
Chapter 5

PARALLEL ALGORITHM DESIGN FOR
BRANCH AND BOUND

David A. Bader
Department of Electrical & Computer Engineering, University of New Mexico
dbader@ece.unm.edu

William E. Hart
Discrete Mathematics and Algorithms Department, Sandia National Laboratories
wehart@sandia.gov

Cynthia A. Phillips
Discrete Mathematics and Algorithms Department, Sandia National Laboratories
caphill@sandia.gov

Abstract Large and/or computationally expensive optimization problems some-
times require parallel or high-performance computing systems to achieve
reasonable running times. This chapter gives an introduction to parallel
computing for those familiar with serial optimization. We present tech-
niques to assist the porting of serial optimization codes to parallel sys-
tems and discuss more fundamentally parallel approaches to optimiza-
tion. We survey the state-of-the-art in distributed- and shared-memory
architectures and give an overview of the programming models appro-
priate for efficient algorithms on these platforms. As concrete exam-
ples, we discuss the design of parallel branch-and-bound algorithms for
mixed-integer programming on a distributed-memory system, quadratic
assignment problem on a grid architecture, and maximum parsimony in
evolutionary trees on a shared-memory system.

Keywords: parallel algorithms; optimization; branch and bound; distributed mem-
ory; shared memory; grid computing

5-2 Parallel Algorithm Design forBranch and Bound

Introduction
Although parallel computing is often considered synonymous with su-

percomputing, the increased availability of multi-processor workstations
and Beowulf-style clusters has made parallel computing resources avail-
able to most academic departments and modest-scale companies. Con-
sequently, researchers have applied parallel computers to problems such
as weather and climate modeling, bioinformatics analysis, logistics and
transportation, and engineering design. Furthermore, commercial appli-
cations are driving development of effective parallel software for large-
scale applications such as data mining and computational medicine.

In the simplest sense, parallel computing involves the simultaneous use
of multiple compute resources to solve a computational problem. How-
ever, the choice of target compute platform often significantly influences
the structure and performance of a parallel computation. There are
two main properties that classify parallel compute platforms: physical
proximity of compute resources and distribution of memory. In tightly-
coupled parallel computers, the processors are physically co-located and
typically have a fast communication network. In loosely coupled com-
pute platforms, compute resources are distributed, and consequently
inter-process communication is often slow. In shared memory systems,
all of the RAM is physically shared. In distributed memory systems each
processor/node controls its own RAM. The owner is the only processor
that can access that RAM.

The term system usually refers to tightly-coupled architectures. Shared-
memory systems typically consist of a single computer with multiple
processors using many simultaneous asynchronous threads of execution.
Most massively-parallel machines are distributed memory systems. Par-
allel software for these machines typically requires explicit problem de-
composition across the processors, and the fast communication net-
work enables synchronous inter-processor communication. Grid com-
pute platforms exemplify the extreme of loosely-coupled distributed-
memory compute platforms. Grid compute platforms may integrate
compute resources across extended physical distances, and thus asyn-
chronous, parallel decomposition is best suited for these platforms. Loosely-
coupled shared-memory platforms have not proven successful because of
the inherent communication delays in these architectures.

This chapter illustrates how to develop scientific parallel software for
each of these three types of canonical parallel compute platforms. The
programming model for developing parallel software is somewhat differ-
ent for each of these compute platforms. Skillicorn and Talia [103] define
a programming model as: “an abstract machine providing certain opera-

Parallel Computing Systems 5-3

tions to the programming level above and requiring implementations on
all of the architectures below.” Parallel code will perform best if the pro-
gramming model and the hardware match. However, in general parallel
systems can emulate the others (provide the other required abstractions)
with some loss of performance.

As a concrete example, we consider the design of parallel branch and
bound. We discuss how the compute platform influences the design of
parallel branch and bound by affecting factors like task decomposition
and inter-processor coordination. We discuss the application of parallel
branch and bound to three real-world problems that illustrate the impact
of the parallelization: solving mixed-integer programs, solving quadratic
assignment problems, and reconstructing evolutionary trees.

Finally, we provide some broad guidance on how to design and debug
parallel scientific software. We survey some parallel algorithmic prim-
itives that form the basic steps of many parallel codes. As with serial
software, a working knowledge of these types of primitives is essential
for effective parallel software development. Because parallel software
is notoriously difficult to debug, we also discuss practical strategies for
debugging parallel codes.

5.1 Parallel Computing Systems
Over the past two decades, high-performance computing systems have

evolved from special-purpose prototypes into commercially-available com-
modity systems for general-purpose computing. We loosely categorize
parallel architectures as distributed memory, shared memory, or grid;
realizing that modern systems may comprise features from several of
these classes (for example, a cluster of symmetric multiprocessors, or a
computational grid of multithreaded and distributed memory resources).
In this section, we briefly describe some theoretical parallel models, the
types of high-performance computing architectures available today, and
the programming models that facilitate efficient implementations for
each platform. For a more details, we refer the reader to a number
of excellent resources on parallel computing [32, 33, 49, 58], parallel
programming [13, 24, 93, 104, 115], and parallel algorithms [57, 77, 97].

5.1.1 Theoretical Models of Parallel Computers
Theoretical analysis of parallel algorithms requires an abstract ma-

chine model. The two primary models roughly abstract shared-memory
and distributed-memory systems. For serial computations the RAM
model, perhaps augmented with a memory hierarchy, is universally ac-
cepted. We are aware of no single model that is both realistic enough

5-4 Parallel Algorithm Design forBranch and Bound

that theoretical comparisons carry over to practice and simple enough
to allow clean and powerful analyses. However, some techniques from
theoretically good algorithms are useful in practice. If the reader wishes
to survey the parallel algorithms literature before beginning an imple-
mentation, he will need some familiarity with parallel machine models
to understand asymptotic running times.

The Parallel Random Access Machine (PRAM) [42] has a set of identi-
cal processors and a shared memory. At each synchronized step, the pro-
cessors perform local computation and simultaneously access the shared
memory in a legal pattern. In the EREW (exclusive-read exclusive-
write) PRAM the access is legal if all processors access unique memory
locations. The CRCW (concurrent-read concurrent write) PRAM allows
arbitrary access and the CREW PRAM allows only simultaneous reads.
The PRAM roughly abstracts shared-memory systems. In Section 5.1.4
we show ways in which it is still unrealistic, frequently fatally so.

The asynchronous LogP model is a reasonable abstraction of distributed-
memory systems. It explicitly models communication bandwidth (how
much data a processor can exchange with the network), message latency
(time to send a message point to point) and how well a system overlaps
communication and computation. It can be difficult to compare different
algorithms using this model because running times can be complicated
functions of the various parameters. The Bulk Synchronous Parallel
(BSP) model[113] is somewhat between LogP and PRAM. Processors
have local memory and communicate with messages, but have frequent
explicit synchronizations.

5.1.2 Distributed Memory Architectures
5.1.2.1 Overview. In a distributed-memory system each node
is a workstation or PC-level processor, possibly even an SMP (see Sec-
tion 5.1.4). Each node runs its own operating system, controls its own
local memory, and is connected to the other processors via a communi-
cation network. In this section, we consider distributed-memory systems
where the processors work together as a single tightly-coupled machine.
Such a machine usually has a scheduler that allocates a subset of the
nodes on a machine to each user request. However, most of the dis-
cussion and application examples for distributed-memory systems also
apply to independent workstations on a local-area network, provided the
user has access privileges to all the workstations in the computation.

The number of processors and interconnect network topology varies
widely among systems. The ASCI Red Storm supercomputer, that is
being built by Cray for Sandia National Laboratories, will have 10,368

Parallel Computing Systems 5-5

AMD Opteron processors connected via a three-dimensional mesh with
some toroidal wraps. The Earth Simulator at the Earth Simulator Cen-
ter in Japan has 640 nodes, each an 8-processor NEC vector machine,
connected via a crossbar. The networks in both these supercomput-
ers use custom technology. Commercial (monolithic) systems include
IBM SP and Blades, Apple G5, Cray systems, and Intel Xeon clus-
ters. However, any department/company can build a Beowulf cluster by
buying as many processors as they can afford and linking them using
commercial network technology such as Ethernet, Myrinet, Quadrics,
or InfiniBand. These can be quite powerful. For example, the Univer-
sity of New Mexico runs IBM’s first Linux supercluster, a 512-processor
cluster with Myrinet (LosLobos), allocated to National Science Founda-
tion users, and the Heidelberg Linux Cluster System (HELICS) has 512
AMD Athlon PC processors connected as a Clos network with commer-
cial Myrinet technology. Even at the low end with only a few processors
connected by Ethernet, one can benefit from this form of parallelism.

Because distributed-memory systems can have far more processors
and total memory than the shared-memory systems discussed in Sec-
tion 5.1.4, they are well suited for applications with extremely large
problem instances.

5.1.2.2 Programming Models for Distributed-Memory.
One programs a distributed-memory machine using a standard high-level
language such as C++ or Fortran with explicit message passing. There
are two standard Application Programming Interfaces (APIs) for mes-
sage passing: Message-Passing Interface (MPI [104]) and Parallel Virtual
Machine (PVM [92]). MPI is the standard for tightly-coupled large-scale
parallel machines because it is more efficient. PVM’s extra capabilities
to handle heterogeneous and faulty processors are more important for
the grid than in this setting.

For either API, the user can assume some message-passing primitives.
Each processor has a unique rank or ID, perhaps within a subset of the
system, which serves as an address for messages. A processor can send
a message directly to another specifically-named processor in a point-
to-point message. A broadcast sends a message from a single source
processor to all other processors. In an all-to-all message, each of the
P processors sends k bytes to all other processors. After the message,
each processor has kP bytes with the information from processor i in
the ith block of size k. A reduction operation (see Section 5.3.1) takes
a value from each processor, computes a function on all the values, and
gives the result to all processors. For example, a sum reduction gives
every processor the sum of all the input values across all processors.

5-6 Parallel Algorithm Design forBranch and Bound

The performance of a distributed-memory application depends criti-
cally upon the message complexity: number of messages, message size,
and contention (number of messages simultaneously competing for ac-
cess to an individual processor or channel). The bandwidth and speed
of the interconnection network determines the total amount of message
traffic an application can tolerate. Thus a single program may per-
form differently on different systems. When a parallel algorithm such as
branch and bound has many small independent jobs, the user can tailor
the granularity of the computation (the amount of work grouped into a
single unit) to set the communication to a level the system can support.
Some unavoidable communication is necessary for the correctness of a
computation. This the user cannot control as easily. Thus a large com-
plex code may require clever problem-dependent message management.

The amount of contention for resources depends in part upon data
layout, that is, which processor owns what data. The programmer also
explicitly manages data distribution. If shared data is static, meaning it
does not change during a computation, and the data set is not too large
relative to the size of a single processor’s memory, it should be repli-
cated on all processors. Data replication also works well for data that is
widely shared but rarely changed, especially if the computation can tol-
erate an out-of-date value. Any processor making a change broadcasts
the new value. In general, data can migrate to another processor as a
computation evolves, either for load balancing or because the need to
access that data changes. Automated graph-partition-based tools such
as Chaco [55] and (Par)METIS [60] assist in initial data assignment if
the communication pattern is predictable.

5.1.3 Grid Computing
5.1.3.1 Overview. Grid computing (or “metacomputing”)
generally describes parallel computations on a geographically-distributed,
heterogeneous platform [45, 44]. Grid computing technologies enable
coordinated resource sharing and problem solving in dynamic, multi-
institutional virtual organizations. Specifically, these tools enable direct
access to computers, software, data, and other resources (as opposed to
sharing via file exchange). A virtual organization is defined by a set of
sharing rules between individuals and/or organizations. These sharing
rules define how resource providers coordinate with consumers, what is
shared, who can share, and the conditions under which sharing occurs.

Grid computing platforms for scientific applications can use shared
workstations, nodes of PC clusters, and supercomputers. Although
grid computing methodologies can effectively connect supercomputers,

Parallel Computing Systems 5-7

a clear motivation for grid computing is the wide availability of idle
compute cycles in personal computers. Large institutions can have hun-
dreds or thousands of computers that are often idle. Consequently, grid
computing can enable large-scale scientific computation using existing
computational resources without significant additional investment.

Projects like Condor [70], Legion [50] and Globus [43] provide the un-
derlying infrastructure for resource management to support grid com-
puting. These toolkits provide components that define a protocol for in-
teracting with remote resources and an application program interface to
invoke that protocol. Higher-level libraries, services, tools and applica-
tions can use these components to implement more complex global func-
tionality. For example, various Globus Toolkit components are reviewed
by Foster et al. [45]. Many grid services build on the Globus Connectiv-
ity and Resource protocols, such as (1) directory services that discover
the existence and/or properties of resources, (2) scheduling and broker-
ing services that request the scheduling and allocation of resources, and
(3) monitoring and diagnostic services that provide information about
the availability and utilization of resources.

Large-scale Grid deployments include: “Data Grid” projects like EU
DataGrid (www.eu-datagrid.org), the DOE Science Grid (http://
www.doesciencegrid.org), NASAs Information Power Grid (www.ipg.
nasa.gov), the Distributed ASCI Supercomputer (DAS-2) system (www.
cs.vu.nl/das2/), the DISCOM Grid that links DOE laboratories (www.
cs.sandia.gov/discom/), and the TeraGrid under construction to link
major U.S. academic sites (www.teragrid.org). These systems inte-
grate resources from multiple institutions using open, general-purpose
protocols like the Globus Toolkit.

5.1.3.2 Programming Model. Grid computing platforms
differ from conventional multiprocessor supercomputers and from Linux
clusters in several important respects.

Interprocessor Connectivity: Communication latency (time be-
tween message initiation and message delivery) is generally much
higher on grid platforms than on tightly-coupled supercomputers
and even on Linux clusters. Grid communication latencies are of-
ten highly variable and unpredictable.

Processor Reliability and Availability: Computational resources
may disappear without notice in some grid computing frameworks.
For example, jobs running on PCs may terminate or halt indefi-
nitely while the PC is used interactively. Similarly, new compute
resources may become available during a parallel computation.

5-8 Parallel Algorithm Design forBranch and Bound

Processor Heterogeneity: Computational resources may vary in
their operational characteristics, such as available memory, swap
space, processor speed, and operating system (type and version).

It is challenging to divide and robustly coordinate parallel computation
across heterogeneous and/or unreliable resources. When resources reside
in different administrative domains, they may be subject to different ac-
cess control policies, and be connected by networks with widely varying
performance characteristics.

For simple applications augmented distributed-memory programming
models may suffice. For example, MPICH-G2 generalizes MPI to pro-
vide a low-level grid programming model that manages heterogeneity
directly [59]. Since MPI has proven so effective for tightly-coupled dis-
tributed computing environments, MPICH-G2 provides a straightfor-
ward way to adapt existing parallel software to grid computing envi-
ronments. MPICH-G2 is integrated with the Globus Toolkit, which
manages the allocation and coordination of grid resources.

Although MPICH-G2 can adapt MPI codes for grid computing envi-
ronments, the programmer must generally modify the original code for
robustness. For example, the new code must monitor node status and
reassign work given to killed nodes. Synchronous codes must be made
asynchronous for both correctness and performance. When the number
of processors vary, it’s difficult to tell when all processors have partici-
pated in a synchronous step. Since some processor is likely to participate
slowly or not at all, each synchronization can be intolerably slow.

A variety of frameworks can facilitate development of grid comput-
ing applications. NetSolve [23] provides an API to access and schedule
Grid resources in a seamless way, particularly for embarrassingly par-
allel applications. The Everyware toolkit [117] draws computational
resources transparently from the Grid, though it is not abstracted as a
programming tool. The MW and CARMI/Wodi tools provide interfaces
for programming master-worker applications [48, 90]. These frameworks
provide mechanisms for allocating, scheduling computational resources,
and for monitoring the progress of remote jobs.

5.1.4 Shared Memory Systems
5.1.4.1 Overview. Shared-memory systems, often called sym-
metric multiprocessors (SMPs), contain from two to hundreds of mi-
croprocessors tightly coupled to a shared memory subsystem, running
under a single system image of one operating system. For instance, the
IBM “Regatta” p690, Sun Fire E15K, and SGI Origin, all scale from
dozens to hundreds of processors in shared-memory images with near-

Parallel Computing Systems 5-9

uniform memory access. In addition to a growing number of processors
in a single shared memory system, we anticipate the next generation of
microprocessors will be “SMPs-on-a-chip”. For example, uniprocessors
such as the IBM Power4 using simultaneous multithreading (SMT), Sun
UltraSparc IV, and Intel Pentium 4 using Hyper-Threading each act like
a dual-processor SMP. Future processor generations are likely to have
four to eight cores on a single silicon chip. Over the next five to ten
years, SMPs will likely become the standard workstation for engineer-
ing and scientific applications, while clusters of very large SMPs (with
hundreds of multi-core processors) will likely provide the backbone of
high-end computing systems.

Since an SMP is a true (hardware-based) shared-memory machine, it
allows the programmer to share data structures and information at a
fine grain at memory speeds. An SMP processor can access a shared
memory location up to two orders of magnitude faster than a processor
can access (via a message) a remote location in a distributed memory
system. Because processors all access the same data structures (same
physical memory), there is no need to explicitly manage data distribu-
tion. Computations can naturally synchronize on data structure states,
so shared-memory implementations need fewer explicit synchronizations
in some contexts. These issues are especially important for irregular ap-
plications with unpredictable execution traces and data localities, often
characteristics of combinatorial optimization problems, security applica-
tions, and emerging computational problems in biology and genomics.

While an SMP is a shared-memory architecture, it is by no means the
Parallel Random Access Memory (PRAM) model (see [57, 97]) used in
theoretical work. Several important differences are: (i) the number of
processors in real SMP systems remains quite low compared to the poly-
nomial number of processors assumed by theoretic models; (ii) real SMP
systems have no lockstep synchronization (PRAMs assume perfect syn-
chronization at the fetch-execute-store level); (iii) SMP memory band-
width is limited; (iv) real SMPs have caches that require a high degree of
spatial and temporal locality for good performance; and (v) these SMP
caches must be kept coherent. That is, when a processor reads a value
of a memory location from its local cache, this value must correspond to
the value last written to that location by any processor in the system.
For example, a 4-way or 8-way SMP cannot support concurrent read to
the same location by a thousand threads without significant slowdown.

The memory hierarchy of a large SMP is typically quite deep, since
the main memory can be so large. Thus cache-friendly algorithms and
implementations are even more important on large-scale SMPs than on
workstations. Very small-scale SMPs maintain cache coherence by a

5-10 Parallel Algorithm Design forBranch and Bound

snoopy protocol with substantial hardware assistance. In this protocol,
whenever a processor writes a memory location, it broadcasts the write
on a shared bus. All other processors monitor these broadcasts. If a
processor sees an update to a memory location in its cache, it either
updates or invalidates that entry. In the latter case, it’s not just a
single value that’s invalidated, but an entire cache line. This can lead
to considerable slowdowns and memory congestion for codes with little
spatial locality. In the directory-based protocol, the operating system
records the caches containing each cache line. When a location in the line
changes, the operating system invalidates that line for all non-writing
processors. This requires less bandwidth than snooping and scales better
for larger SMP systems, but it can be slower. False sharing occurs when
two unrelated data items a and b are grouped in a single cache line. Thus
a processor that has the line in its cache to access item a may have the
entire line invalidated for an update to item b, even though the processor
never accesses b. Eliminating false sharing to improve performance must
currently be handled by the compiler or the programmer.

Finally, synchronization is perhaps the biggest obstacle to the correct
and efficient implementation of parallel algorithms on shared-memory
machines. A theoretic algorithm may assume lockstep execution across
all processors down to the level of the fetch-execute-store cycle; for in-
stance, if processor i is to shift the contents of location i of an array into
location i+1, each processor reads its array value in lockstep, then stores
it in the new location in lockstep. In a real machine, some processors
could easily start reading after their neighbor has already completed its
task, resulting in errors. The programming solution is to introduce bar-
riers at any point in the code where lack of synchronization could cause
indeterminacy in the final answer. However, such a solution is expensive
when implemented in software and, if needed on a finely-divided time
scale will utterly dominate the running time.

5.1.4.2 Programming Models. Various programming mod-
els and abstractions are available for taking advantage of shared-memory
architectures. At the lowest level, one can use libraries, such as POSIX
threads (for example, see [62, 89, 108]) to explicitly handle threading
of an application. Other standards such as OpenMP (see [24, 85, 93])
require compiler and runtime support. The programmer provides hints
to the compiler on how to parallelize sections of a correct sequential im-
plementation. Finally, new high-level languages such as Unified Parallel
C (UPC) [21], a parallel extension of C, Co-Array Fortran (CAF) (see
www.co-array.org) with global arrays, and Titanium [122], are also
emerging as new, efficient programming models for multiprocessors.

Parallel Computing Systems 5-11

POSIX threads (often referred to as “pthreads”) are native threads
of processing that run within a single process/application and can share
access to resources and memory at a fine-scale. The programmer explic-
itly creates and manages threads, with each thread inheriting its parent’s
access to resources. The programmer can synchronize threads and pro-
tect critical sections, such as shared memory locations in data structures
and access to I/O resources, via mutual exclusion (or “mutex”) locks.
These support three operations: lock, unlock, and try, a non-blocking
version of lock where a thread either succeeds at acquiring the lock, or re-
sumes execution without the lock. Condition variables suspend a thread
until an event occurs that wakes up the thread. These in conjunction
with mutex locks can create higher-level synchronization events such as
shared-memory barriers. In a threaded code, the programmer can then
rely on coherency protocols to update shared memory locations.

OpenMP is a higher-level abstraction for programming shared mem-
ory that makes use of compiler directives, runtime systems, and environ-
ment variables. The programmer often begins with a working sequential
code in C, C++, or Fortran, and inserts directives into the code to guide
the compiler and runtime support for parallelization. One can specify,
for example, that a loop has no dependencies among its iterations and
can be parallelized in a straightforward manner. One can also specify
that a loop is a reduction or scan operation that can then be automati-
cally parallelized (see Section 5.3). OpenMP also allows the programmer
to mark critical sections and insert synchronization barriers. The pro-
grammer can specify how the work varies from iteration to iteration (for
example if the work is constant, random, or dependent upon the loop
iteration). These hints can improve the scheduling of loop iterations.

UPC [21] is an extension of C that provides a shared address space
and a common syntax and semantics for explicitly parallel program-
ming in C. UPC strikes a balance between ease-of-use and performance.
The programming model for UPC assumes a number of threads, each
with private or shared pointers that can point to local or global mem-
ory locations. UPC provides explicit synchronization including barriers.
Unlike POSIX threads, UPC provides a library of collective communi-
cation routines commonly needed in scientific and technical codes. UPC
is emerging as an alternative for parallel programming that builds upon
prior languages such as AC and Split-C.

Shared-memory has enabled the high-performance implementation of
parallel algorithms for several combinatorial problems that up to now
have not had implementations that performed well on parallel systems
for arbitrary inputs. We have released several such high-performance
shared-memory codes for important problems such as list ranking and

5-12 Parallel Algorithm Design forBranch and Bound

sorting [53, 54], ear decomposition [6], spanning tree [4], minimum span-
ning tree [5], and Euler tour [29]. These parallel codes are freely-available
under the GNU General Public License (GPL) from Bader’s web site.
They use a shared-memory framework for POSIX threads [7].

5.2 Application Examples
In this section, we describe basic branch and bound (B&B) and discuss

issues of special consideration in parallelizing B&B applications. We
then give three parallel B&B example applications: B&B for mixed-
integer programming on a distributed-memory architecture, B&B for
the quadratic assignment problem on a grid architecture, and B&B for
phylogeny reconstruction on a shared-memory architecture.

5.2.1 Branch and Bound
Branch and bound is an intelligent search heuristic for finding a global

optimum to problems of the form minx∈X f(x). Here X is the feasible
region and f(x) is the objective function. Basic B&B searches the feasi-
ble region by iteratively subdividing the feasible region and recursively
searching each piece for an optimal feasible solution. B&B is often more
efficient than straight enumeration because it can eliminate regions that
provably do not contain an optimal solution.

To use B&B for a given problem, one must specify problem-specific
implementations of the following procedures. The bound procedure gives
a lower bound for a problem instance over any feasible region. That is,
for instance I with feasible region XI , the bound procedure returns b(I),
such that for all x ∈ XI we have b(I) ≤ f(x). The branch or split proce-
dure breaks the feasible region X into k subregions X1,X2, . . . ,Xk. In
most efficient B&B implementations, subregions are disjoint (Xi∩Xj = ∅
for i �= j), though this need not be the case. The only requirement for
correctness is that there exists an x ∈ X with minimum value of f(x)
such that x ∈ ⋃k

i=1 Xi (if we require all optima, then this must be the
case for all optimal x). Finally, a candidate procedure takes an instance
of the problem (a description of X) and returns a feasible solution x ∈ X
if possible. This procedure can fail to return a feasible solution even if
X contains feasible solutions. However, if X consists of a single point,
then the candidate solution procedure must correctly determine the fea-
sibility of this point. In general, one may have many candidate solution
methods. At any point in a B&B search, the best feasible (candidate)
solution found so far is called the incumbent, denoted xI .

We now describe how to find a globally optimal solution using B&B
given instantiations of these procedures. We grow a search tree with

Application Examples 5-13

the initial problem r as the root. If the candidate procedure (called
on the root) returns a feasible solution, it becomes the first incumbent.
Otherwise, we start with no incumbent and define an incumbent value
f(xI) = +∞. We bound the root, which yields a lower bound b(r).
If b(r) = f(xI), then the incumbent is an optimal solution and we are
done. Otherwise, we split the root into k subproblems and make each
subproblem a child of the root. We process a child subproblem similarly.
We bound the subproblem c to obtain a bound b(c). If b(c) > f(xI),
then no feasible solution in subproblem c can be better than the incum-
bent. Therefore, we can fathom subproblem c, meaning we eliminate
it from further consideration. If candidate(c) returns a solution x such
that f(x) = b(c), then x is an optimal solution for this subproblem.
Subproblem c becomes a leaf of the tree (no need to further subdivide
it) and solution x replaces the incumbent if f(x) < f(xI). Otherwise,
we split subproblem c and continue. Any subproblem that is not a leaf
(still awaiting processing) is called an open or active subproblem. At any
point in the computation, let A be the set of active subproblems. Then
L = mina∈A b(a) is a global lower bound on the original problem. B&B
terminates when there are no active subproblems or when the relative
or absolute gap between L and f(xI) is sufficiently small.

A B&B computation is logically divided into two phases: (1) find an
optimal solution x∗ and (2) prove that x∗ is optimal. At any given point
in the computation, all active subproblems a such that b(a) < f(x∗)
must be processed to prove the optimality of x∗; all other subproblems
can be pruned once we have found x∗. Thus for any given bounding and
splitting strategy there is a minimum-size tree: that obtained by seeding
the computation with the optimal solution or finding the optimal at the
root. A candidate procedure that finds near-optimal solutions early in
the B&B computation can reduce tree size tree by allowing early pruning.

When the incumbent procedure is weak near the root, the following
adaptive branching strategy can quickly identify a feasible solution to
enable at least some pruning. Initially apply depth-first search to find
a leaf as soon as possible. Given an incumbent, switch to best-first
search, which selects the node n with the minimum value of b(n). This
hybrid search strategy is particularly applicable to combinatorial prob-
lems, since depth-first search will eventually subdivide the region until
a feasible solution is found (e.g. after all possible choices have been
made for one node). Depth-first search can open up many more sub-
problems than best-first search with a good early incumbent, but the
hybrid strategy can be superior when it is difficult to find an incumbent.

In parallel B&B, one can parallelize the computation of independent
subproblems (or subtrees) or parallelize the evaluation of individual sub-

5-14 Parallel Algorithm Design forBranch and Bound

problems. The latter is better when the tree is small at the start or end of
the computation, unless the other processors can be kept busy with other
independent work, such as generating incumbents (see Section 5.2.2).

It is important to keep the total tree size close to the size of that
generated by a good serial solver. Good branch choices are critical early
in the computation and good load balancing is critical later. That is,
each processor must stay sufficiently busy with high-quality work. Oth-
erwise in pathological cases the parallel computation performs so much
more work than its serial counterpart that there is actually a slowdown
anomaly [35, 64–67]. That is, adding processors increases wall-clock time
to finish a computation.

Parallel platforms of any kind have far more memory than a single
computer. A serial B&B computation may be forced to throw away
seemingly unfavorable active nodes, thus risking losing the optimal so-
lution. A parallel system is much more likely to have sufficient memory
to finish the search.

There are many frameworks for parallel branch and bound includ-
ing PUBB [102], Bob [12], PPBB-lib [112], PICO [36], Zram [73], and
ALPS/BiCePS [96]. The user defines the above problem-specific proce-
dures and the framework provides a parallel implementation. Bob++ [16]
and Mallba [71] are even higher-level frameworks for solving combinato-
rial optimization problems.

5.2.2 Mixed-Integer Programming
A mixed-integer program (MIP) in standard form is:

(MIP) minimize cT x

where

{
Ax = b
� ≤ x ≤ u
xj ∈ Z ∀j ∈ D ⊆ {1, . . . , n}

where x and c are n-vectors, A is an m × n matrix, b is an m-vector,
and Z is the set of integers. Though in principle all input data are
reals, for practical solution on a computer they are rational. Frequently
the entries of A, c, and b are integers. We can convert an inequality
constraint in either direction to an equality by adding a variable to take
up slack between the value of ax and its bound b.

The only nonlinearity in MIP is the integrality constraints. Frequently
binary variables represent decisions that must be yes/no (i.e. there can
be no partial decision for partial cost and partial benefit). In principle
MIPs can express any NP-complete optimization problem. In practice
they are used for resource allocation problems such as transportation

Application Examples 5-15

logistics, facility location, and manufacturing scheduling, or for the study
of natural systems such as protein folding.

In practice, MIPs are commonly solved with B&B and its variants.
In this section, we consider the application of B&B to solve MIPs on a
distributed-memory system. Specifically, we summarize the implemen-
tation of Eckstein, Hart, and Phillips, within the Parallel Integer and
Combinatorial Optimizer (PICO) system [36].

5.2.2.1 Branch-and-Bound Strategy. If the integrality con-
straints are relaxed (removed), a MIP problem becomes a linear pro-
gram (LP). Solving this LP is the classic bounding procedure for B&B.
LPs are theoretically solvable in polynomial time [61] and are usually
solved efficiently in practice with commercial tools such as CPLEX [31],
XPRESS [119], or OSL [86], or free tools such as COIN-LP [26].

Serial B&B for MIP begins with the MIP as the root problem and
bounds the root by computing the LP relaxation. If all integer variables
(xj with j ∈ D) have integer values (within tolerance), then this is a
feasible integer solution whose value matches a lower bound, and hence
it is an optimal solution. If the LP relaxation is not a feasible solution,
then there is some j ∈ D such that the optimal solution to the LP
relaxation x∗ has value x∗

j �∈ Z. We then create two new sub-MIPs as

children: one with the restriction xj ≤
⌊
x∗

j

⌋
and one with the restriction

xj ≥
⌈
x∗

j

⌉
. For binary variables, one child has xj = 0 and the other has

xj = 1. The feasible regions of the two children are disjoint and any
solution with

⌊
x∗

j

⌋
< xj <

⌈
x∗

j

⌉
, including x∗, is no longer feasible in

either child. Thus the LP relaxation of a child provides a lower bound
on the optimal solution within this subregion, and it will be different
from the LP relaxation of the parent.

There are a number of common ways to improve the performance of
this standard B&B MIP computation. Most MIP systems apply general
and/or problem-specific cutting planes before branching to improve the
lower bound on a subproblem while delaying branching as long as pos-
sible. Given x∗, an optimal non-integral solution to the LP relation of a
(sub)problem, a cutting plane is a constraint ax = b such that ax′ = b
for all possible (optimal) integer solutions x′ but ax∗ �= b. Adding this
constraint to the system makes the current LP optimal infeasible.

Careful branch selection in MIP solvers can significantly impact search
performance. In strong branching, one tries a branch and partially eval-
uates the subtree to determine a merit rating for the branch. Most or all
the work done for strong branching is thrown away, but it can sometimes
reduce tree size sufficiently to merit the effort. A less computationally

5-16 Parallel Algorithm Design forBranch and Bound

demanding strategy is to maintain gradients for each branch choice. For
the simple branching described above, the gradient for a single branch is
the change in LP objective value divided by the change in the variable
(the latter is always less than 1). When a variable is a branching can-
didate for the first time, one can initialize its gradient by pretending to
branch in each direction. This is much better than, for example, setting
an uninitialized gradient to the average of the gradients computed so
far [69]. However, each gradient initialization requires two LP bound-
ing operations. Finally, one can compute problem-specific constraints to
partition the current feasible region, though this may be expensive.

One can also improve performance of B&B for MIP by finding feasible
integer solutions using methods other than finding leaf nodes when an LP
relaxation is integer feasible. Since MIPs frequently have combinatorial
structure, one can use general heuristics such as evolutionary algorithms
or tabu search or problem-specific methods that exploit structure. In
particular, there are many approximation algorithms for combinatorial
problems that find an LP-relaxation for a MIP and “round” this non-
trivially to obtain a feasible integer solution whose objective value is
provably close to the LP relaxation bound (see [11, 19, 88] for a tiny
sample). The provable bound is limited by the integrality gap of the
problem (the ratio between the best integer solution and the best LP
solution; this is a measure of the strength of the formulation [22]).

There is a variety of parallel MIP solvers. PARINO [69],
SYMPHONY [94], and COIN/BCP [63, 72] are designed for small-scale,
distributed-memory systems such as clusters. BLIS [96], under develop-
ment, is designed as a more scalable version of SYMPHONY and BCP.
It will be part of COIN once it is available. See the discussion of all
three in [95]. FATCOP [25] is designed for grid systems. PICO’s par-
allel B&B search strategy is particularly well-suited for solving MIPs
on tightly-coupled massively-parallel distributed-memory architectures,
such as those available at the National Laboratories for solution of
national-scale problems. For these architectures, one has exclusive use
of perhaps thousands of processors for the entire computation. Thus one
major concern is effectively using all these processors during the initial
ramp up phase, when the search tree is small. After ramp up, PICO
enters a parallel-subproblem phase managing an asynchronous parallel
search using load balancing to ensure that all worker processes are solv-
ing interesting subproblems. These two aspects of parallel B&B in PICO
are discussed in the next two sections. The combination of strategies can
use massive parallelism effectively. In preliminary experiments on some
problems PICO had near perfect speed up through 512 processors [36].

Application Examples 5-17

5.2.2.2 Managing Ramp Up. PICO uses an explicit ramp up
phase in which all the processors work on a single subproblem, paralleliz-
ing the individual subproblem evaluation steps. In particular, PICO sup-
ports parallel (1) initialization of gradient estimation (used for branching
prioritization), (2) problem-specific preprocessing, (3) root bounding,
and (4) incumbent and cutting-plane generation. Also some processors
can search for incumbents and cutting planes independently from those
growing the tree. For example, since parallel LP solvers do not currently
scale well to thousands of processors, excess processors can search for
incumbents during root bounding.

PICO parallelizes gradient initialization during ramp up. In general if
there are f potential branch variables with uninitialized gradients, each
of the P processors initializes the gradients for �f/P 	 or
f/P � variables
and sends these values to all processors using all-to-all communication.
Though PICO doesn’t currently support strong branching, in principle
the work for strong branching could be divided among the processors
in the same way with the same exchange of branch quality information.
One can also parallelize complex custom branching computations.

To parallelize problem-specific preprocessing, processors can cooper-
ate on individual preprocessing steps or they can compute independent
separate steps. Good preprocessing is often critical for computing an
exact solution to hard combinatorial problems (e.g. those expressed by
MIPs). Real-world instances frequently have special structure that is
captured by a small upper bound on a parameter k (e.g. the degree
of a graph, maximum contention for a resource, etc.). To solve fixed-
parameter-tractable problems, one first kernelizes the problem, trans-
forming it in polynomial time into a new instance with size bounded by
a function of k. These preprocessing steps are frequently local and there-
fore good candidates for parallelization. See Fellows [39] for an excellent
summary of the theory and practice of kernelization.

One can also parallelize the LP bounding procedure. This is par-
ticularly desirable at the root because bounding the root problem can
be more than an order of magnitude more expensive than bounding
subproblems. A subproblem bounding calculation can start from the
parent’s basis and, since there is typically only one new constraint, the
LP is usually quickly re-solved with a few pivots of dual simplex. The
root problem frequently starts with nothing, not even a feasible point.
The pPCx code [27] is a parallel interior-point LP solver. The core
computational problem is the solution of a linear system of the form
AD2AT x = b where A is the original constraint matrix and D is a diag-
onal matrix that changes each iteration. Parallel direct Cholesky solvers
are robust, but currently do not provide reasonable speed up beyond a

5-18 Parallel Algorithm Design forBranch and Bound

few dozen processors. Sandia National Laboratories is leading a research
effort to find more scalable interior-point solvers using iterative linear
systems solvers, but this is still an open research problem. We are not
aware of any (massively) parallel dual simplex solvers so even during
ramp up, subproblem re-solves are serial for the moment.

PICO must use free LP solvers for serial (and eventually parallel)
bounding. Faster commercial LP codes do not have licensing schemes
for massively-parallel (MP) machines, and individual processor licenses
would be prohibitively expensive. PICO has a coping strategy to avoid
slow root solves in MP computations. The user can solve the root LP
offline (e.g. using a fast commercial solver) and then feed this LP solution
to a subsequent parallel computation.

At any tree node, one can parallelize the generation of cutting planes
and the search for feasible integer solutions, by cooperating on the gen-
eration of one plane/solution or by generating different planes/solutions
in parallel. Heuristic methods such as evolutionary algorithms can ef-
fectively use many parallel processors independently from the ramp-up
tree growth computation. LP-based methods need the LP solutions and
are usually best integrated with the tree evaluation. In some cases, such
as alpha-point heuristics for scheduling problems [88], an approxima-
tion algorithm has a natural parameter (alpha) whose range of values
can be partitioned among the processors. PICO’s general cut-pivot-dive
heuristic can explore multiple strategy choices in parallel [80].

5.2.2.3 Managing Independent Subproblems. PICO’s
ramp-up phase usually terminates when there are enough subproblems
to keep most processors busy. After the ramp up phase, PICO switches
to a phase where processors work on separate subproblems. During this
phase, a number of hubs coordinate the search. Each hub controls a
set of worker processors, few enough that the workers are not slowed by
contention for attention from the hub.

When ramp up ends, each hub takes control of an equal share of
the active subproblems. Each worker has a local pool of subproblems to
reduce dependence on its hub. Though PICO has considerable flexibility
in subproblem selection criteria, once there is an incumbent both hubs
and workers generally use a best-first strategy.

PICO has three load balancing mechanisms. First, if a hub runs
out of useful work not delegated to a worker, it can rebalance among
its workers by pulling some work back from a worker and giving it to
others. Second, when a worker decides not to keep a subproblem locally,
it returns it to its hub or probabilistically scatters it to a random hub.
The probability of scattering depends upon the load controlled by its

Application Examples 5-19

Figure 5.1. PICO’s subproblem management. Hubs handle only tokens. When a
worker generates a subproblem, it either keeps the subproblem in a local pool or gives
control to a hub (not necessarily its own), storing the data to send directly to the
worker to which the problem is later assigned. The worker on processor pj is only
partially illustrated. [Figure by Jonathan Eckstein, PICO core designer]

hub relative to average system load. The third mechanism is global load
balancing done with a rendezvous method as described in Section 5.3.

Because hub communication can become a bottleneck, hubs do not
handle all the data associated with the subproblems they control. In-
stead they keep a small token containing only the information needed to
control the problem. In particular, the token contains the subproblem
bound, and the ID of the worker that created the subproblem. When a
worker creates a subproblem and relinquishes control to a hub, it stores
all the subproblem data (bounds, basis, etc), and sends this small token
to the hub (represented by T in Fig. 5.1). When a hub wants to dispatch
a subproblem to processor pi, it sends a message to the processor pj that
created the subproblem telling processor pj to send the subproblem data
to processor pi (represented by SP in Fig. 5.1). Thus the communication
pattern in a MIP computation has many small messages going to and
from the hubs and, because of the load balancing, long messages going
point to point in a reasonably random pattern.

Whenever a processor finds a new incumbent, it broadcasts the new
objective value to all processors using a binary tree rooted at that pro-
cessor. Processors give priority to handling these messages because new

5-20 Parallel Algorithm Design forBranch and Bound

incumbents can prune active subproblems. Processors only forward the
best incumbent they have seen so far, so if there are multiple incumbent
message waves propagating through the system, all dominated ones die
as they meet better solutions.

5.2.3 Quadratic Assignment Problem
In this section, we provide another example of B&B applied to the

quadratic assignment problem (QAP). Specifically, we summarize the
grid-based QAP solver developed by Anstreicher et al. [2]. This solver
uses a master-worker paradigm to parallelize B&B. The master-worker
paradigm has been widely used to parallelize B&B algorithms [46], and
it is very well-suited for grid-based applications. We discuss this pro-
gramming model, and we provide an overview of the MW framework
which was used by Anstreicher et al. [2].

5.2.3.1 The Master-Worker Paradigm. The master-worker
paradigm is a canonical programming paradigm for parallel computing
that is particularly well-suited for grid-computing applications. In a
master-worker application, all algorithm control is done by a master pro-
cessor. Worker processors concurrently execute independent tasks. A
wide variety of sequential approaches to large-scale problems map natu-
rally to the master-worker paradigm [48] including tree search algorithms
(e.g. for integer programming), stochastic programming, population-
based search methods like genetic algorithms, parameter analysis for
engineering design, and Monte Carlo simulations.

The master-worker paradigm can parallelize many programs with cen-
tralized control using grid computing platforms because it works effec-
tively in dynamic and heterogeneous computing environments. If addi-
tional processors become available during the course of a computation,
they can be integrated as workers that are given independently exe-
cutable computational tasks. If a worker fails while executing a task,
the master can simply reschedule that portion of the computation. In
this manner, the master-worker paradigm is a flexible and reliable tool
for grid computing applications. Furthermore, this type of centralized
control eases the burden of adapting to a heterogeneous computational
environment, since only the master process needs to be concerned with
how tasks are assigned to resources.

The basic master-worker paradigm has several limitations. It is not ro-
bust if the master fails. However, the programmer can overcome this lim-
itation by using checkpoints to save the state of the master (which implic-
itly knows the global state of the entire calculation). Another limitation
is that the total throughput may become limited because (a) workers can

Application Examples 5-21

become idle while waiting for work from the master, and (b) precedence
constraints between tasks can limit total parallelism of the calculation.

The master-worker paradigm is inherently unscalable because workers
can become idle when the master cannot quickly respond to all requests.
If the workers finish tasks quickly, there may simply be too many re-
quests for the master to service immediately. The master’s response
rate is reduced by auxiliary computation (e.g. to prioritize available
tasks). In many cases, such bottlenecks can be minimized by adapting
the granularity of the tasks. For example, in a tree search the computa-
tion required by a task depends on the size/depth of the tasks’s subtree.
Thus, the master can reduce the rate at which processors make work
requests by assigning larger portions of the tree to each processor [48].

A precedence constraint between a pair of tasks (a, b) indicates task a
must complete before task b starts. This serialization limits the number
of independent tasks at any point in the computation; in the worst case,
precedence constraints impose a total linear order on the tasks. On a
grid system, with unpredictable processing and communication times,
predecessor jobs can delay their successors indefinitely. Some applica-
tions permit relaxed precedence. For example, Goux et al. [48] discuss a
cutting plane algorithm for stochastic programming for which tasks are
weakly synchronized. In this application, the next iteration of the cut-
ting plane algorithm can start after a fraction of the previous iteration’s
tasks have completed, thereby avoiding some synchronization delays.

Increasing the efficiency of a master-worker algorithm by increasing
the grain size or by reducing synchronization can sometimes worsen the
basic algorithm. For example, increasing the granularity in a tree search
may lead to the exploration of parts of the tree that would have other-
wise been ignored. Thus the application developer must balance parallel
efficiency (keeping workers busy) with total computational efficiency.

5.2.3.2 The MW Framework. The MW framework facili-
tates implementation of parallel master-worker applications on computa-
tional grids [48]. The application programming interface of MW is a set
of C++ abstract classes. The programmer provides concrete implemen-
tation of this abstract functionality for a particular application. These
classes define the basic elements of the master controller, how workers
are launched and how tasks are executed. The MW framework pro-
vides general mechanisms for distributing algorithm control information
to the worker processors. Further, MW collects job statistics, performs
dynamic load balancing and detects termination conditions. Thus MW
handles many difficult metacomputing issues for an application devel-
oper, thereby allowing rapid development of sophisticated applications.

5-22 Parallel Algorithm Design forBranch and Bound

MW is a C++ library, and three MW classes must be extended to
define a new master-worker application [48]. The master process con-
trols task distribution via the MWDriver class. The MWDriver base
class handles workers joining and leaving the computation, assigns tasks
to appropriate workers, and rematches running tasks when workers are
lost. The programmer must specify how to process commandline infor-
mation, determine a set of initial jobs, process a completed task, and
what information workers need at start up. The MWWorker class con-
trols the worker. The programmer must specify how to process start
up data and how to execute a task. The MWTask class describes task
data and results. The derived task class must implement functions for
sending and receiving this data.

To implement MW on a particular computational grid, a programmer
must also extend the MWRMComm class to derive a grid communica-
tion object. The initial implementation of MW uses Condor [28] as
its resource management system. Condor manages distributively owned
collections (“pools”) of processors of different types, including worksta-
tions, nodes from PC clusters, and nodes from conventional multiproces-
sor platforms. When a user submits a job, the Condor system discovers
a suitable processor for the job in the pool, transfers the executable, and
starts the job on that processor. Condor may checkpoint the state of a
job periodically, and it migrates a job to a different processor in the pool
if the current host becomes unavailable for any reason. Currently, com-
munication between master and workers uses a Condor-enabled version
of PVM [92] or Condor’s remote system call functionality. MW has also
been extended at Sandia National Laboratories to use an MPI-based
communication object.

5.2.3.3 Solving QAP with Branch-and-Bound. The quadratic
assignment problem (QAP) is a standard problem in location theory.
The QAP in Koopmans-Beckmann form is

min
π

n∑
i=1

n∑
j=1

aijbπ(i),π(j) +
n∑

i=1

ci,π(i),

where n is the number of facilities and locations, aij is the flow between
facilities i and j, bkl is the distance between locations k and l, cik is the
fixed cost of assigning facility i to location k, and π(i) = k if facility i is
assigned to location k. The QAP is NP-hard. Most exact QAP meth-
ods are variants of B&B. Anstreicher et al. [1, 2, 17] developed and ap-
plied a new convex quadratic programming bound that provides stronger
bounds than previous methods. Because QAP is so difficult, previous
exact solutions used parallel high-performance computers. Anstreicher

Application Examples 5-23

et al. [2] review these results and note that grid computing may be more
cost-effective for these problems.

Anstreicher et. al. [2] developed an MW-based branch-and-bound QAP
solver (MWQAP). They ran it on a Condor pool communicating with
remote system calls. Since Condor provides a particularly dynamic grid
computing environment, with processors leaving and entering the pool
regularly, MW was critical to ensure tolerance of worker processor fail-
ures. To make computations fully reliable, MWQAP uses MW’s check-
pointing feature to save the state of the master process. This is particu-
larly important for QAP because computations currently require many
days on many machines.

The heterogeneous and dynamic nature of a Condor-based compu-
tational grid makes application performance difficult to assess. Stan-
dard performance measures such as wall clock time and cumulative CPU
time do not separate application code performance from computing plat-
form performance. MW supports the calculation of application-specific
benchmark tasks to determine the power of each worker so the evaluator
can normalize CPU times. For the QAP solver, the benchmark task is
evaluating a small, specific portion of the B&B tree.

As we noted earlier, the master-worker paradigm usually requires
application-specific tuning for scalability. MWQAP uses coarse gran-
ularity. Each worker receives an active node and computes within that
subtree independently. If after a fixed number of seconds the worker
has not completely evaluated the subtree, it passes the remaining active
nodes back to the master. To avoid sending back “easy” subproblems,
workers order unsolved nodes based on the relative gap and spend extra
time solving deep nodes that have small relative gaps. “Easy” subprob-
lems can lead to bottlenecks at the master because they cannot keep
their new workers busy.

The master generally assigns the next worker the deepest active node
on its list. However, when the set of active nodes is small, the master
dispatches difficult nodes and gives the workers shorter time slices so
the workers can return challenging open nodes. This ensures that the
master’s pool of unsolved subproblems is sufficiently large to keep all
available workers busy.

Anstreicher et. al. note that in general B&B, this independent subtree
execution could explore many more nodes than its sequential counter-
part. However, their QAP calculations are seeded with good known so-
lutions, so many of these nodes are pruned during each worker’s search
of a subtree. Thus this strategy limits master-worker communication
without significantly impairing the overall search performance.

5-24 Parallel Algorithm Design forBranch and Bound

MWQAP has solved instances of the QAP that have remained un-
solved for decades, including the nug30 problem defined by Nugent,
Vollmand, and Ruml [83]. The Nugent problems are the most-solved
set of QAPs, and the solution of these problems has marked advances
in processor capability and QAP solution methods. Solution of nug30
required an average of 650 workers for one week when seeded with a pre-
viously known solution [2]. The computation halted and restarted five
times using MW’s checkpointing feature. On average MWQAP solved
approximately one million linear assignment problems per second.

5.2.4 Phylogenetic Tree Reconstruction
In this section, we provide an example of B&B applied to reconstruct-

ing an evolutionary history (phylogenetic tree). Specifically, we focus
on the shared-memory parallelization of the maximum parsimony (MP)
problem using B&B based on work by Bader and Yan[10, 78, 120, 121].

5.2.4.1 Biological Significance and Background. All bi-
ological disciplines agree that species share a common history. The ge-
nealogical history of life is called phylogeny or an evolutionary tree. Re-
constructing phylogenies is a fundamental problem in biological, medical,
and pharmaceutical research and one of the key tools in understand-
ing evolution. Problems related to phylogeny reconstruction are widely
studied. Most have been proven or are believed to be NP-hard problems
that can take years to solve on realistic datasets [20, 87]. Many biologists
throughout the world compute phylogenies involving weeks or years of
computation without necessarily finding global optima. Certainly more
such computational analyses will be needed for larger datasets. The
enormous computational demands in terms of time and storage for solv-
ing phylogenetic problems can only be met through high-performance
computing (in this example, large-scale B&B techniques).

A phylogeny (phylogenetic tree) is usually a rooted or unrooted bi-
furcating tree with leaves labeled with species, or more precisely with
taxonomic units (called taxa) that distinguish species [110]. Locating the
root of the evolutionary tree is scientifically difficult so a reconstruction
method only recovers the topology of the unrooted tree. Reconstruction
of a phylogenetic tree is a statistical inference of a true phylogenetic tree,
which is unknown. There are many methods to reconstruct phylogenetic
trees from molecular data [81]. Common methods are classified into
two major groups: criteria-based and direct methods. Criteria-based
approaches assign a score to each phylogenetic tree according to some
criteria (e.g., parsimony, likelihood). Sometimes computing the score
requires auxiliary computation (e. g. computing hypothetical ancestors

Application Examples 5-25

for a leaf-labeled tree topology). These methods then search the space
of trees (by enumeration or adaptation) using the evaluation method to
select the best one. Direct methods build the search for the tree into the
algorithm, thus returning a unique final topology automatically.

We represent species with binary sequences corresponding to morpho-
logical (e. g. observable) data. Each bit corresponds to a feature, called
a character. If a species has a given feature, the corresponding bit is
one; otherwise, it is zero. Species can also be described by molecular se-
quence (nucleotide, DNA, amino acid, protein). Regardless of the type
of sequence data, one can use the same parsimony phylogeny reconstruc-
tion methods. The evolution of sequences is studied under a simplifying
assumption that each site evolves independently.

The Maximum Parsimony (MP) objective selects the tree with the
smallest total evolutionary change. The edit distance between two species
as the minimum number of evolutionary events through which one species
evolves into the other. Given a tree in which each node is labeled by a
species, the cost of this tree (tree length) is the sum of the costs of its
edges. The cost of an edge is the edit distance between the species at the
edge endpoints. The length of a tree T with all leaves labeled by taxa is
the minimum cost over all possible labelings of the internal nodes.

Distance-based direct methods ([37, 38, 68]) require a distance ma-
trix D where element dij is an estimated evolutionary distance be-
tween species i and species j. The distance-based Neighbor-Joining (NJ)
method quickly computes an approximation to the shortest tree. This
can generate a good early incumbent for B&B. The neighbor-joining
(NJ) algorithm by Saitou and Nei [99], adjusted by Studier and Keppler
[106], runs in O(n3) time, where n is the number of species (leaves). Ex-
perimental work shows that the trees it constructs are reasonably close to
“true” evolution of synthetic examples, as long as the rate of evolution is
neither too low nor too high. The NJ algorithm begins with each species
in its own subtree. Using the distance matrix, NJ repeatedly picks two
subtrees and merges them. Implicitly the two trees become children of a
new node that contains an artificial taxon that mimics the distances to
the subtrees. The algorithm uses this new taxon as a representative for
the new tree. Thus in each iteration, the number of subtrees decrements
by one till there are only two left. This creates a binary topology. A dis-
tance matrix is additive if there exists a tree for which the inter-species
tree distances match the matrix distances exactly. NJ can recover the
tree for additive matrices, but in practice distance matrices are rarely
additive. Experimental results show that on reasonable-length sequences
parsimony-based methods are almost always more accurate (on synthetic
data with known evolution) than neighbor-joining and some other com-

5-26 Parallel Algorithm Design forBranch and Bound

petitors, even under adverse conditions [98]. In practice MP works well,
and its results are often hard to beat.

In this section we focus on reconstructing phylogeny using maximum
parsimony (minimum evolution). A brute-force approach for maximum
parsimony examines all possible tree topologies to return one that shows
the smallest amount of total evolutionary change. The number of un-
rooted binary trees on n leaves (representing the species or taxa) is
(2n − 5)!! = (2n − 5) · (2n − 7) · · · 3. For instance, this means that
there are about 13 billion different trees for an input of n = 13 species.
Hence it is very time-consuming to examine all trees to obtain the opti-
mal tree. Most researchers focus on heuristic algorithms that examine a
much smaller set of most promising topologies and choose the best one
examined. One advantage of B&B is that it provides instance-specific
lower bounds, showing how close a solution is to optimal [56].

The phylogeny reconstruction problem with maximum parsimony (MP)
is defined as follows. The input is a set of c characters and a set of taxa
represented as length-c sequences of values (one for each character). For
example, the input could come from an aligned set of DNA sequences
(corresponding elements matched in order, with gaps). The output is an
unrooted binary tree with the given taxa at leaves and assignments to
the length-c internal sequences such the resulting tree has minimum total
cost (evolutionary change). The characters need not be binary, but each
usually has a bounded number of states. Parsimony criteria (restrictions
on the changes between adjacent nodes) are often classified into Fitch,
Wagner, Dollo, and Generalized (Sankoff) Parsimony [110]. In this ex-
ample, we use the simplest criteria, Fitch parsimony [41], which imposes
no constraints on permissible character state changes. The optimization
techniques we discuss are similar across all of these types of parsimony.

Given a topology with leaf labels, we can compute the optimal in-
ternal labels for that topology in linear time per character. Consider a
single character. In a leaf-to-root sweep, we compute for each internal
node v a set of labels optimal for the subtree rooted at v (called the
Farris Interval). Specifically, this is the intersection of its children’s sets
(connect children though v) or, if this intersection is empty, the union of
its children’s sets (agree with one child). At the root, we choose an opti-
mal label and pass it down. Children agree with their parent if possible.
Because we assume each site evolves independently, we can set all char-
acters simultaneously. Thus for m character and n sequences, this takes
O(nm) time. Since most computers can perform efficient bitwise logical
operations, we use the binary encoding of a state in order to implement
intersection and union efficiently using bitwise AND and bitwise OR.
Even so, this operation dominates the parsimony B&B computation.

Application Examples 5-27

The following sections outline the parallel B&B strategy for MP that
is used in the GRAPPA (Genome Rearrangement Analysis through Par-
simony and other Phylogenetic Algorithms) toolkit [78]. Note that the
maximum parsimony problem is actually a minimization problem.

5.2.4.2 Strategy. We now define the branch, bound, and can-
didate functions for phylogeny reconstruction B&B. Each node in the
B&B tree is associated with either a partial tree or a complete tree.
A tree containing all n taxa is a complete tree. A tree on the first k
(k < n) taxa is a partial tree. A complete tree is a candidate solution.
Tree T is consistent with tree T ′ iff T can be reduced into T ′; i.e., T ′
can be obtained from T by removing all the taxa in T that are not in
T ′. The subproblem for a node with partial tree T is to find the most
parsimonious complete tree consistent with T .

We partition the active nodes into levels such that level k, for 3 ≤
k ≤ n, contains all active nodes whose partial trees contain the first k
taxa from the input. The root node contains the first three taxa (hence,
indexed by level 3) since there is only one possible unrooted tree topology
with three leaves. The branch function finds the immediate successors
of a node associated with a partial tree Tk at level k by inserting the
(k + 1)st taxon at any of the (2k− 3) possible places. A new node (with
this taxon attached by an edge) can join in the middle of any of the
(2k−3) edges in the unrooted tree. For example, in Figure 5.2, the root
on three taxa is labeled (A), its three children at level four are labeled
(B), (C), and (D), and a few trees at level five (labeled (1) through
(5)) are shown. We use depth-first search (DFS) as our primary B&B
search strategy, and a heuristic best-first search (BeFS) to break ties
between nodes at the same depth. The search space explored by this
approach depends on the addition order of taxa, which also influences
the efficiency of the B&B algorithm. This issue is important, but not
further addressed in this chapter.

Next we discuss the bound function for maximum parsimony. A node
v associated with tree Tk represents the subproblem to find the most
parsimonious tree in the search space that is consistent with Tk. Assume
Tk is a tree with leaves labeled by S1, . . . , Sk. Our goal is to find a tight
lower bound of the subproblem. However, one must balance the quality
of the lower bound against the time required to compute it in order to
gain the best performance of the overall B&B algorithm.

Hendy and Penny [56] describe two practical B&B algorithms for
phylogeny reconstruction from sequence data that use the cost of the
associated partial tree as the lower bound of this subproblem. This
traditional approach is straightforward, and obviously, it satisfies the

5-28 Parallel Algorithm Design forBranch and Bound

32

1

3

(B)

 (A)

(C) (D)

1

32

1

32

1

3

4

5

4

5

4

5

2

1

4

5

2

(1) (2) (3) (4) (5)

1

4

2 3

1

32

1

2

4

4

5

4

3

����������

��
��
��
��

��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

����

����

��

��
��
��
��

����

����

��
��
��
��

1

��32

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

������

�
�
�
�

����

��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

����

����

����

����

��

����

�
�
�
�

��
��
��
��

Figure 5.2. Maximum Parsimony B&B search space.

necessary properties of the bound function. However, it is not tight and
does not prune the search space efficiently. Purdom et al. [91] use single-
character discrepancies of the partial tree as the bound function. For
each character one computes a difference set, the set of character states
that do not occur among the taxa in the partial tree and hence only oc-
cur among the remaining taxa. The single-character discrepancy is the
sum over all characters of the number of the elements in these difference
sets. The lower bound is therefore the sum of the single-character dis-
crepancy plus the cost of the partial tree. This method usually produces
much better bounds than Hendy and Penny’s method, and experiments
show that it usually fathoms more of the search space [91]. Another
advantage of Purdom’s approach is that given an addition order of taxa,
there is only one single-character discrepancy calculation per level. The
time needed to compute the bound function is negligible.

Next we discuss the candidate function and incumbent xI . In phy-
logeny reconstruction, it is expensive to compute a meaningful feasible

Application Examples 5-29

solution for each partial tree, so instead we compute an upper bound on
the input using a direct method such as neighbor-joining [99, 106] be-
fore starting the B&B search. We call this value the global upper bound,
f(xI), the incumbent’s objective function. In our implementation, the
first incumbent is the best returned by any of several heuristic methods.

The greedy algorithm [34], an alternative incumbent heuristic, pro-
ceeds as follows. Begin with a three-taxa core tree and iteratively add
one taxon at a time. For an iteration with a k-leaf tree, try each of the
n − k remaining taxon in each of the 2k − 3 possible places. Select the
lowest-cost (k + 1)-leaf tree so formed.

Any program, regardless of the algorithms, requires implementation
on a suitable data structure. As mentioned previously, we use DFS as
the primary search strategy and BeFS as the secondary search strategy.
For phylogeny reconstruction with n taxa, the depth of the subproblems
ranges from 3 to n. So we use an array to keep the open subproblems
sorted by DFS depth. The array element at location i contains a priority
queue (PQ) of the subproblems with depth i, and each item of the PQ
contains an external pointer to stored subproblem information.

The priority queues (PQs) support best-first-search tie breaking and
allow efficient deletion of all dominated subproblems whenever we find a
new incumbent. There are many ways to organize a PQ (see [12] for an
overview). In the phylogeny reconstruction problem, most of the time
is spent evaluating the tree length of a partial tree. The choice of PQ
data structures does not make a significant difference. So for simplicity,
we use a D-heap for our priority queues. A heap is a tree where each
node has higher priority than any of its children. In a D-heap, the tree
is embedded in an array. The first location holds the root of the tree,
and locations 2i and 2i + 1 are the children of location i.

5.2.4.3 Parallel framework. Our parallel maximum parsi-
mony B&B algorithm uses shared-memory. The processors can con-
currently evaluate open nodes, frequently with linear speedup. As de-
scribed in Section 5.2.4.2, for each level of the search tree (illustrated in
Figure 5.2), we use a priority queue represented by binary heaps to main-
tain the active nodes in a heuristic order. The processors concurrently
access these heaps. To ensure each subproblem is processed by exactly
one processor and to ensure that the heaps are always in a consistent
state, at most one processor can access any part of a heap at once. Each
heap Hi (at level i) is protected by a lock Locki. Each processor locks
the entire heap Hi whenever it makes an operation on Hi.

In the sequential B&B algorithm, we use DFS strictly so Hi is used
only if the heaps at higher level (higher on the tree, lower level number)

5-30 Parallel Algorithm Design forBranch and Bound

are all empty. In the parallel version, to allow multiple processors shared
access to the search space, a processor uses Hi if all the heaps at higher
levels are empty or locked by other processors.

The shared-memory B&B framework has a simple termination pro-
cess. A processor can terminate its execution when it detects that all the
heaps are unlocked and empty: there are no more active nodes except
for those being decomposed by other processors. This is correct, but
it could be inefficient, since still-active processors could produce more
parallel work for the prematurely-halted processors. If the machine sup-
ports it, instead of terminating, a processor can declare itself idle (e. g.
by setting a unique bit) and go to sleep. An active processor can then
wake it up if there’s sufficient new work in the system. The last active
processor terminates all sleeping processors and then terminates itself.

5.2.4.4 Impact of Parallelization. There are a variety of
software packages to reconstruct sequence-based phylogeny. The most
popular phylogeny software suites that contain parsimony methods are
PAUP* by Swofford [109], PHYLIP by Felsenstein [40], and TNT and
NONA by Goloboff [47, 82]. We have developed a freely-available shared-
memory code for computing MP, that is part of our software suite,
GRAPPA (Genome Rearrangement Analysis through Parsimony and
other Phylogenetic Algorithms) [78]. GRAPPA was designed to re-
implement, extend, and especially speed up the breakpoint analysis (BP-
Analysis) method of Sankoff and Blanchette [100]. Breakpoint analysis
is another form of parsimony-based phylogeny where species are rep-
resented by ordered sets of genes and distance is measured relative to
differences in orderings. It is also solved by branch and bound. Our MP
software does not constrain the character states of the input. It can use
real molecular data and characters reduced from gene-order data such
as Maximum Parsimony on Binary Encodings (MPBE) [30].

The University of New Mexico operates Los Lobos, the NSF / Alliance
512-processor Linux supercluster. This platform is a cluster of 256 IBM
Netfinity 4500R nodes, each with dual 733 MHz Intel Xeon Pentium
processors and 1 GB RAM, interconnected by Myrinet switches. We
ran GRAPPA on Los Lobos and obtained a 512-fold speed-up (linear
speedup with respect to the number of processors): a complete break-
point analysis (with the more demanding inversion distance used in lieu
of breakpoint distance) for the 13 genomes in the Campanulaceae data
set ran in less than 1.5 hours in an October 2000 run, for a million-
fold speedup over the original implementation [8, 10]. Our latest ver-
sion features significantly improved bounds and new distance correction
methods and, on the same dataset, exhibits a speedup factor of over one

Parallel Algorithmic Primitives 5-31

billion. In each of these cases a factor of 512 speed up came from paral-
lelization. The remaining speed up came from algorithmic improvements
and improved implementation.

5.3 Parallel Algorithmic Primitives
This section describes parallel algorithmic primitives that are repre-

sentative of the techniques commonly used to coordinate parallel pro-
cesses. Our three illustrations of parallel B&B use some of these. For a
more detailed discussion on algorithm engineering for parallel computa-
tion, see the survey by Bader, Moret, and Sanders [9].

5.3.1 Tree-based Reductions
Tree-based reductions are an efficient way to compute the result of

applying an associative operator to k values. For example, this is an
efficient way to compute the sum or the max of k values. This uses a
balanced binary tree of processors with k leaves. That is, the heights of
the two subtrees rooted at each internal node are approximately equal.
Initially each leaf processor holds one of the k input values. Each leaf
passes its value to its parent. Each internal node waits to receive the
value from each child, applies the operator (e.g. sum or max) and sends
the result to its parent. Eventually the root computes the final value. It
then sends the results to its children, which in turn propagate the final
value, essentially implementing a broadcast from the root. The internal
nodes can also have values of their own they add in as the computation
proceeds up the tree. In this case, k is the number of nodes rather
than the number of leaves. This communication pattern can implement
a synchronization for example when all processors must wait to write
values until all processors have finished reading. Each processor signals
its parent when it has finished reading. When the root receives signals
from both its children, all processors in the system have finished. When
the signal arrives from the root, each processor can continue safely.

5.3.2 Parallel Prefix
The prefix-sum operation (also known as the scan operation [14, 15,

57]) takes an array A of length n, and a binary, associative operator
∗, and computes the prefix-sum values bi = a0 ∗ a1 ∗ . . . ∗ ai, for all
0 ≤ i < n. In parallel, processor i stores value ai at the beginning and
value bi at the end. There are fast implementations based on balanced
binary trees. Suppose an arbitrary subset of processors have a given
property (e.g. receiving a 1 from a random bit generator). Each processor
knows only whether it has the property or not. We would like to rank

5-32 Parallel Algorithm Design forBranch and Bound

the processors with the property, giving each a unique number in order
starting from 1. This is a prefix operation with ai = 1 if the processor
has the property and ai = 0 otherwise. The operator is sum. The
ith processor with the property has bi = i. See section 5.3.4 for an
example application of ranking. Prefix sums also build other primitives
such as array compaction, sorting, broadcasting, and segmented prefix-
sums. The latter is a prefix sum where the input array is partitioned into
consecutive segments of arbitrary size and the values bi are computed
only within the segments.

5.3.3 Pointer-jumping
Consider a data structure using pointers where each element has at

most one outgoing pointer, for example an in-tree or a linked list. In
pointer jumping, each element of the data structure begins with its
pointer (or a copy of it) and iteratively replaces it with the pointer in the
element it’s pointing to until it reaches a node with no outgoing pointer.
In a linked list, for example, the first element initially points to the sec-
ond. After one iteration, it points to the fourth, then the eighth, etc. In
log n iterations it points to the nth and final element. This technique is
also called path doubling or shortcutting. It can convert trees into strict
binary trees (0 or 2 children) by collapsing chains of degree-two nodes.
Each node in a rooted, directed forest can find its root quickly. This is
a crucial step in handling equivalence classes-such as detecting whether
or not two nodes belong to the same component. When the input is a
linked list, this algorithm solves the parallel prefix problem.

5.3.4 Rendezvous
In distributed-memory systems, the rendezvous algorithm allows pro-

cessors to “find” other processors that have similar or complementary
properties. The properties evolve during the computation and cannot be
predicted a priori. If the properties have unique ranks between 1 and P
(the number of processors), then all processors with property type i can
“meet” at processor i. Each processor with property i sends a message
to processor i with its identifier. Processor i collects all the identifiers
sent to it and sends the list to each processor on the list. This effec-
tively “introduces” the processors. As a particular example, consider
load balancing in PICO. Each hub computes its local load, a function
of the number and quality of subproblems. The hubs all learn the total
load via a tree-based reduction (summing the loads). Each hub deter-
mines if it is a donor, a processor with load sufficiently above average
or a receiver, a processor with load sufficiently below average. Using a

Parallel Algorithmic Primitives 5-33

parallel prefix operation on the tree, each donor is assigned a unique
rank and each receiver is assigned a unique rank. Then the ith donor
and ith receiver rendezvous at processor i. Once they know each other,
donor i sends work to receiver i in a point-to-point message.

5.3.5 Advanced Parallel Techniques
An entire family of techniques of major importance in parallel algo-

rithms is loosely termed divide-and-conquer—such techniques decom-
pose the instance into smaller pieces, solve these pieces independently
(typically through recursion), and then merge the resulting solutions into
a solution to the original instance. Such techniques are used in sorting,
in almost any tree-based problem, in a number of computational ge-
ometry problems (finding the closest pair, computing the convex hull,
etc.), and are also at the heart of fast transform methods such as the
fast Fourier transform (FFT). A variation on this theme is a partitioning
strategy, in which one seeks to decompose the problem into independent
subproblems—and thus avoid any significant work when recombining
solutions; quicksort is a celebrated example, but numerous problems in
computational geometry and discrete optimization can be solved effi-
ciently with this strategy (particularly problems involving the detection
of a particular configuration in 3- or higher-dimensional space).

Another general technique for designing parallel algorithms is called
pipelining. A pipeline acts like an assembly line for a computation.
Data enters the first stage and proceeds though each stage in order.
All stages can compute values for different data simultaneously. Data
pumps through the pipeline synchronously, entering the next stage as
the previous data exits. Suppose there are k stages, each requiring t
time. Then processing each piece of data requires kt time, but a new
value arrives every t time units.

Symmetry breaking provides independent work between processors in
self-similar problems and allows processors to agree (e. g. on pairings).
For example, suppose a set of processors forms a cycle (each processor
has two neighbors). Each processor must communicate once with each
of its neighbors at the same time that neighbor is communicating with
it. In a segment of the ring where processor ranks are monotonic, it’s not
clear how to do this pairing. One can use previous methods for coloring
or maximum independent set or find problem-specific methods.

Tree contraction repeatedly collapses two neighboring nodes in a graph
into a supernode until there is only one node left. This algorithm (and
its inverse, re-expanding the graph) is part of parallel expression eva-
lution algorithms and other parallel graph algorithms. General graph

5-34 Parallel Algorithm Design forBranch and Bound

contraction requires symmetry breaking. Any matching in the graph (a
set of edges where no two edges share a vertex) can contract in parallel.

5.3.6 Asynchronous Termination
Proper termination can be tricky in asynchronous distributed-memory

computations. Each process pi has a state si that reflects whether the
process is active or idle. Active processes can activate idle processes (e.g.
by sending the idle process a message). The goal is to terminate when
all processes are idle and there are no messages or other pending activa-
tions in the system. A process may start a control wave which visits all
processes and determines whether all processors are idle. A control wave
can be implemented by circulating a token sequentially through all pro-
cessors, or with a tree-based reduction. The control wave also collects
information about pending activations. For example, if only messages
activate processors, the control wave can collect the number of message
sends and receipts at each processor and verify that the totals match
globally. However, having all processes idle and no pending activations
as inspected by the control wave does not imply all these conditions held
simultaneously. Processes can be reactivated “behind the back” of the
wave, which makes correct termination difficult. For example, aliasing
may occur when a message receipt substitutes for another. If a sender
participates in the wave before it sends a message and the receiver par-
ticipates after receipt, then only the receipt is recorded. Other messages
(e.g. sent but truly undelivered) contribute only to the send count.

Mattern [76] discusses methods to ensure proper termination. PICO
uses a variant of the four-counter method [75], which is well-suited to
asynchronous contexts in which acknowledgments of “activation” are
indirect. PICO uses multiple passes of idleness checks and message bal-
ance checks to confirm there is no remaining work in the system. The
shared-memory B&B application uses condition variables in its termi-
nation procedure. Threads finding no active nodes, and thus wishing to
terminate, go to sleep, but can either be awoken with additional work
(new active nodes) or terminated by the last working thread.

5.4 Debugging Parallel Software
Debugging parallel software is notoriously difficult. Parallel software

coordinates threads of execution across multiple physical processors.
Thus parallel software often exhibits programming errors related to tim-
ing and synchronization that are not seen in serial codes. Perhaps the
most common symptom of a software error is that a code “hangs” and
fails to terminate. This occurs when a process is waiting for some event.

Debugging Parallel Software 5-35

For example, a process may be waiting for a message that is never sent.
This could happen if one process encounters an error condition that other
processes do not encounter, thereby leading that process to interrupt its
typical flow of communication with the other processes.

Unfortunately it is difficult to robustly reproduce these failures. A
parallel bug may not be exposed in repeated executions of a code because
of inherent nondeterminism (e.g. nondeterministic message delivery or-
der). Some race conditions (order-dependent errors) are exposed only
with a rare order of events. Similarly, parallel bugs sometimes disappear
when code is inserted to track the state of each process. If such code
disrupts the relative rate of computation, the synchronization condition
that led to the failure may be difficult to reproduce.

One can develop and debug parallel MPI-based code on a single work-
station by running multiple MPI processes on the same machine. These
processes share the CPU as independent (communicating) threads. As
mentioned later, this can help with debugging. However, because only
one thread controls the CPU at once, a code that’s fully debugged in
this setting can still have bugs (race conditions, synchronization errors)
associated with true concurrency.

The remainder of this section considers common approaches to paral-
lel debugging. Specifically, we consider debugging modern programming
languages (e.g. Fortran, C and C++) which have compilers and inter-
active debuggers.

5.4.1 Print Statements
Using print statements to trace interesting events is perhaps the sim-

plest strategy for debugging software. However, there are several caveats
for using them for parallel debugging. First, this technique can signif-
icantly impact the relative computation rates of processes in a parallel
computation. Printing and especially file I/O are often very slow when
compared to other computation tasks. Adding printing changes the be-
havior of asynchronous parallel programs so the precise error condition
the debugger is tracking can disappear.

A second caveat for print-based debugging is that the order in which
information is presented to a screen may not reflect the true sequence of
events. For example, printing I/O for one process may be delayed while
a buffer fills, allowing other processes’ I/O to be displayed out of order.
Explicitly flushing buffers (e.g. using flush()), can help, but even then
communication delays can affect output ordering.

Finally, it is difficult (and at best inconvenient) to simultaneously dis-
play I/O from multiple processes especially for an execution using hun-

5-36 Parallel Algorithm Design forBranch and Bound

dreds to thousands of processors. Operating systems typically interleave
the output of multiple processes, which can quickly lead to unintelligible
output. One solution to this problem is to stream each process’ I/O to
a different file. In C, this can be done using fprintf statements with
a different file descriptor for each process. More sophisticated solutions
can be developed in C++ by exploiting the extensibility of stream oper-
ators. For example, we have developed a CommonIO class in the UTILIB
C++ utility library [51] that provides new streams ucout and ucerr.
These streams replace cout and cerr to control I/O in a flexible man-
ner. The CommonIO class ensures that I/O streamed to ucout and ucerr
is printed as a single block, and thus it is unlikely to be fragmented on
a screen. Additionally, each line of the output can be tagged with a
processor id and line number:

[2]-00002 Printing line 2 from process 2
[3]-00007 Printing line 7 from process 3
[3]-00008 Printing line 8 from process 3
[1]-00003 Printing line 3 from process 1
[1]-00004 Printing line 4 from process 1
[0]-00003 Printing line 3 from process 0

This facility makes it easy to extract and order output for each process.

5.4.2 Performance Analysis Tools
A natural generalization of print statements is the use of logging, trace

analysis, and profiling tools that record process information throughout
a parallel run. For example, the MPE library complements the MPI li-
brary, adding mechanisms for generating log files. MPE provides simple
hooks for opening, closing, and writing to log files. Viewing these logs
graphically via the Java-based Jumpshot program provides insight into
the dynamic state of a parallel code [79, 123]. The commercial VAM-
PIR [114] tool provides more general facilities for trace analysis even for
multi-threaded applications.

Profiling tools gather statistics about the execution of software. Stan-
dard profiling tools like prof and gprof run on workstations and clus-
ters to identify what parts of the code are responsible for the bulk of the
computation. Many commercial workstation vendors provide compilers
that support configurable hardware counters which can gather fine-grain
statistics about each physical processor’s computation. For example,
statistics of instruction and data cache misses at various levels of the
memory hierarchy and of page faults measure cache performance. These
profiling tools are particularly valuable for developing shared-memory

Debugging Parallel Software 5-37

parallel software since they help identify synchronization bottlenecks
that are otherwise difficult to detect.

5.4.3 Managing and Debugging Errors
A pervasive challenge for software development is the effective man-

agement of runtime error conditions (e.g. when an attempt to open a
file fails). In parallel codes these include inter-process I/O failures. For
example, message passing libraries like MPI include error handler mech-
anisms. Calls to the MPI library may return errors that indicate simple
failure or fatal failure. The process should terminate for fatal failures.

In shared-memory and distributed-computing systems, inter-process
communication failures often indicate more critical problems with the
operating system or interconnection network. Consequently, it is rea-
sonable to treat these as fatal errors. MPI-based software packages de-
veloped for tightly-coupled supercomputers support synchronous com-
munication primitives. They typically assume the network is reliable
so that messages sent by one process are received by another. Grid-
computing systems usually require asynchronous communication. Inter-
process communication failures may reflect problems with the grid com-
puting infrastructure. Tools like Network Weather System (NWS) [84,
116, 118] help identify network-related problems.

One effective strategy for debugging unexpected failures is to gener-
ate an abort() when an error is detected. This generates a core file
with debugging information. When the code runs on a single work-
station (preferably with multiple processors), this debugging strategy
generates a local core file that contains the call-stack at the point of fail-
ure. This debugging strategy can also work for exceptions, which step
the computation out of the current context. For example, the UTILIB
library includes an EXCEPTION MNGR macro that throws exceptions in a
controlled manner. In particular, one configuration of EXCEPTION MNGR
calls abort() for unexpected exceptions.

5.4.4 Interactive Debuggers
Most commercial workstation vendors provide compilers that natu-

rally support interactive debugging of threaded software. Consequently,
mature interactive debuggers are available for shared memory parallel
software. There are specialized interactive debuggers for distributed or
grid applications running on workstations or clusters. Commercial paral-
lel debugging software tools like Etnus TotalView enable a user to inter-
act with processes distributed across different physical processors [111].
Sun Microsystems offers advanced development, debugging, and profil-

5-38 Parallel Algorithm Design forBranch and Bound

ing tools within their commercial Sun Studio compiler suite and with
their native MPI implementation in Sun HPC ClusterTools [107].

On workstations, standard interactive debuggers can attach to a run-
ning process given the process identifier. Thus one can debug parallel
distributed-memory software by attaching a debugger to each active pro-
cess. For example, each parallel process prints its process id using the
getpid() system call and then (a) a master process waits on user I/O
(e.g. waiting for a newline) and (b) other processes perform a block-
ing synchronization; the master performs blocking synchronization after
performing I/O. After launching the parallel code, a user can attach
debuggers to the given process ids, and then continue the computation.
At that point, each debugged process is controlled by an interactive de-
bugger. Setting up debuggers in this manner can be time consuming for
more than a few parallel processes, but tools like LAM/MPI support the
automatic launching of interactive gdb debuggers [18, 105].

5.5 Final Thoughts
Developing parallel scientific software is typically a challenging en-

deavor. The choice of target compute platform can significantly influ-
ence the manner in which parallelism is used, the algorithmic primitives
used for parallelization, and the techniques used to debug the paral-
lel software. Therefore, developing parallel software often requires a
greater commitment of time and energy than developing serial counter-
parts. One must carefully consider the specific benefits of parallelization
before developing parallel software. There are a number of issues that
might influence the choice of target architecture for parallel software
development:

How large are problem instances? How much parallelism
is needed? Grid compute platforms deployed within large institu-
tions will likely have a peak compute capacity greater than all but the
largest super-computers. However, this scale of parallelization may not
be needed in practice, or the granularity of an application might require
tighter coupling of resources.

What type of parallelization is needed? If an application has a
natural parallelization strategy, this influences the target compute plat-
form. Distributed-memory architectures currently have the greatest ca-
pability to model large-scale physical systems (e.g. shock physics). HPC
research within DOE has concentrated on tightly-coupled parallel codes
on distributed-memory platforms. However, shared-memory platforms
are emerging as the system of choice for moderate-sized problems that

Final Thoughts 5-39

demand unpredictable access to shared, irregular data structures (e.g.
databases, and combinatorial problems).

Who will use the tool, and what type of user support will
the software need? The majority of commercial vendors support only
parallel software for shared-memory systems. The compute resources
of such a system are well defined, and users need minimum training or
support to use such parallel tools. For example, a threaded software tool
is often transparent.

What are the security requirements of user applications? Se-
curity concerns are integral to virtually all business, medical, and gov-
ernment applications, where data has commercial, privacy, or national
security sensitivities. The user has control/ownership of the resources
and security policy in a distributed-memory system, unlike in a grid
system. Even encryption may not provide enough security to run such
applications on a grid.

In addition to the issues of decomposition, work granularity and load
balancing discussed earlier, the following are algorithmic considerations
when developing parallel software:

Managing I/O: I/O is often a bottleneck in parallel computations.
Näive parallelizations of serial software frequently contain hidden I/O
(e.g. every processor writes to a log file). Although parallel I/O services
are not always available in HPC resources, standards like MPI-IO were
developed to meet this need.

Parallel random number generators: When using pseudo-random
number generators in parallel, one must ensure the random streams
across different processors are statistically independent and not corre-
lated. This is particularly important for parallel computations, such
as parallel Monte Carlo simulations, whose performance or correctness
depends upon independent random values. Parallel Monte Carlo simu-
lations are estimated to consume over half of all supercomputer cycles.
Other applications that use randomized modeling or sampling techniques
include sorting and selection [101, 52, 3]. Numerical libraries such as
SPRNG [74] help to ensure this independence.

Acknowledgments
This work was performed in part at Sandia National Laboratories.

Sandia is a multipurpose laboratory operated by Sandia Corporation, a
Lockheed-Martin Company, for the United States Department of Energy
under contract DE-AC04-94AL85000. Bader’s research is supported in

5-40 Parallel Algorithm Design forBranch and Bound

part by NSF Grants CAREER ACI-00-93039, ITR ACI-00-81404, DEB-
99-10123, ITR EIA-01-21377, Biocomplexity DEB-01-20709, and ITR
EF/BIO 03-31654. We acknowledge the current and former University
of New Mexico students who have contributed to the research described
in this chapter, including Guojing Cong, Ajith Illendula (Intel), Sukanya
Sreshta (OpNet), Nina R. Weisse-Bernstein, Vinila Yarlagadda (Intel),
and Mi Yan. We also thank Jonathan Eckstein for his collaboration in
the development of PICO.

References

[1] K. M. Anstreicher and N. W. Brixius. A new bound for the quadratic as-
signment problem based on convex quadratic programming. Mathematical
Programming, 89:341–357, 2001.

[2] K.M. Anstreicher, N.W. Brixius, J.-P. Goux, and J. Linderoth. Solving large
quadratic assignment problems on computational grids. Mathematical Pro-
gramming, Series B, 91:563–588, 2002.

[3] D. A. Bader. An improved randomized selection algorithm with an experimen-
tal study. In Proceedings of the 2nd Workshop on Algorithm Engineering and
Experiments (ALENEX00), pages 115–129, San Francisco, CA, January 2000.
www.cs.unm.edu/Conferences/ALENEX00/.

[4] D. A. Bader and G. Cong. A fast, parallel spanning tree algorithm for symmet-
ric multiprocessors (SMPs). In Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS 2004), Santa Fe, NM, April 2004.

[5] D. A. Bader and G. Cong. Fast shared-memory algorithms for computing the
minimum spanning forest of sparse graphs. In Proceedings of the International
Parallel and Distributed Processing Symposium (IPDPS 2004), Santa Fe, NM,
April 2004.

[6] D. A. Bader, A. K. Illendula, B. M. E. Moret, and N. Weisse-Bernstein. Using
PRAM algorithms on a uniform-memory-access shared-memory architecture.
In G.S. Brodal, D. Frigioni, and A. Marchetti-Spaccamela, editors, Proceedings
of the 5th International Workshop on Algorithm Engineering (WAE 2001),
volume 2141 of Lecture Notes in Computer Science, pages 129–144, Århus,
Denmark, 2001. Springer-Verlag.

[7] D. A. Bader and J. JáJá. SIMPLE: A methodology for programming high per-
formance algorithms on clusters of symmetric multiprocessors (SMPs). Journal
of Parallel and Distributed Computing, 58(1):92–108, 1999.

[8] D. A. Bader and B. M. E. Moret. GRAPPA runs in record time. HPCwire,
9(47), November 23, 2000.

[9] D. A. Bader, B. M. E. Moret, and P. Sanders. Algorithm engineering for
parallel computation. In R. Fleischer, E. Meineche-Schmidt, and B. M. E.
Moret, editors, Experimental Algorithmics, volume 2547 of Lecture Notes in
Computer Science, pages 1–23. Springer-Verlag, 2002.

[10] D. A. Bader, B. M. E. Moret, and L. Vawter. Industrial applications of high-
performance computing for phylogeny reconstruction. In H.J. Siegel, editor,

References 5-41

Proceedings of SPIE Commercial Applications for High-Performance Comput-
ing, volume 4528, pages 159–168, Denver, CO, 2001. SPIE.

[11] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput
of multiple machines in real-time scheduling. SIAM Journal on Computing,
31(2):331–352, 2001.

[12] M. Benchouche, V.-D Cung, S. Dowaji, B. Le Cun, T. Mautor, and C. Rou-
cairol. Building a parallel branch and bound library. In A. Ferreira and
P. Pardalos, editors, Solving Combinatorial Optimization Problems in Par-
allel:Methods and Techniques, volume 1054 of Lecture Notes in Computer Sci-
ence, pages 201–231. Springer-Verlag, 1996.

[13] R. H. Bisseling. Parallel Scientific Computation: A Structured Approach using
BSP and MPI. Oxford University Press, 2004.

[14] G. E. Blelloch. Scans as primitive parallel operations. IEEE Transactions on
Computers, C-38(11):1526–1538, 1989.

[15] G. E. Blelloch. Prefix sums and their applications. In J. H. Reif, editor,
Synthesis of Parallel Algorithms, pages 35–60. Morgan Kaufman, San Mateo,
CA, 1993.

[16] BOB++. http://www.prism.uvsq.fr/~blec/Research/BOBO/.

[17] N. W. Brixius and K. M. Anstreicher. Solving quadratic assignment problems
using convex quadratic programming relaxations. Optimization Methods and
Software, 16:49–68, 2001.

[18] G. Burns, R. Daoud, and J. Vaigl. LAM: An open cluster environment for
MPI. In Proceedings of Supercomputing Symposium, pages 379–386, 1994.

[19] G. Calinescu, H. Karloff, and Y. Rabani. An improved approximation algo-
rithm for multiway cut. In Proceedings of the 30th Annual ACM Symposium
on Theory of Computing, pages 48–52, 1998.

[20] A. Caprara. Formulations and hardness of multiple sorting by reversals. In 3rd
Annual International Conference on Computational Molecular Biology (RE-
COMB99), pages 84–93. ACM, April 1999.

[21] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. War-
ren. Introduction to UPC and language specification. Technical Report CCS-
TR-99-157, IDA Center for Computing Sciences, Bowie, MD, May 1999.

[22] R. D. Carr and G. Konjevod. Polyhedral combinatorics. In H. J. Greenberg,
editor, Tutorials on Emerging Methodologies and Applications in Operations
Research. Kluwer Academic Press, 2004.

[23] H. Casanova and J. Dongarra. NetSolve: Network enabled solvers. IEEE
Computational Science and Engineering, 5(3):57–67, 1998.

[24] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon.
Parallel programming in OpenMP. Academic Press, 2001.

[25] Q. Chen and M. C. Ferris. FATCOP: A fault tolerant Condor-PVM mixed
integer programming solver. SIAM Journal on Optimization, 11(4):1019–1036,
2001.

[26] Computational Infrastructure for Operations Research, home page, 2004.
http://www-124.ibm.com/developerworks/opensource/coin/.

5-42 Parallel Algorithm Design forBranch and Bound

[27] T. Coleman, J Czyzyk, C. Sun, M. Wager, and S. Wright. pPCx: Parallel soft-
ware for linear programming. In Proceedings of the Eighth SIAM Conference
on Parallel Processing for Scientific Computing, 1997.

[28] The Condor Project Homepage, 2004. http://www.cs.wisc.edu/condor/.

[29] G. Cong and D. A. Bader. The Euler tour technique and parallel rooted span-
ning tree. Technical report, Electrical and Computer Engineering Department,
The University of New Mexico, Albuquerque, NM, February 2004.

[30] M. E. Cosner, R. K. Jansen, B. M. E. Moret, L.A. Raubeson, L.-S. Wang,
T. Warnow, and S. Wyman. An empirical comparison of phylogenetic methods
on chloroplast gene order data in Campanulaceae. In D. Sankoff and J. Nadeau,
editors, Comparative Genomics: Empirical and Analytical Approaches to Gene
Order Dynamics, Map Alignment, and the Evolution of Gene Families, pages
99–121. Kluwer Academic Publishers, Dordrecht, Netherlands, 2000.

[31] ILOG, CPLEX home page, 2004. http://www.ilog.com/products/cplex/.

[32] D. Culler and J. P. Singh. Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann, 1998.

[33] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, and Andy
White, editors. The Sourcebook of Parallel Computing. Morgan Kaufmann,
2002.

[34] R. V. Eck and M. O. Dayhoff. Atlas of Protein Sequence and Structure. Na-
tional Biomedical Research Foundation, Silver Spring, MD, 1966.

[35] J. Eckstein. Parallel branch-and-bound algorithms for general mixed integer
programming on the CM-5. SIAM Journal on Optimization, 4(4):794–814,
1994.

[36] J. Eckstein, W. E. Hart, and C. A. Phillips. PICO: An object-oriented frame-
work for parallel branch-and-bound. In Inherently Parallel Algorithms in Fea-
sibility and Optimization and Their Applications, Elsevier Scientific Series on
Studies in Computational Mathematics, pages 219–265, 2001.

[37] D. P. Faith. Distance method and the approximation of most-parsimonious
trees. Systematic Zoology, 34:312–325, 1985.

[38] J. S. Farris. Estimating phylogenetic trees from distance matrices. The Amer-
ican Naturalist, 106:645–668, 1972.

[39] M. Fellows. Parameterized complexity. In R. Fleischer, E. Meineche-Schmidt,
and B. M. E. Moret, editors, Experimental Algorithmics, volume 2547 of Lecture
Notes in Computer Science, pages 51–74. Springer-Verlag, 2002.

[40] J. Felsenstein. PHYLIP – phylogeny inference package (version 3.2). Cladistics,
5:164–166, 1989.

[41] W. M. Fitch. Toward defining the course of evolution: Minimal change for a
specific tree topology. Systematic Zoology, 20:406–416, 1971.

[42] S. Fortune and J. Willie. Parallelism in random access machines. In Proceedings
of the 10th Annual ACM Symposium on Theory of Computing, pages 114–118,
1978.

[43] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.
International Journal of SuperComputer Applications, 11(2):115–128, 1997.

[44] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, 1999.

References 5-43

[45] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organization. International Journal of High Performance Com-
puting Applications, 15(3):200–222, 2001.

[46] B. Gendron and T. G. Crainic. Parallel branch and bound algorithms: Survey
and synthesis. Operations Research, 42:1042–1066, 1994.

[47] P. A. Goloboff. Analyzing large data sets in reasonable times: Solutions for
composite optima. Cladistics, 15:415–428, 1999.

[48] J.-P. Goux, S. Kulkarni, J. T. Linderoth, and M. E. Yoder. Master-Worker:
An enabling framework for applications on the computational grid. Cluster
Computing, 4:63–70, 2001.

[49] A. Grama, A. Gupta, G. Karypis, and V. Kumar. An Introduction to Par-
allel Computing, Design and Analysis of Algorithms. Addison-Wesley, second
edition, 2003.

[50] A. Grimshaw, A. Ferrari, F. Knabe, and M. Humphrey. Legion: An operating
system for wide-area computing. Technical report, 1999. Available at http:

//legion.virginia.edu/papers/CS-99-12.ps.Z.

[51] W. E. Hart. UTILIB user manual version 1.0. Technical Report SAND2001-
3788, Sandia National Laboratories, 2001. Available for download at http:

//software.sandia.gov/Acro/UTILIB/.

[52] D. R. Helman, D. A. Bader, and J. JáJá. A randomized parallel sorting algo-
rithm with an experimental study. Journal of Parallel and Distributed Com-
puting, 52(1):1–23, 1998.

[53] D. R. Helman and J. JáJá. Sorting on clusters of SMP’s. In Proceedings of
the 12th International Parallel Processing Symposium, pages 1–7, Orlando, FL,
March/April 1998.

[54] D. R. Helman and J. JáJá. Designing practical efficient algorithms for symmet-
ric multiprocessors. In Algorithm Engineering and Experimentation, volume
1619 of Lecture Notes in Computer Science, pages 37–56, Baltimore, MD, Jan-
uary 1999. Springer-Verlag.

[55] B. Hendrickson and R. Leland. The Chaco user’s guide: Version 2.0. Technical
Report SAND94-2692, Sandia National Laboratories, 1994.

[56] M. D. Hendy and D. Penny. Branch and bound algorithms to determine min-
imal evolutionary trees. Mathematical Biosciences, 59:277–290, 1982.

[57] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley Publishing
Company, New York, 1992.

[58] H. F. Jordan and G. Alaghband. Fundamentals of Parallel Processing. Prentice
Hall, 2003.

[59] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-enabled implemen-
tation of the Message Passing Interface. Journal of Parallel and Distributed
Computing, 63(5):551–563, 2003.

[60] G. Karypis and V. Kumar. MeTiS: A Software Package for Partitioning Un-
structured Graphs, Partitioning Meshes, and Computing Fill-Reducing Order-
ings of Sparse Matrices. Department of Computer Science, University of Min-
nesota, version 4.0 edition, September 1998.

[61] L. Khachian. A polynomial time algorithm for linear programming. Soviet
Mathematics, Doklady, 20:191–194, 1979.

5-44 Parallel Algorithm Design forBranch and Bound

[62] S. Kleiman, D. Shah, and B. Smaalders. Programming with Threads. Prentice
Hall, Englewood Cliffs, NJ, 1996.

[63] L. Ladányi. BCP (Branch, Cut, and Price). Available from http://www-124.

ibm.com/developerworks/opensource/coin/.

[64] T.-H. Lai and S. Sahni. Anomalies in parallel branch-and-bound algorithms.
Communications of the ACM, 27:594–602, 1984.

[65] T.-H. Lai and A. Sprague. Performance of parallel branch-and-bound algo-
rithms. IEEE Transactions on Computing, C-34:962–964, 1985.

[66] G.-J. Li and B. Wah. Coping with anomalies in parallel branch-and-bound
algorithms. IEEE Transactions on Computing, C-35:568–573, 1986.

[67] G.-J. Li and B. Wah. Computational efficiency of parallel combinatorial OR-
tree searches. IEEE Transactions on Software Engineering, 18:13–31, 1990.

[68] W.-H. Li. Simple method for constructing phylogenetic trees from distance
matrices. Proceedings of the National Academy of Sciences USA, 78:1085–
1089, 1981.

[69] J. T. Linderoth. Topics in Parallel Integer Optimization. PhD thesis, Georgia
Institute of Technology, Department of Industrial and Systems Engineering,
1998.

[70] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for high
throughput computing. SPEEDUP, 11, 1997. Available from http://www.cs.

wisc.edu/condor/doc/htc_mech.ps.

[71] Mallba library v2.0. http://neo.lcc.uma.es/mallba/easy-mallba/.

[72] F. Margot. BAC: A BCP based branch-and-cut example. Technical Report
RC22799, IBM, 2003.

[73] A. Marzetta. ZRAM. PhD thesis, ETH Zurich, Institute of Theoretical Com-
puter Science, 1998.

[74] M. Mascagni and A. Srinivasan. Algorithm 806: SPRNG: A scalable library
for pseudorandom number generation. ACM Transactions on Mathematical
Software, 26:436–461, 2000. Available for download from http://sprng.cs.

fsu.edu/.

[75] F. Mattern. Algorithms for distributed termination detection. Distributed
Computing, 2:161–175, 1987.

[76] F. Mattern. Distributed termination detection with sticky state indicators.
Technical report, 200/90, Department of Computer Science, University of
Kaiserslautern, Germany, 1990.

[77] R. Miller and L. Boxer. Algorithms Sequential and Parallel: A Unified Ap-
proach. Prentice Hall, 2000.

[78] B. M. E. Moret, S. Wyman, D. A. Bader, T. Warnow, and M. Yan. A new
implementation and detailed study of breakpoint analysis. In Proceedings of
the 6th Pacific Symposium on Biocomputing, pages 583–594, Hawaii, 2001.

[79] Performance visualization for parallel programs, 2004. http://www-unix.mcs.
anl.gov/perfvis/publications/index.htm.

[80] M. Nediak and J. Eckstein. Pivot, cut, and dive: A heurstic for mixed 0-1
integer programming. Technical Report RRR 53-2001, RUTCOR, October
2001.

References 5-45

[81] M. Nei and S. Kumar. Molecular Evolution and Phylogenetics. Oxford Uni-
versity Press, Oxford, UK, 2000.

[82] K.C. Nixon. The parsimony ratchet, a new method for rapid parsimony anal-
ysis. Cladistics, 15:407–414, 1999.

[83] C. E. Nugent, T. E. Vollman, and J. Ruml. An experimental comparison of
techniques for the assignment of facilities to locations. Operations Research,
pages 150–173, 1968.

[84] Network Weather Service WWW Page, 2004. http://nws.cs.ucsb.edu/.

[85] OpenMP Architecture Review Board. OpenMP: A proposed industry standard
API for shared memory programming. www.openmp.org, October 1997.

[86] IBM Optimization Solutions and Library, home page, 2004. http://www-306.
ibm.com/software/data/bi/osl/.

[87] I. Pe’er and R. Shamir. The median problems for breakpoints are NP-complete.
Technical Report 71, Electronic Colloquium on Computational Complexity,
November 1998.

[88] C. Phillips, C. Stein, and J. Wein. Minimizing average completion time in the
presence of release dates. Mathematical Programming B, 82:199–223, 1998.

[89] POSIX. Information technology—Portable Operating System Interface
(POSIX)—Part 1: System Application Program Interface (API). Portable
Applications Standards Committee of the IEEE, 1996-07-12 edition, 1996.
ISO/IEC 9945-1, ANSI/IEEE Std. 1003.1.

[90] J. Pruyne and M. Livny. Interfacing Condor and PVM to harness the cycles
of workstation clusters. Journal on Future Generation of Computer Systems,
12(53-65), 1996.

[91] P. W. Purdom, Jr., P. G. Bradford, K. Tamura, and S. Kumar. Single column
discrepancy and dynamic max-mini optimization for quickly finding the most
parsimonious evolutionary trees. Bioinfomatics, 2(16):140–151, 2000.

[92] PVM: Parallel Virtual Machine, 2004. http://www.csm.ornl.gov/pvm/pvm_

home.html.

[93] M. J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-
Hill, 2004.

[94] T. K. Ralphs. Symphony 4.0 users manual, 2004. Available from www.

branchandcut.org.

[95] T. K. Ralphs, L. Ladányi, and M. J. Saltzman. Parallel branch, cut, and
price for large-scale discrete optimization. Mathematical Programming, 98(1-
3), 2003.

[96] T. K. Ralphs, L. Ladányi, and M. J. Saltzman. A library for implementing scal-
able parallel search algorithms. The Journal of SuperComputing, 28(2):215–
234, 2004.

[97] J. H. Reif, editor. Synthesis of Parallel Algorithms. Morgan Kaufmann Pub-
lishers, 1993.

[98] K. Rice and T. Warnow. Parsimony is hard to beat. In Computing and Com-
binatorics, pages 124–133, August 1997.

[99] N. Saitou and M. Nei. The neighbor-joining method: A new method for recon-
struction of phylogenetic trees. Molecular Biological and Evolution, 4:406–425,
1987.

5-46 Parallel Algorithm Design forBranch and Bound

[100] D. Sankoff and M. Blanchette. Multiple genome rearrangement and breakpoint
phylogeny. Journal of Computational Biology, 5:555–570, 1998.

[101] H. Shi and J. Schaeffer. Parallel sorting by regular sampling. Journal of
Parallel and Distributed Computing, 14:361–372, 1992.

[102] Y. Shinano, M. Higaki, and R. Hirabayashi. Generalized utility for parallel
branch and bound algorithms. In Proceedings of the Seventh Symposium on
Parallel and Distributed Processing, 1995.

[103] D. Skillicorn and D. Talia. Models and languages for parallel computation.
Computing Surveys, 30(2):123–169, 1998.

[104] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The
Complete Reference. MIT Press, Inc., second edition, 1998.

[105] J. M. Squyres and A. Lumsdaine. A component architecture for LAM/MPI. In
Proceedings of the 10th European PVM/MPI Users’ Group Meeting, number
2840 in Lecture Notes in Computer Science, Venice, Italy, September / October
2003. Springer-Verlag.

[106] J. A. Studier and K. J. Keppler. A note on the neighbor-joining method of
Saitou and Nei. Molecular Biological and Evolution, 5:729–731, 1988.

[107] Sun Microsystems, Inc., WWW Page, 2004. www.sun.com.

[108] Sun Microsystems, Inc. POSIX threads. WWW page, 1995. www.sun.com/

developer-products/sig/threads/posix.html.

[109] D. L. Swofford and D. P. Begle. PAUP: Phylogenetic analysis using parsimony.
Sinauer Associates, Sunderland, MA, 1993.

[110] D. L. Swofford, G. J. Olsen, P. J. Waddell, and D. M. Hillis. Phylogenetic
inference. In D. M. Hillis, C. Moritz, and B. K. Mable, editors, Molecular
Systematics, pages 407–514. Sinauer, Sunderland, MA, 1996.

[111] Etnus, L.L.C. TotalView WWW Page, 2004. http://www.etnus.com/

Products/TotalView/index.html.

[112] S. Tschöke and T. Polzer. Portable parallel branch-and-bound library, PPBB-
Lib, user manual, library version 2.0. Technical report, University of Paderborn
Department of Computer Science, 1996.

[113] L. G. Valiant. A bridging model for parallel computation. Commununications
of the ACM, 33(8):103–111, 1990.

[114] Intel GmbH VAMPIR WWW Page, 2004. http://www.pallas.com/e/

products/vampir/.

[115] B. Wilkinson and M. Allen. Parallel Programming: Techniques and Applica-
tions Using Networked Workstations and Parallel Computers. Prentice Hall,
second edition, 2004.

[116] R. Wolski. Dynamically forecasting network performance using the Network
Weather Service. Journal of Cluster Computing, 1:119–132, January 1998.

[117] R. Wolski, J. Brevik, C. Krintz, G. Obertelli, N. Spring, and A. Su. Run-
ning Everyware on the computational grid. In SC99 Conference on High Per-
formance Computing, 1999. Available from http://www.cs.utk.edu/~rich/

papers/ev-sc99.ps.gz.

[118] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A dis-
tributed resource performance forecasting service for metacomputing. Journal
of Future Generation Computing Systems, 15(5–6):757–768, 1999.

References 5-47

[119] Dash Optimization, XPRESS-MP, 2004. http://www.dashoptimization.

com/.

[120] M. Yan. High Performance Algorithms for Phylogeny Reconstruction with Max-
imum Parsimony. PhD thesis, Electrical and Computer Engineering Depart-
ment, University of New Mexico, Albuquerque, NM, January 2004.

[121] M. Yan and D. A. Bader. Fast character optimization in parsimony phylogeny
reconstruction. Technical report, Electrical and Computer Engineering De-
partment, The University of New Mexico, Albuquerque, NM, August 2003.

[122] K. A. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishna-
murthy, P. N. Hilfinger, S. L. Graham, D. Gay, P. Colella, and A. Aiken.
Titanium: A high-performance Java dialect. Concurrency: Practice and Expe-
rience, 10(11-13):825–836, 1998.

[123] O. Zaki, E. Lusk, W. Gropp, and D. Swider. Toward scalable performance
visualization with Jumpshot. High Performance Computing Applications,
13(2):277–288, 1999.

