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Abstract

Combinatorial problems such as those from graph the-
ory pose serious challenges for parallel machines due to
non-contiguous, concurrent accesses to global data struc-
tures with low degrees of locality. The hierarchical memory
systems of symmetric multiprocessor (SMP) clusters opti-
mize for local, contiguous memory accesses, and so are in-
efficient platforms for such algorithms. Few parallel graph
algorithms outperform their best sequential implementation
on SMP clusters due to long memory latencies and high syn-
chronization costs. In this paper, we consider the perfor-
mance and scalability of two graph algorithms, list rank-
ing and connected components, on two classes of shared-
memory computers: symmetric multiprocessors such as
the Sun Enterprise servers and multithreaded architectures
(MTA) such as the Cray MTA-2. While previous studies
have shown that parallel graph algorithms can speedup on
SMPs, the systems’ reliance on cache microprocessors lim-
its performance. The MTA’s latency tolerant processors and
hardware support for fine-grain synchronization makes per-
formance a function of parallelism. Since parallel graph
algorithms have an abundance of parallelism, they perform
and scale significantly better on the MTA. We describe and
give a performance model for each architecture. We ana-
lyze the performance of the two algorithms and discuss how
the features of each architecture affects algorithm develop-
ment, ease of programming, performance, and scalability.
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1. Introduction

The enormous increase in processor speed over the last
decade from approximately 300 MHz to over 3 GHz has far
out-paced the speed of the hardware components respon-
sible for delivering data to processors. For many large-
scale applications, performance is no longer a function of
how many operations a processor can perform per second,
but rather the rate at which the memory system can deliver
bytes of data. The conventional approach to ameliorating
the memory bottleneck is to build hierarchical memory sys-
tems consisting of several levels of cache and local and re-
mote memory modules. The first level cache can usually
keep pace with the processor; but, fetching data from more
remote memory causes the processor to stall. Since data is
moved to the L1 cache in lines, reading data in sequence
(i.e., with spatial locality) maximizes performance.

Combinatorial problems such as those from graph the-
ory pose serious challenges for parallel machines due to
non-contiguous, concurrent accesses to global data struc-
tures with low degrees of locality. The hierarchical memory
systems of clusters are inefficient platforms for such algo-
rithms. In fact, few parallel graph algorithms outperform
their best sequential implementation on clusters due to long
memory latencies and high synchronization costs.

A parallel, shared memory system is a more supportive
platform. These systems typically have higher-bandwidth,
lower-latency networks than clusters, and direct access to
all memory locations avoids the overhead of message pass-
ing. Fast parallel algorithms for graph problems have been
developed for such systems. List ranking [11, 31, 32, 23]
is a key technique often needed in efficient parallel algo-
rithms for solving many graph-theoretic problems; for ex-
ample, computing the centroid of a tree, expression evalua-
tion, minimum spanning forest, connected components, and
planarity testing. Helman and JáJá [19, 20] present an ef-
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ficient list ranking algorithm with implementation on SMP
servers that achieves significant parallel speedup. Using this
implementation of list ranking, Bader et al. have designed
fast parallel algorithms and demonstrated speedups com-
pared with the best sequential implementation for graph-
theoretic problems such as ear decomposition [2], tree con-
traction and expression evaluation [3], spanning tree [4],
rooted spanning tree [13], and minimum spanning forest
[5]. Many of these algorithms achieve good speedups due to
algorithmic techniques for efficient design and better cache
performance. For some of the instances, e.g., arbitrary,
sparse graphs, while we may be able to improve the cache
performance to a certain degree, there are no known general
techniques for cache performance optimization because the
memory access pattern is largely determined by the struc-
ture of the graph.

In this paper, we discuss the architectural features neces-
sary for efficient execution of graph algorithms by investi-
gating the performance of two graph algorithms, list ranking
and connected components, on two classes of shared mem-
ory systems: symmetric multiprocessors (SMP) such as
the Sun Enterprise servers and multithreaded architectures
(MTA) such as the Cray MTA-2. While our SMP results
confirm the results of previous studies, we find the systems’
reliance on cache microprocessors limits performance. For
the MTA, we find its latency tolerant processors and hard-
ware support for fine-grain synchronization make perfor-
mance primarily a function of parallelism. Since graph al-
gorithms often have an abundance of parallelism, these ar-
chitectural features lead to superior performance and scala-
bility.

The next section presents a brief overview of SMPs and
a detailed description of the Cray MTA-2. We give a per-
formance cost model for each machine. Sections 3 and 4
present SMP and MTA algorithms for list ranking and con-
nected components, respectively. The SMP algorithms min-
imize non-contiguous memory accesses, whereas, the MTA
algorithms maximize concurrent operations. Section 5 com-
pares the performance and scalability of the implementa-
tions. In the final section, we present our conclusions and
ideas for future work. In particular, we summarize how dif-
ferent architectural features affect algorithmic development,
ease of programming, performance, and scalability.

2. Shared-Memory Architectures

In this section, we give a brief overview of two types
of modern shared-memory architectures: symmetric multi-
processors and multithreaded architectures. While both al-
low parallel programs to access large globally-shared mem-
ories, they differ in significant ways as we discuss next.

2.1. Symmetric Multiprocessors (SMPs)

Symmetric multiprocessor (SMP) architectures, in
which several processors operate in a true, hardware-based,
shared-memory environment and are packaged as a single
machine, are commonplace in scientific computing. Indeed,
most high-performance computers are clusters of SMPs
having from 2 to over 100 processors per node. Moreover,
as supercomputers increasingly use SMP clusters, SMP
computations play a significant and increasing role in su-
percomputing and computational science.

The generic SMP processor is a four-way super-scalar
microprocessor, 32 to 64 hardware registers, and two levels
of cache. The L1 cache is small (64 to 128 KB) and on
chip. It can issue as many words per cycle as the processor
can fetch and latency is a few cycles. The size of the L2
cache can vary widely from 256 KB to 8 MB. Bandwidth to
the processor is typically 8 to 12 GB per second and latency
is 20 to 30 cycles. The processors are connected to a large
shared memory (4 to 8 GB per processor) by a high-speed
bus, crossbar, or a low-degree network. The bandwidth to
main memory falls off to 1 to 2 GB per second and latency
increases to hundreds of cycles.

Caching and prefetching are two hardware techniques
often used to hide memory latency. Caching takes ad-
vantage of spatial and temporal locality, while prefetching
mechanisms use data address history to predict memory ac-
cess patterns and perform reads early. If a high percentage
of read/write operations are to L1 cache, the processor stays
busy sustaining a high execution rate; otherwise, it starves
for data. Prefetching may substantially increase the mem-
ory bandwidth used, and shows limited or no improvement
in cache hits for irregular codes where the access patterns
cannot be predicted, as is often the case in graph algorithms.
Moreover, there is no hardware support for synchronization
operations. Locks and barriers are typically implemented
in software either by the user or via system calls. (Some
newer systems do provide atomic memory operations such
as compare-and-swap that may be used to build these fea-
tures.) While an SMP is a shared-memory architecture, it is
by no means the PRAM used in theoretical work — syn-
chronization cannot be taken for granted, memory band-
width is limited, and performance requires a high degree of
locality. The significant features of SMPs are that the input
can be held in the shared memory without having to be par-
titioned and they provide much faster access to their shared-
memory (an order of magnitude or more) than an equivalent
message-based architecture. As such SMPs provide a rea-
sonable execution platform for graph algorithms. As noted
above, parallel graph algorithms that execute faster than se-
quential algorithms do exist for this class of architecture.

To analyze SMP performance, we use a complexity
model similar to that of Helman and JáJá [20] which has
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been shown to provide a good cost model for shared-
memory algorithms on current symmetric multiprocessors
[19, 20, 2, 3]. The model uses two parameters: the prob-
lem’s input size n, and the number p of processors. For
instance, for list ranking, n is the number of elements in
the list, and for connected components, n is the number
of vertices in the input graph. Running time T (n, p) is
measured by the triplet 〈TM (n, p) ; TC(n, p) ; B(n, p)〉 ,
where TM (n, p) is the maximum number of non-contiguous
main memory accesses required by any processor, TC(n, p)
is an upper bound on the maximum local computational
complexity of any of the processors, and B(n, p) is the
number of barrier synchronizations. This model, unlike the
idealistic PRAM, is more realistic in that it penalizes al-
gorithms with non-contiguous memory accesses that often
result in cache misses and algorithms with more synchro-
nization events.

We tested our SMP implementations in this paper on
the Sun E4500, a uniform-memory-access (UMA) shared
memory parallel machine with 14 UltraSPARC II 400MHz
processors and 14 GB of memory. Each processor has 16
Kbytes of direct-mapped data (L1) cache and 4 Mbytes of
external (L2) cache. We implement the algorithms using
POSIX threads and software-based barriers.

2.2. Multithreaded Architectures (MTAs)

The Cray MTA is a flat, shared-memory multiprocessor
system. All memory is accessible and equidistant from all
processors. There is no local memory and no data caches.
Parallelism, and not caches, is used to tolerate memory and
synchronization latencies.

An MTA processor consists of 128 hardware streams and
one instruction pipeline. The processor speed is 220 MHz.
A stream is a set of 32 registers, a status word, and space in
the instruction cache. An instruction is three-wide: a mem-
ory operation, a fused multiply-add, and a floating point add
or control operation. Each stream can have up to 8 outstand-
ing memory operations. Threads from the same or different
programs are mapped to the streams by the runtime system.
A processor switches among its streams every cycle, execut-
ing instructions from non-blocked streams in a fair manner.
As long as one stream has a ready instruction, the processor
remains fully utilized.

The interconnection network is a partially connected 3-
D torus capable of delivering one word per processor per
cycle. The system has 4 GBytes of memory per proces-
sor. Logical memory addresses are hashed across physical
memory to avoid stride-induced hotspots. Each memory
word is 68 bits: 64 data bits and 4 tag bits. One tag bit
(the full-and-empty bit) is used to implement synchronous
load/store operations. A synchronous load/store operation
retries until it succeeds or traps. The thread that issued the

load or store remains blocked until the operation completes;
but the processor that issued the operation continues to issue
instructions from non-blocked streams.

Since the MTA is a shared-memory system with no
data cache and no local memory, it is comparable to an
SMP where all memory reference are remote. Thus, the
cost model presented in the previous section can be ap-
plied to the MTA with the difference that the magnitudes
of TM (n, p) and B(n, p) are reduced via multithreading. In
fact, if sufficient parallelism exists, these costs are reduced
to zero and performance is a function of only TC(n, p). Ex-
ecution time is then a product of the number of instructions
and the cycle time.

The number of threads needed to reduce TM (n, p) to
zero is a function of the memory latency of the machine,
about 100 cycles. Usually a thread can issue two or three
instructions before it must wait for a previous memory op-
eration to complete; thus, 40 to 80 threads per processor are
usually sufficient to reduce TM (n, p) to zero. The number
of threads needed to reduce B(n, p) to zero is a function
of intra-thread synchronization. Typically, it is zero and no
additional threads are needed; however, hotspots can occur.
Usually these can be worked around in software, but they
do occasionally impact performance.

The MTA is close to a theoretical PRAM machine. Its
latency tolerant processors, high bandwidth network, and
shared memory, enable any processor to execute any op-
eration and access any word. Execution time can reduce
to the product of the number of instructions and the ma-
chine’s cycle time. Since the MTA uses parallelism to tol-
erate latency, algorithms must often be parallelized at very
fine levels to expose sufficient parallelism to hide the laten-
cies. Fine levels of parallelism require fine grain synchro-
nization that would cripple performance without some near
zero-cost synchronization mechanism, such as the MTA’s
full-and-empty bits.

3. List Ranking

List ranking and other prefix computations on linked lists
are basic operations that occur in many graph-based algo-
rithms. The operations are difficult to parallelize because
of the non-contiguous structure of lists and asynchronous
access of shared data by concurrent tasks. Unlike arrays,
there is no obvious way to divide the list into even, disjoint,
continuous sublists without first computing the rank of each
node. Moreover, concurrent tasks may visit or pass through
the same node by different paths, requiring synchronization
to ensure correctness.

List ranking is an instance of the more general prefix
problem. Let X be an array of n elements stored in arbi-
trary order. For each element i, let X(i).value be its value
and X(i).next be the index of its successor. Then for any
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binary associative operator ⊕, compute X(i).prefix such
that X(head).prefix = X(head).value and X(i).prefix =
X(i).value⊕X(predecessor).prefix, where head is the first
element of the list, i is not equal to head, and predecessor
is the node preceding i in the list. If all values are 1 and the
associative operation is addition, then prefix reduces to list
ranking.

Our SMP implementation uses the Helman and JáJá list
ranking algorithm [19] that performs the following main
steps:

1. Find the head h of the list which is given by h =
(n(n − 1)/2 − Z) where Z is the sum of successor
indices of all the nodes in the list and n is the number
of elements in the list.

2. Partition the input list into s sublists by randomly
choosing one node from each memory block of n/(s−
1) nodes, where s is Ω(p logn) and p is the number of
processors. Create the array Sublists of size s. (Our
implementation uses s = 8p.)

3. Traverse each sublist computing the prefix sum of each
node within the sublists. Each node records its sublist
index. The input value of a node in the Sublists array
is the sublist prefix sum of the last node in the previous
Sublists.

4. The prefix sums of the records in the Sublists array are
then calculated.

5. Each node adds its current prefix sum value (value of
a node within a sublist) and the prefix sum of its cor-
responding Sublists record to get its final prefix sums
value. This prefix sum value is the required label of
the leaves.

For n > p2 lnn, we would expect in practice the SMP
list ranking to take

T (n, p) = (MM (n, p); TC(n, p)) =
(

n
p , O

(
n
p

))
. For a

detailed description of the above steps refer to [19].
Our MTA implementation (described in high-level in the

following four steps and also given in detail in Alg. 1) is
similar to the Helman and JáJá algorithm.

1. Choose NWALK nodes (including the head node) and
mark them. This step divides the list into NWALK
sublists and is similar to steps 1 and 2 of the SMP al-
gorithm.

2. Traverse each sublist computing the prefix sum of each
node within the sublist (similar to step 3 of the SMP
algorithm).

3. Compute the rank of each marked node (similar to
step 4 of the SMP algorithm).

int list[NLIST+1], rank[NLIST+1];

void RankList(list, rank)
int *list, *rank;

{ int i, first;
int tmp1[NWALK+1], tmp2[NWALK+1];
int head[NWALK+1], tail[NWALK+1], lnth[NWALK+1], next[NWALK+1];

#pragma mta assert noalias *rank, head, tail, lnth, next, tmp1, tmp2

first = 0;
#pragma mta use 100 streams

for (i = 1; i <= NLIST; i++) first += list[i];

first = ((NLIST * NLIST + NLIST) / 2) - first;

head[0] = 0; head[1] = first;
tail[0] = 0; tail[1] = 0;
lnth[0] = 0; lnth[1] = 0;
rank[0] = 0; rank[first] = 1;

for (i = 2; i <= NWALK; i++) {
int node = i * (NLIST / NWALK);
head[i] = node;
tail[i] = 0;
lnth[i] = 0;
rank[node] = i;

}

#pragma mta use 100 streams
#pragma mta assert no dependence lnth

for (i = 1; i <= NWALK; i++) {
int j, count, next_walk;

count = 0;
j = head[i];
do {count++; j = list[j];} while (rank[j] == -1);

next_walk = rank[j];

tail[i] = j;
lnth[next_walk] = count;
next[i] = next_walk;

}

while (next[1] != 0) {

#pragma mta assert no dependence tmp1
for (i = 1; i <= NWALK; i++) {

int n = next[i];
tmp1[n] = lnth[i];
tmp2[i] = next[n];

}

for (i = 1; i <= NWALK; i++) {
lnth[i] += tmp1[i];
next[i] = tmp2[i];
tmp1[i] = 0;

} }

#pragma mta use 100 streams
#pragma mta assert no dependence *rank

for (i = 1; i <= NWALK; i++) {
int j, k, count;
j = head[i];
k = tail[i];
count = NLIST - lnth[i];
while (j != k) {

rank[j] = count; count--; j = list[j];
}

}
}

Algorithm 1: The MTA list ranking code.
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4. Re-traverse the sublists incrementing the local rank of
each node by the rank of the marked node at the head
of the sublist (similar to step 5 of the SMP algorithm).

The first and third steps are O(n). They consist
of an outer loop of O(NWALK) and an inner loop of
O(length of the sublist). Since the lengths of the local
walks can vary, the work done by each thread will vary.
We discuss load balancing issues below. The second step is
also O(NWALKS) and can be parallelized using any one
of the many parallel array prefix methods. In summary,
the MTA algorithm has three parallel steps with NWALKS
parallelism. Our studies show that by using 100 streams
per processor and approximately 10 list nodes per walk, we
achieve almost 100% utilization—so a linked list of length
1000p fully utilizes an MTA system with p processors.

Since the lengths of the walks are different, the amount
of work done by each thread is different. If threads are as-
signed to streams in blocks, the work per stream will not be
balanced. Since the MTA is a shared memory machine, any
stream can access any memory location in equal time; thus,
it is irrelevant which stream executes which walk. To avoid
load imbalances, we instruct the compiler via a pragma to
dynamically schedule the iterations of the outer loop. Each
stream gets one walk at a time; when it finishes its current
walk, it increments the loop counter and executes the next
walk. A machine instruction, int fetch add, is used to incre-
ment the shared loop counter. The instruction adds one to a
counter in memory and returns the old value. The instruc-
tion takes one cycle.

Alg. 1 gives our new source code for the MTA list rank-
ing algorithm. The fully-documented source codes for
the SMP and MTA implementations of list ranking are
freely-available from the web by visiting http://www.
ece.unm.edu/∼dbader and clicking on the Software
tab.

4. Connected Components

Let G = (V, E) be an undirected graph with |V | = n
and |E| = m. Two vertices u and v are connected if there
exists a path between u and v in G. This is an equivalence
relation on V and partitions V into equivalence classes,
i.e., connected components. Connectivity is a fundamen-
tal graph problem with a range of applications and can be
building blocks for higher-level algorithms. The research
community has produced a rich collection of theoretic de-
terministic [28, 21, 30, 26, 8, 9, 7, 18, 24, 34, 1, 12, 14] and
randomized [17, 29] parallel algorithms for connected com-
ponents. Yet for implementations and experimental studies,
although several fast PRAM algorithms exist, to our knowl-
edge there is no parallel implementation of connected com-
ponents (other than our own [4, 6]) that achieves significant

parallel speedup on sparse, irregular graphs when compared
against the best sequential implementation.

Prior experimental studies of connected components im-
plement the Shiloach-Vishkin algorithm [16, 22, 25, 15]
due to its simplicity and efficiency. However, these paral-
lel implementations of the Shiloach-Vishkin algorithm do
not achieve any parallel speedups over arbitrary, sparse
graphs against the best sequential implementation. Greiner
[16] implemented several connected components algo-
rithms (Shiloach-Vishkin, Awerbuch-Shiloach, “random-
mating” based on the work of Reif [33] and Phillips [30],
and a hybrid of the previous three) using NESL on the Cray
Y-MP/C90 and TMC CM-2. On random graphs Greiner
reports a maximum speedup of 3.5 using the hybrid algo-
rithm when compared with a depth-first search on a DEC
Alpha processor. Hsu, Ramachandran, and Dean [22] also
implemented several parallel algorithms for connected com-
ponents. They report that their parallel code runs 30 times
slower on a MasPar MP-1 than Greiner’s results on the Cray,
but Hsu et al.’s implementation uses one-fourth of the to-
tal memory used by Greiner’s hybrid approach. Krishna-
murthy et al. [25] implemented a connected components
algorithm (based on Shiloach-Vishkin) for distributed mem-
ory machines. Their code achieved a speedup of 20 using
a 32-processor TMC CM-5 on graphs with underlying 2D
and 3D regular mesh topologies, but virtually no speedup
on sparse random graphs. Goddard, Kumar, and Prins [15]
implemented a connected components algorithm (motived
by Shiloach-Vishkin) for a mesh-connected SIMD parallel
computer, the 8192-processor MasPar MP-1. They achieve
a maximum parallel speedup of less than two on a random
graph with 4096 vertices and about one-million edges. For
a random graph with 4096 vertices and fewer than a half-
million edges, the parallel implementation was slower than
the sequential code.

In this paper, we compare implementations of Shiloach-
Vishkin’s connected components algorithm (denoted as SV)
on both SMP and MTA systems. We chose this algorithm
because it is representative of the memory access patterns
and data structures in graph-theoretic problems. SV starts
with n isolated vertices and m PRAM processors. Each
processor Pi (for 1 ≤ i ≤ m) grafts a tree rooted at vertex vi

(represented by vi, in the beginning, the tree contains only a
single vertex) to the tree that contains one of its neighbors u
under the constraints u < vi or the tree represented by vi is
only one level deep. Grafting creates k ≥ 1 connected sub-
graphs, and each of the k subgraphs is then shortcut so that
the depth of the trees reduce at least by half. The approach
continues to graft and shortcut on the reduced graphs until
no more grafting is possible. As a result, each superver-
tex represents a connected graph. SV runs on an arbitrary
CRCW PRAM in O(log n) time with O(m) processors. The
formal description of SV can be found in Alg. 2.
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Input: 1. A set of m edges (i, j) given in arbitrary order
2. Array D[1..n] with D[i] = i

Output: Array D[1..n] with D[i] being the component
to which vertex i belongs

begin
while true do

1.for (i, j) ∈ E in parallel do
if D[i]=D[D[i]] and D[j]<D[i] then
D[D[i]] = D[j];

2.for (i, j) ∈ E in parallel do
if i belongs to a star and D[j] �=D[i] then
D[D[i]] = D[j];

3.if all vertices are in rooted stars then exit;
for all i in parallel do

D[i] = D[D[i]]
end

Algorithm 2: The Shiloach-Vishkin algorithm for con-
nected components.

SV can be implemented on SMPs and MTA, and the
two implementations have very different performance char-
acteristics on the two architectures, demonstrating that al-
gorithms should be designed with the target architecture in
consideration. For SMPs, we use appropriate optimizations
described by Greiner [16], Chung and Condon [10], Krish-
namurthy et al. [25], and Hsu et al. [22]. SV is sensitive
to the labeling of vertices. For the same graph, different la-
beling of vertices may incur different numbers of iterations
to terminate the algorithm. For the best case, one iteration
of the algorithm may be sufficient, and the running time of
the algorithm will be O(log n). Whereas for an arbitrary la-
beling of the same graph, the number of iterations needed
will be from one to log n. We refer the reader to our pre-
vious work [4] for more details on the SMP connectivity
algorithm and its analysis (presented next).

In the first “graft-and-shortcut” step of SV, there
are two non-contiguous memory accesses per edge,
for reading D[j] and D[D[i]]. Thus, first step
costs T (n, p) = 〈TM (n, p) ; TC(n, p) ; B(n, p)〉 =〈
2m

p + 1 ; O
(

n+m
p

)
; 1

〉
. In the second step,

the grafting is performed and requires one non-
contiguous access per edge to set the parent, with

cost T (n, p) =
〈

m
p + 1 ; O

(
n+m

p

)
; 1

〉
. The final step

of each iteration runs pointer jumping to form rooted
stars to ensure that a tree is not grafted onto itself, with

cost T (n, p) =
〈

n log n
p ; O

(
n log n

p

)
; 1

〉
. In general,

SV needs multiple iterations to terminate. Assuming
the worst-case of log n iterations, the total complexity
for SV is T (n, p) = 〈TM (n, p) ; TC(n, p) ; B(n, p)〉 ≤〈

n log2 n
p +

(
3m

p + 2
)

log n ; O
(

n log2 n+m log n
p

)
; 4 logn

〉
.

while (graft) {
graft = 0;

#pragma mta assert parallel
1. for (i=0; i<2*m; i++) {

u = E[i].v1;
v = E[i].v2;
if (D[u]<D[v] && D[v]==D[D[v]]) {

D[D[v]] = D[u];
graft = 1;

}
}

#pragma mta assert parallel
2. for(i=0; i<n; i++)

while (D[i] != D[D[i]]) D[i]=D[D[i]];
}

Algorithm 3: SV on MTA. E is the edge list, with each
element having two fields, v1 and v2, representing the two
endpoints.

On the other hand, programming the MTA is unlike pro-
gramming for SMPs, and code for the MTA looks much
closer to the original PRAM algorithm. The programmer
no longer specifies which processor works on which data
partitions, instead, his/her job is to discover the finest grain
of parallelism of the program and pass the information to
the compiler using directives. Otherwise the compiler relies
on the information from dependence analysis to parallelize
the program. The implementation of SV on MTA is a di-
rect translation of the PRAM algorithm, and the C source
code is shown in Alg. 3. Alg. 3 is slightly different from the
description of SV given in Alg. 2. In Alg. 3 the trees are
shortcut into supervertices in each iteration, so that step 2
of Alg. 2 can be eliminated, and we no longer need to check
whether a vertex belongs to a star which involves a signif-
icant amount of computation and memory accesses. Alg. 3
runs in O

(
log2 n

)
, and the bound is not tight. The direc-

tives in Alg. 3 are self-explanatory, and they are crucial for
the compiler to parallelize the program as there is obvious
data dependence in each step of the program.

5. Performance Results and Analysis

This section summarizes the experimental results of our
implementations for list ranking and connected components
on the SMP and MTA shared-memory systems.

For list ranking, we use two classes of list to test our
algorithms: Ordered and Random. Ordered places each
element in the array according to its rank; thus, node i is
the ith position of the array and its successor is the node at
position (i + 1). Random places successive elements ran-
domly in the array. Since the MTA maps contiguous logical
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Figure 1. Running Times for List Ranking on the Cray MTA (left) and Sun SMP (right) for p = 1, 2, 4
and 8 processors.
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addresses to random physical addresses the layout in phys-
ical memory for both classes is similar. We expect, and in
fact see, that performance on the MTA is independent of or-
der. This is in sharp contrast to SMP machines which rank
Ordered lists much faster than Random lists. The running
times for list ranking on the SMP and MTA are given in
Fig. 1. First, all of the implementations scaled well with
problem size and number of processors. In all cases, the
running times decreased proportionally with the number of
processors, quite a remarkable result on a problem such as
list ranking whose efficient implementation has been con-
sidered a “holy grail” of parallel computing. On the Cray
MTA, the performance is nearly identical for random or or-
dered lists, demonstrating that locality of memory accesses
is a non-issue; first, since memory latency is tolerated, and
second, since the logical addresses are randomly assigned
to the physical memory. On the SMP, there is a factor of 3
to 4 difference in performance between the best case (an or-
dered list) and the worst case (a randomly-ordered list). On
the ordered lists, the MTA is an order of magnitude faster
than this SMP, while on the random list, the MTA is approx-
imately 35 times faster.

For connected components, we create a random graph
of n vertices and m edges by randomly adding m unique
edges to the vertex set. Several software packages generate
random graphs this way, including LEDA [27]. The running
times for connected components on the SMP and MTA are
given in Fig. 2 for a random graph with n = 1M vertices
and from m = 4M to 20M edges. (Note that through-
out this paper M = 220.) Similar to the list ranking re-
sults, we see that both shared-memory systems scale with
problem size and number of processors for finding the con-
nected components of a sparse, random graph. This is also
a truly remarkable result noting that no previous parallel
implementations have exhibited parallel speedup on arbi-
trary, sparse graphs for the connected components problem.
(Note that we give speedup results for the SMP approach in
[4, 6].) In comparison, the MTA implementation is 5 to 6
times faster than the SMP implementation of SV connected
components, and the code for the MTA is quite simple and
similar to the PRAM algorithm, unlike the more complex
code required for the SMP to achieve this performance.

Number of List Ranking Connected
Processors Random List Ordered List Components

1 98% 97% 99%
4 90% 85% 93%
8 82% 80% 91%

Table 1. Processor Utilization for List Rank-
ing and Connected Components on the Cray
MTA.

Figure 2. Running Times for Connected Com-
ponents on the Cray MTA (left) and Sun SMP
(right) for p = 1, 2, 4 and 8 processors.
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On the Cray MTA, we achieve high-percentages of
processor utilization. In Table 1 we give the utilizations
achieved for the MTA on List Ranking of a 20M -node list,
and Connected Components with n = 1M vertices and
m = 20M(≈ n logn) edges.

6. Conclusions
In summary, we show that fast, parallel implementations

of graph-theoretic problems such as list ranking and con-
nected components are well-suited to shared-memory com-
puter systems. We confirm the results of previous SMP
studies and present the first results for multithreaded ar-
chitectures. The latter highlights the benefits of latency-
tolerant processors and hardware support for synchroniza-
tion. In our experiments, the Cray MTA achieved high
utilization rates for performing both list ranking and con-
nected components. In addition, the MTA, because of its
randomization between logical and physical memory ad-
dresses, and its multithreaded execution techniques for la-
tency hiding, performed extremely well on the list ranking
problem, no matter the spatial locality of the list.

Although both are shared memory machines, the pro-
gramming model presented to the user by the two machines
is different. The Cray MTA allows the programmer to focus
on the concurrency in the problem, while the SMP server
forces the programmer to optimize for locality and cache.
We find the latter results in longer, more complex programs
that embody both parallelism and locality.

We are currently developing additional graph algorithms
for the MTA. In particularly, we are investigating whether
the technique used in the list ranking program is a general
technique. In that program, we first compacted the list to a
list of super nodes, performed list ranking on the compacted
list, and then expanded the super nodes to compute the rank
of the original nodes. The compaction and expansion steps
are parallel, O(n), and require little synchronization; thus,
they increase parallelism while decreasing overhead.

In 2005, Cray will build a third generation multithreaded
architecture. To reduce costs, this system will incorporate
commodity parts. In particular, the memory system will not
be as flat as in the MTA-2. We will reconduct our studies
on this architecture as soon as it is available.
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