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Abstract

The ability to provide uniform shared-memory access to a significant number of processors in a single SMP node brings us much closer
to the ideal PRAM parallel computer. Many PRAM algorithms can be adapted to SMPs with few modifications. Yet there are few studies
that deal with the implementation and performance issues of running PRAM-style algorithms on SMPs. Our study in this paper focuses
on implementing parallel spanning tree algorithms on SMPs. Spanning tree is an important problem in the sense that it is the building
block for many other parallel graph algorithms and also because it is representative of a large class of irregular combinatorial problems
that have simple and efficient sequential implementations and fast PRAM algorithms, but these irregular problems often have no known
efficient parallel implementations. Experimental studies have been conducted on related problems (minimum spanning tree and connected
components) using parallel computers, but only achieved reasonable speedup on regular graph topologies that can be implicitly partitioned
with good locality features or on very dense graphs with limited numbers of vertices. In this paper we present a new randomized algorithm
and implementation with superior performance thatfor the first timeachieves parallel speedup on arbitrary graphs (both regular and
irregular topologies) when compared with the best sequential implementation for finding a spanning tree. This new algorithm uses several
techniques to give an expected running time that scales linearly with the numberp of processors for suitably large inputs (n > p2). As
the spanning tree problem is notoriously hard for any parallel implementation to achieve reasonable speedup, our study may shed new
light on implementing PRAM algorithms for shared-memory parallel computers. The main results of this paper are

1. A new and practical spanning tree algorithm for symmetric multiprocessors that exhibits parallel speedups on graphs with regular and
irregular topologies; and

2. an experimental study of parallel spanning tree algorithms that reveals the superior performance of our new approach compared with
the previous algorithms.

The source code for these algorithms is freely-available from our web site.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Finding a spanning tree of a graph is an important build-
ing block for many graph algorithms, for example, bicon-
nected components and ear decomposition [32], and can
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be used in graph planarity testing[28]. The best sequential
algorithm for finding a spanning tree of a graphG = (V , E)

wheren = |V | and m = |E| uses depth- or breadth-first
graph traversal and runs in O(m + n). The implementa-
tion of the sequential algorithms are very efficient (linear
time with a very small hidden constant), and the only data
structure used is a stack or queue which has good locality
features. However, graph traversal using depth-first search
(DFS) is inherently sequential and known not to parallelize
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efficiently [37]. Thus, the previous approaches for parallel
spanning tree algorithms use novel techniques other than
traversal that are conducive to parallelism and have polylog-
arithmic time complexities. In practice, none of these par-
allel algorithms has shown significant parallel speedup over
the best sequential algorithm for sparse, irregular graphs,
because the theoretic models do not realistically capture
the cost for communication on current parallel machines
(e.g., [1,9,10,12,14,17,18,21,23,25–27,30,34,36,40]), the al-
gorithm is too complex for implementation (e.g., [10,17]),
or there are large constants hidden in the asymptotic nota-
tion that could not be overcome by a parallel implementa-
tion (e.g., [11,13,16,22,29]). In our studies, we consider a
graph as sparse whenm = O(n log n).

Symmetric multiprocessor (SMP) architectures, in which
several processors operate in a true, hardware-based, shared-
memory environment are becoming commonplace. Indeed,
most of the new high-performance computers are clusters of
SMPs having from 2 to over 100 processors per node. The
ability to provide uniform-memory-access (UMA) shared-
memory for a significant number of processors brings us
much closer to the ideal parallel computer envisioned over
20 years ago by theoreticians, theparallel random access
machine(PRAM) (see [24,38]) and thus may enable us at
last to take advantage of 20 years of research in PRAM algo-
rithms for various irregular computations (such as spanning
tree and other graph algorithms). Moreover, as supercomput-
ers increasingly use SMP clusters, SMP computations will
play a significant role in supercomputing.

While an SMP is a shared-memory architecture, it is by no
means the PRAM used in theoretical work—synchronization
cannot be taken for granted, memory bandwidth is limited,
and performance requires a high degree of locality. The

Table 1
Deterministic spanning tree algorithms for CRCW, CREW and EREW PRAMs,� is the inverse Ackermann’s function

Model (PRAM) Authors Time Work

Priority CRCW Shiloach and Vishkin[40] O(log n) O((m + n) log n)

Awerbuch and Shiloach[1] O(log n) O((m + n) log n)

Arbitrary CRCW Cole and Vishkin[12] O(log n) O((m + n)�(m, n))

Iwana and Kambayashi[23] O(log n) O((m + n)�(m, n))

CREW Hirschberg et al.[21] O
(

log2 n
)

O
(
n2 log n

)
Chin et al.[9] O

(
log2 n

)
O

(
n2

)
Han and Wagner[18] O

(
log2 n

)
O((m + n log n) log n)

Johnson and Metaxas[25] O
(

log3/2 n
)

O
(
(m + n) log3/2 n

)

EREW Nash and Maheshwari[34] O
(

log2 n
)

O
(
n2

)
Phillips [36] O

(
log2 n

)
O((m + n) log n)

Kruskal et al.[30] O
(

log2 n
)

O((m + n) log n)

Johnson and Metaxas[26] O
(

log3/2 n
)

O
(
(m + n) log3/2 n

)
Chong and Lam[10] O(log n log log n) O((m + n) log n log log n)

significant feature of SMPs is that they provide much faster
access to their shared-memory than an equivalent message-
based architecture. Even the largest SMP to date, the 106-
processor Sun Fire Enterprise 15000 (E15K)[7,8], has a
worst-case memory access time of 450 ns (from any proces-
sor to any location within its 576 GB memory); in contrast,
the latency for access to the memory of another processor
in a distributed-memory architecture is measured in tens of
�s. In other words, message-based architectures are two or-
ders of magnitude slower than the largest SMPs in terms of
their worst-case memory access times.

The Sun E15K uses a combination of data crossbar
switches, multiple snooping buses, and sophisticated cache
handling to achieve UMA across the entire memory. Of
course, there remains a large difference between the access
time for an element in the local processor cache (around
10 ns) and that for an element that must be obtained from
memory (at most 450 ns)—and that difference increases as
the number of processors increases, so that cache-aware
implementations are even more important on large SMPs
than on single workstations.

The main results of this paper are (1) a new and practi-
cal spanning tree algorithm for SMPs that exhibits parallel
speedups on graphs with regular and irregular topologies;
and (2) an experimental study of parallel spanning tree
algorithms that reveals the superior performance of our
new approach compared with the previous algorithms.
For realistic problem sizes (n?p2), the expected run-
ning time for our new SMP spanning tree algorithm on a
graph withn vertices andm edges is given byT (n, p) =
〈TM(n, p) ; TC(n, p) ; B(n, p)〉�

〈
O

(
n+m

p

)
; O

(
n+m

p

)
;

2
〉

wherep is the number of processors, using the SMP
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complexity model described in Section3. A preliminary ver-
sion of this paper appeared in [2]. In Sections 1.1 and 1.2
we survey the theoretic and experimental literature, respec-
tively, for prior results in parallel spanning tree and related
research.

1.1. Parallel algorithms for spanning tree

For a sparse graphG = (V , E) where n = |V | and
m = |E|, various deterministic and randomized techniques
have been given for solving the spanning tree problem on
PRAM models. Known deterministic results are in Table 1.
Some of the algorithms are related, for example: Iwana and
Kambayashi’s algorithm improves the Cole and Vishkin al-
gorithm by removing the expander graph so that the hidden
constant in the asymptotic notation becomes smaller; Chin
et al. improve Hirschberg et al.’s algorithm by exploiting
the adjacency matrix as the representing data structure; and
Nash and Maheshwari’s algorithm improves Hirschberg et
al.’s algorithm by building data structures to eliminate the
concurrent writes.

Gazit [14] and Halperin and Zwick [17] have designed op-
timal randomized approaches for parallel spanning tree that
run in O(log n) time with high probability on the CRCW
and EREW PRAM, respectively. The algorithm of Halperin
and Zwick [17] combines techniques from several previ-
ous algorithms; it borrows themaximum-hookingmethod
from Chong and Lam [10] to resolve possible grafting con-
flicts, complicatedgrowth controlmethod from Johnson and
Metaxas [25,26] which is the key technique for them to
achieve an O

(
log3/2 n

)
algorithm, and other techniques from

Gazit [14] and Karger et al. [27].

1.2. Related experimental studies

As we described in the previous section, the research com-
munity has produced a rich collection of theoretic deter-
ministic and randomized spanning tree algorithms. Yet for
implementations and experimental studies, although several
fast PRAM spanning tree algorithms exist, to our knowl-
edge there is no parallel implementation of spanning tree
(or the related problems such as minimum spanning tree
(MST) and connected components that produce a spanning
tree) that achieves significant parallel speedup on sparse,
irregular graphs when compared against the best sequen-
tial implementation. In our study we carefully chose sev-
eral known PRAM algorithms and implemented them for
shared-memory (using appropriate optimizations described
by Greiner [16], Chung and Condon [11], Krishnamurthy et
al. [29], and Hsu et al. [22]), and compared these with our
new randomized approach. Our new algorithm to our knowl-
edge is the first to achieve any reasonable parallel speedup
for both regular and irregular graphs.

Greiner [16] implemented several connected components
algorithms (Shiloach–Vishkin (SV), Awerbuch–Shiloach,

“random-mating” based on the work of Reif[39] and
Phillips [36], and a hybrid of the previous three) using NESL
on the Cray Y-MP/C90 and TMC CM-2. On random graphs
Greiner reports a maximum speedup of 3.5 using the hybrid
algorithm when compared with a DFS on a DEC Alpha
processor. Hsu et al. [22] also implemented several parallel
algorithms for connected components. They report that their
parallel code runs 30 times slower on a MasPar MP-1 than
Greiner’s results on the Cray, but Hsu et al.’s implementa-
tion uses one-fourth of the total memory used by Greiner’s
hybrid approach. Krishnamurthy et al. [29] implemented a
connected components algorithm (based on Shiloach and
Vishkin [40]) for distributed memory machines. Their code
achieved a speedup of 20 using a 32-processor TMC CM-5
on graphs with underlying 2D and 3D regular mesh topolo-
gies, but virtually no speedup on sparse random graphs.
Goddard et al. [15] implemented a connected components
algorithm (motived by SV) for a mesh-connected SIMD
parallel computer, the 8192-processor MasPar MP-1. They
achieve a maximum parallel speedup of less than two on
a random graph with 4096 vertices and about one-million
edges. For a random graph with 4096 vertices and fewer
than a half-million edges, the parallel implementation was
slower than the sequential code. Chung and Condon [11]
implemented a parallel MST algorithm based on Borůvka’s
algorithm. On a 16-processor CM-5, for geometric graphs
with 32,000 vertices and average degree 9 and graphs
with fewer vertices but higher average degree, their code
achieved a parallel speedup of about 4, on 16-processors,
over the sequential Borůvka’s algorithm, which was 2–3
times slower than their sequential Kruskal algorithm. Dehne
and Götz [13] studied practical parallel algorithms for MST
using the BSP model. They implemented a dense Borůvka
parallel algorithm, on a 16-processor Parsytec CC-48, that
works well for sufficiently dense input graphs. Using a
fixed-sized input graph with 1000 vertices and 400,000
edges, their code achieved a maximum speedup of 6.1 using
16 processors for a random dense graph. Their algorithm is
not suitable for sparse graphs.

Section 2 further details the parallel algorithms we de-
signed and implemented. The shared-memory analysis of
these algorithms is given in Section 3. In Section 4 we de-
tail the experimental study, describe the input data sets and
testing environment, and present the experimental results.
Finally, Section 5 provides our conclusions and future work.

2. Parallel spanning tree algorithms for SMPs

Here we present the three parallel spanning tree algo-
rithms we have implemented. Based on the asymptotic
complexities of the algorithms, programming complexity,
and constant factors hidden in the asymptotic notation, we
choose two representative PRAM algorithms to implement
for SMPs: the SV and the Hirschberg–Chandra–Sarwate
(HCS) algorithms, using appropriate optimizations sug-
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gested by[11,16,22,29]. Through the experience we gained
by implementing these two algorithms, we developed a new
randomized algorithm with superior performance in all of
our experiments.

2.1. The Shiloach–Vishkin algorithm

The SV algorithm is in fact a connected-components al-
gorithm [1,40]. This algorithm is representative of several
connectivity algorithms in that it adapts the widely-used
graft-and-shortcut approach. Through carefully designed
grafting schemes, the algorithm achieves complexities of
O(log n) time and O((m + n) log n) work under the arbi-
trary CRCW PRAM model. It can be extended naturally to
solve the spanning tree problem under the priority CRCW
PRAM model with the same complexity bound. Yet for
implementation on an SMP, the tightly-synchronized con-
current steps (read and write) are unrealistic and mod-
ification of the algorithm is necessary, as we discuss
next.

Algorithm 1. Shiloach and Vishkin [40] PRAM connected
components algorithm.

Data : (1) A set of edges(i, j) given in an arbitrary
order, and (2) a pseudoforest defined by a
functionD such that all the vertices in each
tree belong to the same connected compo-
nent.

Result : The pseudoforest obtained after (1) grafting
trees onto smaller vertices of other trees, (2)
grafting rooted stars onto other trees if possi-
ble, and (3) performing the pointer jumping
operation on each vertex.

begin
while true do

1. Perform a grafting operation of trees onto
smaller vertices of other trees as follows:
for all (i, j) ∈ E in parallel do

if (D(i) = D(D(i)) and D(j) < D(i))

then setD(D(i)) = D(j)
2. Graft rooted stars onto other trees if possible,
as follows:
for all (i, j) ∈ E in parallel do

if (i belongs to a starand D(j) 	= D(i))

then setD(D(i)) = D(j)
3. If all the vertices are in rooted stars, then
exit. Otherwise, perform the pointer jumping
operation on each vertex as follows:
SetD(D(i)) = D(i)

end

The basic problem of adapting this algorithm (Algorithm
1) on SMPs as a spanning tree algorithm is that it may
graft a tree onto two or more different trees or onto the tree
itself and produce cycles. This is allowable in the connected

components algorithm as long as the connected vertices are
labeled as in the same component, yet it will be an issue
in the spanning tree algorithm for this may produce some
false tree edges. It is in fact a race condition between pro-
cessors that wish to graft a subtree rooted at one vertex onto
different trees. The mismatch between the priority CRCW
model and a real SMP is as follows. The original algorithm
assumes that concurrent writes are arbitrated among the pro-
cessors using the priority scheme: during each time step, if
multiple processors write to a given memory location, at the
end of the step, the memory contains the value written by
the processor with the highest priority. The priority CRCW
PRAM model assumes this arbitration can be performed in
one time unit, yet most SMPs will require a cost to simulate
this concurrent write policy. One straightforward solution
uses locks to ensure that a tree gets grafted only once. The
locking approach intuitively is slow and not scalable, and
our test results agree. Another approach is to always short-
cut the tree to a rooted star (to avoid grafting a tree onto
itself) and run an election among the processors that wish
to graft the same tree before actually do the grafting. Only
the winner of the election grafts the tree (to avoid graft-
ing a tree onto multiple other trees). This approach is also
used by other researchers[23,16] to handle the race condi-
tions in their spanning tree algorithms. The running time of
the algorithm is now O

(
log2 n

)
; the additional logn fac-

tor comes from shortcutting (pointer jumping). Optimiza-
tions are possible for the election approach. For example,
step 2 in Algorithm 1 could be removed because now all
the grafting can be done in step 1, and we could periodi-
cally shrink the edge list to eliminate those edges that have
been used so that we do not need to scan the entire edge
list each iteration. This approach is generally faster than the
locking scheme, yet it also has the following major slow
down factors:

(1) Although the election procedure does not asymptoti-
cally affect the running time of the algorithm, it in-
creases the hidden constant factor. Now we literally run
the grafting phase of the SV algorithm twice.

(2) The SMP processors must compete for writing to
the same memory location to emulate concurrent
writes. Note also that with more processors avail-
able, the competition can potentially cause memory
congestion if many of the processors write to the
same memory location when trying to graft the same
subtree.

SV is sensitive to the labeling of vertices. For the same
graph topology, different labeling of vertices may incur dif-
ferent numbers of iterations to terminate the algorithm. For
the best case, one iteration of the algorithm may be suffi-
cient, and the running time of the algorithm will be O(log n).
Whereas for an arbitrary labeling of the same graph, up to
log n iterations will be needed. We expect to see similar be-
haviors for the class of algorithms that use the “grafting and
short-cutting” approach.
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2.2. The Hirschberg–Chandra–Sarwate algorithm

The HCS algorithm[21] is one of the earliest paral-
lel graph connectivity algorithms and has O

(
log2 n

)
time,

O
(
n2 log n

)
work complexities on CREW PRAM. The sim-

plicity of the HCS parallel algorithm (unlike many later vari-
ants of parallel spanning tree) and its use of exclusive write
make it attractive for implementation. Although we can em-
ulate PRAM models (e.g., CRCW, CREW and EREW) on
SMPs, exclusive read is perhaps too restrictive, while con-
current write incurs contention and serialization on SMPs.
We expect a CREW PRAM algorithm can be more naturally
emulated on the currently available SMPs. Similar to the SV
algorithm, HCS is a connected-components algorithm that
requires modification to transform it into a spanning tree al-
gorithm. Our modified HCS algorithm for spanning tree re-
sults in similar complexities and running time as that of SV
when implemented on an SMP, and hence, we leave it out
of further discussion.

2.3. A new spanning tree algorithm for SMPs

Our new parallel spanning tree algorithm for shared-
memory multiprocessors has two main steps: (1) generating
a stub spanning tree, and (2) performing work-stealing
graph traversal. The overall strategy is first to generate
a small stub spanning tree with one processor, and then
let each processor start from vertices in the stub tree and
traverse the graph simultaneously, where each processor
follows a DFS-order. When all the processors are done, the
subtrees grown by graph traversal are connected by the stub
tree into a spanning tree. Work-stealing is a randomized
technique used for load balancing the graph traversals and
yields an expected running time that scales linearly with
the number of processors for suitably large inputs. Unlike
the SV approach, the labeling of vertices does not affect the
performance of our new algorithm.

2.3.1. Generating a stub spanning tree
In the first step, one processor generates a stub spanning

tree, a small connected portion of the spanning tree, by ran-
domly walking the graph for O(p) steps. The vertices of
the stub spanning tree are evenly distributed into each pro-
cessor’s stack, and each processor in the next step traverses
from the first element in its stack. After the traversals in
step 2, the spanning subtrees are connected to each other by
this stub spanning tree.

2.3.2. Performing work-stealing graph traversal
The basic idea of this step is to let each processor traverse

the graph similar to the sequential algorithm in such a way
that each processor finds a subgraph of the final spanning
tree. In order for this step (see Algorithm 2) to perform
correctly and efficiently, we need to address the following
two issues: (1) coloring the same vertex simultaneously by

multiple processors; that is, a vertex may appear in two or
more subtrees of different processors, and (2) balancing the
load among the processors.

As we will show the algorithm runs correctly even when
two or more processors color the same vertex. In this situa-
tion, each processor will color the vertex and set as its parent
the vertex it has just colored. Only one processor succeeds at
setting the vertex’s parent to a final value. For example, us-
ing Fig. 1, processorP1 colored vertexu, and processorP2
colored vertexv, at a certain time they both findw unvisited
and are now in a race to color vertexw. It makes no dif-
ference which processor coloredw last becausew’s parent
will be set to eitheru or v (and it is legal to setw’s parent to
either of them; this will not change the validity of the span-
ning tree, only its shape). Further, this event does not create
cycles in the spanning tree. BothP1 andP2 record thatw is
connected to each processor’s own tree. When various pro-
cessors visit each ofw’s unvisited children, its parent will
be set tow, independent ofw’s parent.

Algorithm 2. Graph Traversal Step for our SMP Algorithm
for Processori, (1� i�p).

Data : (1) An adjacency list representation of graph
G = (V , E) with n vertices, (2) a starting
vertexroot for each processor, (3)color: an
array of sizen with each element initialized
to 0, and (4)parent: an array of sizen.

Result : p pieces of spanning subtrees, except for the
starting vertices, each vertexv hasparent[v]
as its parent

begin
1. color my starting vertex with my labeli and place
it into my stackS

color[root] = i

Push(S, root)
2. start depth-first search fromroot, color the ver-
tices that have not been visited with my labeli until
the stack is empty.
2.1while Not-Empty(S) do

2.2 v = Pop(S)
2.3 for each neighborw of v do

2.4 if (color[w] = 0) then
2.5 color[w] = i

2.6parent[w] = v

2.7 Push(S, w)
end

Lemma 1. OnanSMPwith sequential memory consistency,
Algorithm2 does not create any cycles in the spanning tree.

Proof. (By contradiction) Suppose in the SMP spanning tree
algorithm processorsP1, P2, . . . , Pj create a cycle sequence
〈s1, s2, . . . , sk, s1〉, that is,Pi setssi ’s parent tosi+1, andPj

setssk ’s parent tos1. Here anyPi andPj with 1� i, j �p
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u

w

P1 P2
v

Fig. 1. Two processorsP1 and P2 work on vertexu and v, respectively.
They both see vertexw as unvisited, so each is in a race to colorw and
setw’s parent pointer. The grey vertices are in the stub spanning tree; the
shaded vertices are colored byP1; the black vertices are marked byP2;
and the white vertices are unvisited. Directed solid edges are the selected
spanning tree edges; dashed edges are non-tree edges; and undirected
solid edges are not yet visited.

and 1�k�n could be the same or different processors. Ac-
cording to the algorithm,si ’s parent is set tosi+1 only when
Pi finds si+1 at the top of its stack (andsi+1 was colored
before and put into the stack), andsi is si+1’s unvisited (un-
colored) neighbor. This implies that forPi the coloring of
si+1 happens before the coloring ofsi . In other words, pro-
cessorPi observes the memory write to locationcolor[si+1]
happen before the write to locationcolor[si]. On an SMP
with sequential memory consistency, this means each pro-
cessor should see the sequence in this order. Letti be the
time at whichsi is colored; we haveti > ti+1, that is,t1 >

t2 > t3 > · · · > tk > t1, which is a contradiction. Thus, the
SMP graph traversal step creates no cycles.�

On architectures that provide relaxed consistency models,
special memory operations, e.g.,fenceor membar, can be
used to preserve desired memory access ordering for the
SMP spanning tree algorithm.

Lemma 2. For connected graph G, Algorithm 2 will set
parent[v] for each vertexv ∈ V that is colored0 before the
start of the algorithm.

Proof. First we prove (by contradiction) that each vertex
with color 0 before the start of the algorithm will be colored
from the set {1, 2, . . . , p} after the algorithm terminates.
Suppose there exists a vertexv ∈ V that still has color 0
after Algorithm 2 terminates. This implies that each neighbor
w of v is never placed into the stack, otherwise step 2.3
in Algorithm 2 would have found thatv is w’s neighbor,
and would have coloredv as one of 1, 2, . . . , p. If w is
never placed in the stack, thenw has color 0, which in turn
means that allw’s neighbors have color 0. By induction,
and becauseG is connected, we find all of the vertices in
G are colored 0 after the algorithm terminates, which is
clearly a contradiction. Further, since each vertex is colored,

41

P3
P2

PP

x

w

r

v

u

Fig. 2. Unbalanced load: processorsP1, P2, andP3, each color only one
vertex while processorP4 colors the remainingn − 4 vertices.

step 2.6 in Algorithm 2 guarantees that each vertex’sparent
is set. �

For certain shapes of graphs or ordering of traversals,
some processors may have little work to do while others
are overloaded. For example, using Fig.2, after generating
a stub spanning tree (black vertices), processorsP1, P2, P3,
andP4, start a traversal from designated starting points. In
this caseP1, P2, andP3, color no other vertices thanu, v,
andw, while processorP4, starting from vertexx, has sig-
nificant work to do. In this example for instance, this results
in all but one processor sitting idle while a single proces-
sor performs almost all the work, and obviously no speedup
will be achieved. We remedy this situation as follows.

To achieve better load-balancing across the processors, we
add the technique of work-stealing to our algorithm. When-
ever any processor finishes with its own work (that is, it
cannot reach any other unvisited vertex), it randomly checks
other processors’ stacks. If it finds a non-empty stack, the
processor steals part of the stack. Work-stealing does not
affect the correctness of the algorithm, because when a pro-
cessor takes elements from a stack, all of the elements are
already colored and theirparents have already been set, and
no matter which processor inspects their unvisited children,
they are going to be set as these children’sparents. As we
show later in our experimental results, we find that this tech-
nique keeps all processors equally busy performing useful
work, and hence, evenly balances the workload for most
classes of input graphs.

We expect that our algorithm achieves a good load-
balancing on many practical applications with large diame-
ter graphs; for instance, in infrastructure problems such as
pipelines and railroads. Arguably there are still pathological
cases where work-stealing could fail to balance the load
among the processors. For example, when connectivity of
a graph (or portions of a graph) is very low, stacks of the
busy processors may only contain a few vertices. In this
case work awaits busy processors while idle processors
starve for something to do. Obviously this is the worst case
for the SMP traversal algorithm. We argue that this case is
very rare (see Section 3); however, we next propose a de-
tection mechanism that can detect the situation and invoke a
different spanning tree algorithm that is robust to this case.
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The detection mechanism uses condition variables to co-
ordinate the state of processing. Whenever a processor be-
comes idle and finds no work to steal, it will go to sleep for a
duration on a condition variable. Once the number of sleep-
ing processors reaches a certain threshold, we halt the SMP
traversal algorithm, merge the grown spanning subtree into
a supervertex, and start a different algorithm, for instance,
the SV approach. In theoretic terms, the performance of our
algorithm could be similar to that of SV in the worst case,
but in practical terms this mechanism will almost never be
triggered; for instance, in our experimental studies with a
collection of different types of graphs, we never encountered
such a case.

When an input graph contains vertices of degree two,
these vertices along with a corresponding tree edge can be
eliminated as a simple preprocessing step. Clearly, this op-
timization does not affect correctness of the algorithm, and
we can assume that this procedure has been run before the
analysis in the next section.

Theorem 1. For connected graph G, suppose we generate
a stub spanning tree and store the vertices into each proces-
sor’s stack. Let each processor start the traversal from the
first vertex stored in its stack. Then after the work-stealing
graph traversal step terminates, we have a spanning tree
of G.

Proof. Theorem1 follows from Lemmas 1 and 2.�

3. Analysis of the SMP spanning tree algorithms

We compare our new SMP algorithm with the implemen-
tation of SV both in terms of complexity and actual per-
formance (in Section 4). Our analyses use an SMP com-
plexity model similar to that of Helman and JáJá [20] that
has been shown to provide a good cost model for shared-
memory algorithms on current SMPs [3,5,19,20]. The model
uses two parameters: the input sizen, and the numberp
of processors. Running timeT (n, p) is measured by the
triplet 〈TM(n, p) ; TC(n, p) ; B(n, p)〉, whereTM(n, p) is
the maximum number of non-contiguous main memory ac-
cesses required by any processor,TC(n, p) is an upper bound
on the maximum local computational complexity of any of
the processors, andB(n, p) is the number of barrier synchro-
nizations. This model, unlike the idealistic PRAM, is more
realistic in that it penalizes algorithms with non-contiguous
memory accesses that often result in cache misses and algo-
rithms with more synchronization events.

Our spanning tree algorithm takes advantage of the
shared-memory environment in several ways. First, the in-
put graph’s data structure can be shared by the processors
without the need for the difficult task of partitioning the in-
put data often required by distributed-memory algorithms.
Second, load balancing can be performed asynchronously
using the lightweight work-stealing protocol. Like SV and

HCS, the running time of our new approach is dependent
on the topology of the input graph. However, while theirs
are dependent on the vertex labeling, ours is not. Next, we
give the complexity analyses of these approaches.

3.1. SMP traversal based

The first step that generates a stub spanning tree is exe-
cuted by one processor inT (n, p) = 〈TM(n, p) ; TC(n, p) ;
B(n, p)〉 = 〈O(p) ; O(p) ; 1〉. In the second step, the
work-stealing graph traversal step needs one non-contiguous
memory access to visit each vertex, and two non-contiguous
accesses per edge to find the adjacent vertices, check their
colors, and set the parent. For almost all graphs, the ex-

pected number of vertices processed per processor is O
(

n
p

)
with the work-stealing technique; and hence, we expect
the load to be evenly balanced. (Palmer[35] proved that
almost all random graphs have diameter two.) During the
tree-growing process, a small number of vertices may ap-
pear in more than one stack because of the races among the
processors. Analytically, we could model this as a Poisson
process that depends on parameters related to system and
problem characteristics. However, this number will not be
significant. Our experiments show that the number of ver-
tices that appear in multiple processors’ stacks at the same
time are a miniscule percentage (for example, less than 10
vertices for a graph with millions of vertices).

We expect each processor to visit O
(

n
p

)
vertices; hence,

the expected complexity of the second step isT (n, p) =
〈TM(n, p) ; TC(n, p) ; B(n, p)〉 =

〈
n
p
+2m

p
; O

(
n+m

p

)
; 1

〉
.

Thus, the expected running time for our SMP spanning tree
algorithm is given as

T (n, p) = 〈TM(n, p) ; TC(n, p) ; B(n, p)〉
�

〈
n
p

+ 2m
p

+ O(p) ; O
(

n+m
p

)
; 2

〉
, (1)

with high probability. For realistic problem sizes (n?p2),
this simplifies to

T (n, p) = 〈TM(n, p) ; TC(n, p) ; B(n, p)〉
�

〈
O

(
n+m

p

)
; O

(
n+m

p

)
; 2

〉
. (2)

The algorithm scales linearly with the problem size and num-
ber of processors, and we use only a constant number of
barrier synchronizations.

3.2. Shiloach–Vishkin(SV)

The SV algorithm is modified from the deterministic con-
nected components algorithms for finding spanning trees
with p shared-memory processors. SV iterates from one to
log n times depending on the labeling of the vertices. In the
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first “graft-and-shortcut” step of SV, two passes are used to
ensure that a tree is not grafted onto multiple other trees. In
each pass, there are two non-contiguous memory accesses
per edge, for readingD[j ] andD[D[i]]. Thus, each of the
two passes of the first step has cost:

T (n, p) = 〈TM(n, p) ; TC(n, p) ; B(n, p)〉
=

〈
2m

p
+ 1 ; O

(
n+m

p

)
; 1

〉
. (3)

The second step of the SV connected components algorithm
does not need to be run for spanning tree, since all the trees
are grafted in the first step. The final step of each iteration
runs pointer jumping to form rooted stars ensuring that a
tree is not grafted onto itself, with cost:

T (n, p) = 〈TM(n, p) ; TC(n, p) ; B(n, p)〉
=

〈
n log n

p
; O

(
n log n

p

)
; 1

〉
. (4)

In general, SV needs multiple iterations to terminate. As-
suming the worst-case of logn iterations, the total complex-
ity for SV is

T (n, p) = 〈TM(n, p) ; TC(n, p) ; B(n, p)〉
�

〈
n log2 n

p
+

(
4 m

p
+ 2

)
log n ;

O
(

n log2 n+m log n
p

)
; 4 log n

〉
. (5)

Comparing the analyses, we predict that the computa-

tional complexity of our randomized approach
(

O
(

n+m
p

))
is asymptotically less than that of the deterministic SV ap-

proach
(

O
(

n log2 n+m log n
p

))
. Even if SV iterates only once,

there is still approximately logn times more work per iter-
ation. Looking at memory accesses, our SMP algorithm is
more cache friendly, having small number of non-contiguous
memory access per the input size. On the other hand, SV has
a multiplicative factor of approximately log2 n more non-
contiguous accesses per vertex assigned to each processor.
Our SMP approach also uses less synchronization (O(1))
than the SV implementation that requires O(log n).

4. Experimental results

This section summarizes the experimental results of our
implementation and compared our results with previous
experimental results. We tested our shared-memory im-
plementation on the Sun E4500, a UMA shared memory
parallel machine with 14 UltraSPARC II 400 MHz proces-
sors and 14 GB of memory. Each processor has 16 KB of
direct-mapped data (L1) cache and 4 MB of external (L2)
cache. We implement the algorithms using POSIX threads
and software-based barriers[4].

4.1. Experimental data

We use a collection of sparse graph generators to com-
pare the performance of the parallel spanning tree graph
algorithms. Our generators include several employed in pre-
vious experimental studies of parallel graph algorithms for
related problems. For instance, we include the 2D60 and
3D40 mesh topologies used in the connected components
studies of Greiner[16], Krishnamurthy et al. [29], Hsu et
al. [22], and Goddard et al. [15], the random graphs used by
Greiner [16], Chung and Condon [11], Hsu et al. [22], and
Goddard et al. [15], the geometric graphs used by Chung and
Condon [11], and the “tertiary” geometric graph AD3 used
by Greiner [16], Hsu et al. [22], Krishnamurthy et al. [29],
and Goddard et al. [15]. In addition, we include generators
from realistic applications such as geographic graphs and
from pathological cases such as degenerate chain graphs.

• Regular and irregular meshes: Computational science ap-
plications for physics-based simulations and computer vi-
sion commonly use mesh-based graphs.
◦ 2D Torus: The vertices of the graph are placed on a 2D

mesh, with each vertex connected to its four neighbors.
◦ 2D60: 2D mesh with the probability of 60% for each

edge to be present.
◦ 3D40: 3D mesh with the probability of 40% for each

edge to be present.
• Random graph: We create a random graph ofn vertices

andm edges by randomly addingm unique edges to the
vertex set. Several software packages generate random
graphs this way, including LEDA[31].

• Geometric graphs and AD3: In thesek-regular graphs,n
points are chosen uniformly and at random in a unit square
in the Cartesian plane, and each vertex is connected to its
k nearest neighbors. Moret and Shapiro[33] use these in
their empirical study of sequential MST algorithms. AD3
is a geometric graph withk = 3.

• Geographic graphs: Research on properties of wide-area
networks model the structure of the Internet as a geo-
graphic graph[6]. We classify geographic graphs into
two categories, flat and hierarchical. Flat mode takes into
account the geographical locations of vertices when pro-
ducing edges. First the vertices are randomly placed on
a square, then for each pair of the vertices, an edge con-
nects them according to the distance between them and
other parameters. Hierarchical mode models the Internet
with the notions of backbones, domains, and subdomains.
Several vertices are placed in the square, and a backbone
is created connecting these locations. In a similar way
domains and subdomains are created around certain lo-
cations of the backbone.

4.2. Performance results and analysis

In this section, we offer a collection of our performance
results that demonstrate for the first time a parallel span-
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Fig. 3. Comparison of parallel spanning tree algorithms for regular and irregular meshes withn = 220 vertices. The top-left plot uses a row-major order
labeling of the vertices in the torus, while the top-right plot uses a random labeling. The bottom-left and -right plots are for irregular torus graphs2D60
and 3D40, respectively. The dashed line corresponds to the best sequential time for solving the input instance. Note that these performance charts are
log–log plots.

ning tree algorithm that exhibits speedup when compared
with the best sequential approach over a wide range of in-
put graphs. In our SMP spanning tree algorithm, the first
step generates a stub spanning tree of size O(p). There
is a performance trade-off between the actual size of this
stub tree and the load balancing achieved by the proces-
sors. Empirically, we determined that a size of 10p has
negligible cost to generate and was sufficiently large in
our test cases to achieve a good load balance. Hence, all
of our experimental results presented here generate a stub
spanning tree of size 10p. We expect the performance of
our algorithm to vary due to the randomization in the stub
spanning tree generation and work-stealing load balancing.
Our empirical results showed less than 5% variations be-
tween runs on the same graph instance for those graphs we
tested. Because this variance is minimal, we plot our ex-
perimental results as an average over 10 runs on the same
instance.

The performance plots in Fig.3 are for the regular and
irregular meshes (torus, 2D60 and 3D40), in Fig. 4 are for
the random, geometric and AD3, and geographic classes of
graphs, and in Fig. 5 are for the degenerate chain graphs.
Note that only the mesh and degenerate chain graphs are
regular; all of the remaining graphs used are irregular. In
these plots, the horizontal dashed line represents the time
taken for the best sequential spanning tree algorithm to find
a solution on the same input graph using a single processor
of the Sun E4500. Throughout this paper, our sequential
algorithm use an optimized implementation of DFS to find
a spanning tree.

In the case of the torus inputs, we observe that the ini-
tial labeling of vertices greatly affects the performance of
the SV algorithm, but the labeling has little impact on our
algorithm. In all of these graphs, we note that the SV ap-
proach runs faster as we employ more processors. However,
in many cases, the SV parallel approach is slower than the
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Fig. 4. Comparison of parallel spanning tree algorithms for graphs withn = 220 vertices. The top-left plot uses a random graph withm = 20M ≈ n log n

edges. The top-right plot uses AD3, a geometric graph withk = 3. The bottom-left and -right plots are for geographic inputs with flat and hierarchical
modes, respectively. The dashed line corresponds to the best sequential time for solving the input instance. Note that these performance charts are log–log
plots.

Fig. 5. Comparison of parallel spanning tree algorithms for graphs withn = 220 vertices. The left plot uses a degenerate graph with a sequential labeling
of the vertices, while the right plot uses a random labeling. Note that the performance of our parallel spanning tree algorithm is unaffected by the
labeling. The dashed line corresponds to the best sequential time for solving the input instance. Note that these performance charts are log–log plots.
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Fig. 6. This plot shows the scalability of SV and our SMP spanning tree algorithm usingp = 8 processors compared with the sequential algorithm for
random graphs withm = 4n edges. For these experiments, the speedup of our SMP spanning tree algorithm compared with the sequential approach is
between 3.8 and 4.1, while SV never beats the sequential implementation.

best sequential algorithm. Forp > 2 processors, in our
testing with a variety of classes of large graphs, our new
spanning tree algorithm is always faster than the sequential
algorithm, and executes faster as more processors are avail-
able. This is remarkable, given that the sequential algorithm
runs in linear time with a very small hidden constant in the
asymptotic complexity.

Fig. 6 shows the scalability of our SMP spanning tree
algorithm and SV usingp = 8 processors compared with
the sequential algorithm for random graphs withm = 4n

edges. For these experiments, the speedup of our algorithm
compared with the sequential approach ranges between 3.8
and 4.1, while SV is slower than the sequential approach.

5. Conclusions and future work

In summary, we present optimistic results that for the
first time, show that parallel spanning tree algorithms run
efficiently on parallel computers for graphs with regular
and irregular topologies. Our new implementation scales
nearly linearly with the problem size and the number of
processors for suitably large input graphs. Our randomized
approach uses a load balancing scheme based upon work-
stealing and exhibits superior performance when compared
with prior deterministic parallel approaches that we modify
for SMPs. Through comparison with the best sequential
implementation, we see experimentally that our approach

runs in O
(

n+m
p

)
expected time over a variety of regular and

irregular graph topologies. Further, these results provide
optimistic evidence that complex graph problems that have
efficient PRAM solutions, but often no known efficient
parallel implementations, may scale gracefully on SMPs.
Our future work includes validating these experiments
on larger SMPs, and since the code is portable, on other
commercially-available platforms. We plan to apply the

techniques discussed in this paper to other related graph
problems, for instance, minimum spanning tree (forest),
connected components, and planarity testing algorithms.
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