right) livegraphs

80

Figure 134: Arithmetic (left) and Branch (right) instructions livegraphs

Figure 135: Cache (left) and Compare (right) instructions livegraphs

81

Figure 136: CR (left) and Not VMX-Float (right) instructions livegraphs

Figure 137: Load (left) and Logical (right) instructions livegraphs

82

Figure 138: Other (left) and Store (right) instructions livegraphs

Figure 139: Trans (left) and VMX (right) instructions livegraphs

83

Figure 140: Kernel instructions (left) and L1D Cache Miss (right) livegraphs

Figure 141: L1d Cache Miss Super (left) and L1d Cache Miss User (right) livegraphs

84

Figure 142: L1I Cache Miss (left) and L1I Cache Miss Super (right) livegraphs

Figure 143: L1I Cache Miss User (left) and L2 Cache Miss (right) livegraphs

85

Figure 144: L2 Cache Miss Super (left) and L2 Cache Miss User (right) livegraphs

Figure 145: Memory-read (left) and Memory-Write (right) livegraphs

86

Figure 146: All SLB misses (left) and Data SLB Misses (right) livegraphs

Figure 147: Unique Instructions (left) and User Instructions (right) livegraphs

87

Figure 148: All User TLB Misses (left) and Data TLB Misses (right) livegraphs

Figure 149: User TLB Instruction Miss livegraphs

88

C Apple G5 CHUD

C.1 BLAST

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 100 200 300 400 500 600 700 800 900 1000

inst-ppc

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0 100 200 300 400 500 600 700 800 900 1000

inst-total

Figure 150: Instructions(ppc) (left) and Instructions (total) (right) livegraphs

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 100 200 300 400 500 600 700 800 900 1000

inst-per

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 100 200 300 400 500 600 700 800 900 1000

br-CR

Figure 151: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs

89

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 100 200 300 400 500 600 700 800 900 1000

br-TA

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 100 200 300 400 500 600 700 800 900 1000

br-total

Figure 152: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 5e+08

 0 100 200 300 400 500 600 700 800 900 1000

load-0-1

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 100 200 300 400 500 600 700 800 900 1000

loadmiss-0-1

Figure 153: Loads (left) and Load Misses (right) livegraphs

90

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 100 200 300 400 500 600 700 800 900 1000

l1d-miss

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 0 100 200 300 400 500 600 700 800 900 1000

dL2-hit

Figure 154: L1 data misses (left) and L2 data hits (right) livegraphs

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 100 200 300 400 500 600 700 800 900 1000

dL2-miss

 65

 70

 75

 80

 85

 90

 95

 100

 0 100 200 300 400 500 600 700 800 900 1000

l2d-hitrate

Figure 155: L2 data misses (left) and L2 data hitrate (right) livegraphs

91

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 100 200 300 400 500 600 700 800 900 1000

dtlb-miss

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 5.5e+06

 0 100 200 300 400 500 600 700 800 900 1000

mem-trans

Figure 156: Data TLB misses (left) and Memory Transactions (right) livegraphs

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0 100 200 300 400 500 600 700 800 900 1000

read-write

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100 200 300 400 500 600 700 800 900 1000

vm-cache-hits

Figure 157: Read/Writes (left) and VM Page Cache Hits (right) livegraphs

92

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500 600 700 800 900 1000

disk-reads

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800 900 1000

disk-writes

Figure 158: Disk Reads (left) and Disk Writes (right) livegraphs

93

C.2 CLUSTALW

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0 500 1000 1500 2000 2500 3000

inst-ppc

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0 500 1000 1500 2000 2500 3000

inst-total

Figure 159: Instructions(ppc) (left) and Instructions (total) (right) livegraphs

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000

inst-per

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 0 500 1000 1500 2000 2500 3000

br-CR

Figure 160: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs

94

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 500 1000 1500 2000 2500 3000

br-TA

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 0 500 1000 1500 2000 2500 3000

br-total

Figure 161: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

 1e+09

 0 500 1000 1500 2000 2500 3000

load-0-1

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 0 500 1000 1500 2000 2500 3000

loadmiss-0-1

Figure 162: Loads (left) and Load Misses (right) livegraphs

95

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 500 1000 1500 2000 2500 3000

l1d-miss

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 0 500 1000 1500 2000 2500 3000

dL2-hit

Figure 163: L1 data misses (left) and L2 data hits (right) livegraphs

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 0 500 1000 1500 2000 2500 3000

dL2-miss

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 500 1000 1500 2000 2500 3000

l2d-hitrate

Figure 164: L2 data misses (left) and L2 data hitrate (right) livegraphs

96

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 500 1000 1500 2000 2500 3000

dtlb-miss

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 500 1000 1500 2000 2500 3000

mem-trans

Figure 165: Data TLB misses (left) and Memory Transactions (right) livegraphs

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 5.5e+07

 0 500 1000 1500 2000 2500 3000

read-write

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 500 1000 1500 2000 2500 3000

vm-cache-hits

Figure 166: Read/Writes (left) and VM Page Cache Hits (right) livegraphs

97

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 500 1000 1500 2000 2500 3000

disk-reads

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000

disk-writes

Figure 167: Disk Reads (left) and Disk Writes (right) livegraphs

98

C.3 GLIMMER

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 0 50 100 150 200 250 300

inst-ppc

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 50 100 150 200 250 300

inst-total

Figure 168: Instructions(ppc) (left) and Instructions (total) (right) livegraphs

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

inst-per

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 0 50 100 150 200 250 300

br-CR

Figure 169: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs

99

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 50 100 150 200 250 300

br-TA

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 0 50 100 150 200 250 300

br-total

Figure 170: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 5e+08

 0 50 100 150 200 250 300

load-0-1

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 0 50 100 150 200 250 300

loadmiss-0-1

Figure 171: Loads (left) and Load Misses (right) livegraphs

100

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 50 100 150 200 250 300

l1d-miss

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 50 100 150 200 250

dL2-hit

Figure 172: L1 data misses (left) and L2 data hits (right) livegraphs

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 50 100 150 200 250

dL2-miss

 70

 75

 80

 85

 90

 95

 100

 0 50 100 150 200 250

l2d-hitrate

Figure 173: L2 data misses (left) and L2 data hitrate (right) livegraphs

101

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0 50 100 150 200 250

dtlb-miss

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 0 50 100 150 200 250

mem-trans

Figure 174: Data TLB misses (left) and Memory Transactions (right) livegraphs

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 0 50 100 150 200 250

read-write

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250

vm-cache-hits

Figure 175: Read/Writes (left) and VM Page Cache Hits (right) livegraphs

102

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

disk-reads

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

disk-writes

Figure 176: Disk Reads (left) and Disk Writes (right) livegraphs

103

C.4 GRAPPA

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 0 500 1000 1500 2000 2500 3000

inst-ppc

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 500 1000 1500 2000 2500 3000

inst-total

Figure 177: Instructions(ppc) (left) and Instructions (total) (right) livegraphs

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 500 1000 1500 2000 2500 3000

inst-per

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 500 1000 1500 2000 2500 3000

br-CR

Figure 178: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs

104

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 500 1000 1500 2000 2500 3000

br-TA

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 500 1000 1500 2000 2500 3000

br-total

Figure 179: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 0 500 1000 1500 2000 2500 3000

load-0-1

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 0 500 1000 1500 2000 2500 3000

loadmiss-0-1

Figure 180: Loads (left) and Load Misses (right) livegraphs

105

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 500 1000 1500 2000 2500 3000

l1d-miss

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 500 1000 1500 2000 2500 3000

dL2-hit

Figure 181: L1 data misses (left) and L2 data hits (right) livegraphs

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 500 1000 1500 2000 2500 3000

dL2-miss

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 500 1000 1500 2000 2500 3000

l2d-hitrate

Figure 182: L2 data misses (left) and L2 data hitrate (right) livegraphs

106

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 500 1000 1500 2000 2500 3000

dtlb-miss

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 500 1000 1500 2000 2500 3000

mem-trans

Figure 183: Data TLB misses (left) and Memory Transactions (right) livegraphs

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 2e+07

 0 500 1000 1500 2000 2500 3000

read-write

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 500 1000 1500 2000 2500 3000

vm-cache-hits

Figure 184: Read/Writes (left) and VM Page Cache Hits (right) livegraphs

107

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000

disk-reads

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000

disk-writes

Figure 185: Disk Reads (left) and Disk Writes (right) livegraphs

108

C.5 HMMER

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0 200 400 600 800 1000 1200 1400

inst-ppc

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0 200 400 600 800 1000 1200 1400

inst-total

Figure 186: Instructions(ppc) (left) and Instructions (total) (right) livegraphs

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 0 200 400 600 800 1000 1200 1400

inst-per

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 200 400 600 800 1000 1200 1400

br-CR

Figure 187: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs

109

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 200 400 600 800 1000 1200 1400

br-TA

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 200 400 600 800 1000 1200 1400

br-total

Figure 188: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 0 200 400 600 800 1000 1200 1400

load-0-1

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 0 200 400 600 800 1000 1200 1400

loadmiss-0-1

Figure 189: Loads (left) and Load Misses (right) livegraphs

110

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 200 400 600 800 1000 1200 1400

l1d-miss

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 0 200 400 600 800 1000 1200 1400

dL2-hit

Figure 190: L1 data misses (left) and L2 data hits (right) livegraphs

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0 200 400 600 800 1000 1200 1400

dL2-miss

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 100

 0 200 400 600 800 1000 1200 1400

l2d-hitrate

Figure 191: L2 data misses (left) and L2 data hitrate (right) livegraphs

111

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 200 400 600 800 1000 1200 1400

dtlb-miss

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 200 400 600 800 1000 1200 1400

mem-trans

Figure 192: Data TLB misses (left) and Memory Transactions (right) livegraphs

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 0 200 400 600 800 1000 1200 1400

read-write

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400

vm-cache-hits

Figure 193: Read/Writes (left) and VM Page Cache Hits (right) livegraphs

112

-1

-0.5

 0

 0.5

 1

 0 200 400 600 800 1000 1200 1400

disk-reads

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200 1400

disk-writes

Figure 194: Disk Reads (left) and Disk Writes (right) livegraphs

113

C.6 PHYLIP

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 5000 10000 15000 20000 25000 30000

inst-ppc

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 5000 10000 15000 20000 25000 30000

inst-total

Figure 195: Instructions(ppc) (left) and Instructions (total) (right) livegraphs

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5000 10000 15000 20000 25000 30000

inst-per

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 5000 10000 15000 20000 25000 30000

br-CR

Figure 196: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs

114

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 5000 10000 15000 20000 25000 30000

br-TA

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 5000 10000 15000 20000 25000 30000

br-total

Figure 197: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 0 5000 10000 15000 20000 25000 30000

load-0-1

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 5000 10000 15000 20000 25000 30000

loadmiss-0-1

Figure 198: Loads (left) and Load Misses (right) livegraphs

115

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 5000 10000 15000 20000 25000 30000

l1d-miss

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 5000 10000 15000 20000 25000 30000

dL2-hit

Figure 199: L1 data misses (left) and L2 data hits (right) livegraphs

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 5000 10000 15000 20000 25000 30000

dL2-miss

 88

 90

 92

 94

 96

 98

 100

 0 5000 10000 15000 20000 25000 30000

l2d-hitrate

Figure 200: L2 data misses (left) and L2 data hitrate (right) livegraphs

116

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 5000 10000 15000 20000 25000 30000

dtlb-miss

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 0 5000 10000 15000 20000 25000 30000

mem-trans

Figure 201: Data TLB misses (left) and Memory Transactions (right) livegraphs

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 5000 10000 15000 20000 25000 30000

read-write

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5000 10000 15000 20000 25000 30000

vm-cache-hits

Figure 202: Read/Writes (left) and VM Page Cache Hits (right) livegraphs

117

-1

-0.5

 0

 0.5

 1

 0 5000 10000 15000 20000 25000 30000

disk-reads

 0

 50

 100

 150

 200

 250

 0 5000 10000 15000 20000 25000 30000

disk-writes

Figure 203: Disk Reads (left) and Disk Writes (right) livegraphs

118

C.7 PREDATOR

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 0 50 100 150 200 250 300 350 400 450 500

inst-ppc

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 0 50 100 150 200 250 300 350 400 450 500

inst-total

Figure 204: Instructions(ppc) (left) and Instructions (total) (right) livegraphs

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300 350 400 450 500

inst-per

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 50 100 150 200 250 300 350 400 450 500

br-CR

Figure 205: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs

119

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 50 100 150 200 250 300 350 400 450 500

br-TA

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 50 100 150 200 250 300 350 400 450 500

br-total

Figure 206: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 0 50 100 150 200 250 300 350 400 450 500

load-0-1

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 0 50 100 150 200 250 300 350 400 450 500

loadmiss-0-1

Figure 207: Loads (left) and Load Misses (right) livegraphs

120

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 50 100 150 200 250 300 350 400 450 500

l1d-miss

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 50 100 150 200 250 300 350 400 450 500

dL2-hit

Figure 208: L1 data misses (left) and L2 data hits (right) livegraphs

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 50 100 150 200 250 300 350 400 450 500

dL2-miss

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 50 100 150 200 250 300 350 400 450 500

l2d-hitrate

Figure 209: L2 data misses (left) and L2 data hitrate (right) livegraphs

121

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 50 100 150 200 250 300 350 400 450 500

dtlb-miss

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 0 50 100 150 200 250 300 350 400 450 500

mem-trans

Figure 210: Data TLB misses (left) and Memory Transactions (right) livegraphs

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 50 100 150 200 250 300 350 400 450 500

read-write

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400 450 500

vm-cache-hits

Figure 211: Read/Writes (left) and VM Page Cache Hits (right) livegraphs

122

-1

-0.5

 0

 0.5

 1

 0 50 100 150 200 250 300 350 400 450 500

disk-reads

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350 400 450 500

disk-writes

Figure 212: Disk Reads (left) and Disk Writes (right) livegraphs

123

C.8 TCOFFEE

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0 200 400 600 800 1000 1200 1400 1600 1800

inst-ppc

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 0 200 400 600 800 1000 1200 1400 1600 1800

inst-total

Figure 213: Instructions(ppc) (left) and Instructions (total) (right) livegraphs

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000 1200 1400 1600 1800

inst-per

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 200 400 600 800 1000 1200 1400 1600 1800

br-CR

Figure 214: Percentage of io/ld/st instruction (left) and Branch Mispredicts (Condition Register)
(right) livegraphs

124

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0 200 400 600 800 1000 1200 1400 1600 1800

br-TA

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 0 200 400 600 800 1000 1200 1400 1600 1800

br-total

Figure 215: Branch Mispredicts (Target Address) (left) and Branch Mispredicts (total) (right)
livegraphs

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 0 200 400 600 800 1000 1200 1400 1600 1800

load-0-1

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 200 400 600 800 1000 1200 1400 1600 1800

loadmiss-0-1

Figure 216: Loads (left) and Load Misses (right) livegraphs

125

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0 200 400 600 800 1000 1200 1400 1600 1800

l1d-miss

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 200 400 600 800 1000 1200 1400 1600 1800

dL2-hit

Figure 217: L1 data misses (left) and L2 data hits (right) livegraphs

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 0 200 400 600 800 1000 1200 1400 1600 1800

dL2-miss

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600 1800

l2d-hitrate

Figure 218: L2 data misses (left) and L2 data hitrate (right) livegraphs

126

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 200 400 600 800 1000 1200 1400 1600 1800

dtlb-miss

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 200 400 600 800 1000 1200 1400 1600 1800

mem-trans

Figure 219: Data TLB misses (left) and Memory Transactions (right) livegraphs

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 200 400 600 800 1000 1200 1400 1600 1800

read-write

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200 1400 1600 1800

vm-cache-hits

Figure 220: Read/Writes (left) and VM Page Cache Hits (right) livegraphs

127

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800

disk-reads

 0

 100

 200

 300

 400

 500

 600

 700

 0 200 400 600 800 1000 1200 1400 1600 1800

disk-writes

Figure 221: Disk Reads (left) and Disk Writes (right) livegraphs

128

