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Abstract

Advances in experimental techniques have transformed
biology into a data-intensive science, with a rapid explosion
of data at the genomic and proteomic level. Few compre-
hensive suites of computationally-intensive life science ap-
plications are available to the computer science community
for optimization of current high-performance architectures
specifically targeted towards the computational biology ap-
plications. BioSplash represents a wide variety of open-
source codes spanning the heterogeneity of algorithms, bio-
logical problems, popularity among biologists, and memory
traits, gearing the suite to be of importance to both biolo-
gists and computer scientists.

1. BioSplash

Name Domain Input Datasets Parallel
BLAST (blastp) Heuristic-based local se-

quence alignment
Search of 16 sequences each more
than 5000 residues against database
Swissprot

POSIX
threads,
MPI

ClustalW SMP
(clustalw)

Progressive multiple se-
quence alignment

Alignment of 318 sequences with
average length of about 1450
residues

POSIX
threads,
MPI

T-Coffee (tcoffee)
[6]

Progressive multiple se-
quence alignment

1yge 1byt consists of 50 sequences
of average length 850

No

HMMER (hmmp-
fam)

Sequence Homology Aminoacid Sequence Q89F91 of al-
most 8800 residues searched against
the PFAM database

POSIX
threads.

Glimmer (glim-
mer2)

Gene finding Bacteria Genome NC 004463.fna
consisting of more than 9200 kilo-
base pairs

No

GRAPPA
(grappa) [5]

Phylogeny Tree Construc-
tion

12 sequences of the bluebell flower
species Campanlacae

SMP
and MPI
versions.

Phylip (proml) Phylogeny Tree Construc-
tion

Input is aligned dataset of 92 cy-
clophilins and cyclophilin-related
proteins from eukaryotes each of
length 220

No

Predator (preda-
tor)

Protein Secondary Structure
Prediction

5 sequences extracted from Swis-
sprot each of almost 7500 residues

No.

The BioSplash codes are selected from the following
areas: Sequence alignment (pairwise and multiple), Phy-
logeny reconstruction, Protein structure prediction, Se-
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quence Homology and Gene-finding. We have included par-
allel codes when available; 4 of the 8 codes in the suite are
multi-threaded.
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Figure 1. Dual-platform analysis reveals how
cache and machine organization parameters
affect the performance of life sciences appli-
cations

2. Experimental environment: IBM Mambo
and Apple G5

Our experimental environment consists of the IBM
Mambo simulator and the Apple PowerMac G5 (with
IBM PowerPC 970 processors). Mambo [3] is an IBM
proprietary full-system simulation tool used to design the
Blue Gene and the p-Series within IBM, and is being used
for the DARPA High Productivity Computing Systems
program [4] aimed at bringing sustained multi-petaflop
and autonomic capabilities to commercial supercomputers.
IBM’s PowerPC G5 processor [1] is a 64-bit, dual-core
state-of-the-art processor designed for symmetric multi-
processing. We created a size varying class of input sets for
each code, with the inputs categorized as small, medium
and large. For application runs on Mambo, small datasets
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are used due to the overhead of simulating, while for Apple
G5, relatively long-running instances of the datasets are de-
scribed and are for instance among the longest in Genbank
and Swissprot, database searches were performed against
complete databases such as the Genbank, Swissprot, and
PFAM, databases.

3. Performance Analysis

An advantage of the Mambo and MONster tools is the
“live graph”capabilities that report accumulated data not
only at the end of each run, but also at chosen regular sam-
pling intervals.. Using such graphs, we correlate the per-
formance data in phases of the application, and suggest op-
timizations targeted at separate regions of the application.
Through our dual platform analysis, we do a cross com-
parison and suggest system design parameters for machine
configurations that may improve the performance of these
codes on next-generation computing systems.

In this abstract, we briefly show the impact of our re-
search with an example of ClustalW, a popular multiple
sequence alignment program. Additional results are avail-
able in [2]. In the clustalw livegraphs, we find an interest-
ing observation: the instructions per cycle increases in the
last phase of the application, even though L1 data miss rate
(right plot) increases in the same phase; this increase is due
to the fall in branch misprediction rate, implying that the
performance of the last phase of clustalw is more closely
related to branch mispredicts than L1 data miss rate.

A significant part of our research correlates the per-

Figure 2. Clustalw Performance Graphs.

formance metrics at the machine level with the phase of
the higher-level algorithm. Clustalw livegraph plotted for
the first and the third phase shows an order of magnitude
higher rate of arithmetic instructions compared to the sec-
ond phase, denoting the larger time complexity of the al-
gorithm in phase one and three. L1 data cache misses are
higher in the second phase, due to unpredictable access pat-
tern; the sequences with the lowest distance are joined to-
gether in the guide tree, with the other sequences recom-
puting distance to the joined sequence. The heuristic is
repeated, until all the sequences are joined together into a

Figure 3. ClustalW region I (top), II (bottom
left) and III (bottom right) showing differences
in algorithmic complexity and memory ac-
cess pattern.

guide tree formation.
We have recorded a wide variety of instruction and mem-

ory level hardware counters for each code using CHUD tool
on Apple PowerPc G5, and MAMBO; fully detailed analy-
sis and all graphs for MAMBO and Apple PowerPC G5 are
included in [2].
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