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Abstract

We have developed a high performance hybridized par-
allel Finite Difference Time Domain (FDTD) algorithm
featuring both OpenMP shared memory programming and
MPI message passing. Our goal is to effectively model the
optical characteristics of a novel light source created by
utilizing a new class of materials known as photonic band-
gap crystals. Our method is based on the solution of the
second order discretized Maxwell’s equations in space and
time. This novel hybrid parallelization scheme allows us
to take advantage of the new generation parallel machines
possessing connected SMP nodes. By using parallel com-
putations, we are able to complete a calculation on 24 pro-
cessors in less than a day, where a serial version would
have taken over three weeks. In this paper we present a de-
tailed study of this hybrid scheme on an SGI Origin 2000
distributed shared memory ccNUMA system along with a
complete investigation of the advantages versus drawbacks
of this method.

Keywords: FDTD, Finite Difference Time Domain,
OpenMP, MPI, Maxwell Equations, Photonic Crystals.

1 Introduction

Photonic crystals are materials fabricated with a period-
icity in index of refraction and specifically designed to af-
fect and control the properties of light (or photons) in much
the same way that semiconductors affect and control the
properties of electrons. This provides scientists with a com-
pletely new dimension in the ability to control and manipu-
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late the properties of light. The key lies in the concept of a
photonic band gap — the optical analogue of the electronic
band gap in semiconductors. In effect, it allows us to tailor
the properties of photons the way we tailor the properties of
electrons. Harnessing the broad potential of photonic crys-
tals promises to have enormous technological implications
in telecommunications, optical computing, and optoelec-
tronics, as well as in associated imaging applications. One
such application is the use of such materials in the lighting
technology, where such crystals were suggested to possess
the ability to internally recycle the unwanted thermal losses
of usual light sources, such as conventional light bulbs, into
useful visible radiation in the form of visible light [7]. Re-
cent work has proven that such suggestions are actually pos-
sible, and an observation of the novel emission characteris-
tics of such systems has appeared in several publications
[13,10, 11, 12].

Modeling the behavior of these photonic systems is how-
ever a very complicated task given the nature of the metal-
photon coupled system. Conventional methods based on
real-space transfer matrices [14, 6] and Modal Expansion
techniques [9, 8], are only capable of producing passive
optical properties of such systems such as transmittance,
reflectance, and in some cases absorbance. Such methods
however lack the ability to produce the real-time behavior
and development of the electromagnetic field vectors in the
photonic crystal environment. Furthermore, because such
methods can at most provide passive optical properties, they
are incapable of estimating the emissivity of such systems,
and lack the ability to quantify the anisotropy of the emis-
sion process.

In this paper we present a finite difference time domain
(FDTD) method based on the solution of the second or-
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der discretized Maxwell’s equations in space and time, and
designed specifically for modeling such complicated pho-
tonic systems. Because of the frequency dependent metallic
properties and the skin-depth effects that arise from light-
metal interactions, a very fine meshing of the system is
needed. As a result huge data sets are involved and a slug-
gish computational performance is observed. To alleviate
the problem we introduce a novel hybrid parallelization
scheme that employs both OpenMP shared memory pro-
gramming and MPI message passing. The result is a highly
performing algorithm capable of handling such complicated
physical problems, and paves the way for more efficient
algorithms better suited for the new generation of clusters
with SMP nodes. With parallel computations, we are able
to reduce the time required for a full scale simulation from
over three weeks to about one day.

This paper is organized as follows: The next section
gives a brief formulation of Maxwell Equations and a spe-
cific FDTD method known as Yee’s algorithm. The third
section discusses the specifics of OpenMP and MPI par-
allelization schemes and their applications to FDTD. The
fourth section shows some experimental results and dis-
cusses performance issues. In the fifth and final section,
we conclude.

2 Maxwell Equations and Yee’s Algorithm
2.1 Maxwell Equations

Maxwell Equations are a set of coupled vectorial partial
differential equations. They govern the world of electro-
magnetics and optics. The usual compact formulation is:
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with definitions
D = ek )
B = ppoH (6)
j = tfsource + UE (7)
M = Msource + U*ﬁ (8)

where €., pu,,0,0" are known material parameters,
Jsource; Msource are known properties of electromagnetic
sources inside the system and €, o are defined constants.
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E is known as the electric field and B is known as the
magnetic field.

Maxwell Equations have both space and time derivatives.
In the above form, space derivatives are hidden in the V x
(curl) and V- (divergence) operators.

2.2 FDTD revisited: Yee’s algorithm

FDTD is a direct integration method which casts par-
tial derivatives to partial differences on a finite mesh. This
mesh contains the material parameters mentioned above,
and is actually a representation of the scientific problem to
be solved. Then the resulting equation is integrated numer-
ically in space and time by the aid of initial conditions and
termination conditions (boundary conditions).

Yee’s algorithm is a well known method published in
1966 [17]. It gives a second order (in time and space) cor-
rect FDTD solution to Maxwell equations. For reasons of
brevity and focus, we shall not attempt to give a full deriva-
tion of all the difference equations here, but merely cite the
resulting equations. The interested reader is referred to [15].

In Yee’s algorithm, the electric and magnetic fields are
defined on an intertwined double mesh, where electric field
components are circulated by four magnetic field compo-
nents and magnetic field components are circulated by four
electric field components. The first partial space derivative
of a field u is defined to be (correct to the second order):

n _an
Wiv1/2.5k — Wi—1/2.4k
Az

0

au (iAx, jAy, kAz, nAt) ~ 9)
ox

and the first time derivative is similarly (again, correct to the
second order),

ntl/2  n-—1/2

(iAx, jAy, kAz, nAt) ~ % (10)

du

ot

For mathematical reasons, it suffices to apply these trans-
formations to only the first two of the Maxwell equations.
The other two equations are satisfied inherently by the for-
mulation of the algorithm. Usage of these difference for-
mulas with simple averaging where necessary yields six ex-
plicit time stepping equations. The electric fields and the
magnetic fields are updated using [5] equations (11) and
(12), respectively.

In these equations, i,j,ff refer to space indices z,y, z
and their cyclic permutations.
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2.3 Initial conditions and boundary conditions

The FDTD explicit time stepping requires initial condi-
tions for the field values and boundary conditions at space
boundaries. The conventional way to define initial condi-
tions is to initialize all the field values to zero everywhere.
It is also possible to save the fields between two consecutive
FDTD time steppings and resume such a saved calculation,
where saved fields are loaded as an initial condition.

As for boundary conditions, several choices are possi-
ble. The electromagnetic energy is reflected at the end of
FDTD numerical space since the space is finite. This yields
spurious, unwanted energy reflections. The usual way of
preventing such reflections is to use Absorbing Boundary
Conditions (ABC’s) at the space boundaries.

In our application Liao and Uniaxial Perfectly Matched
Layer (UPML) boundary conditions [16] were used. Liao
ABC is based on a Newton extrapolation polynomial tech-
nique. Used at the space boundaries, this extrapolation sim-
ulates “endless free space” and absorbs electromagnetic en-
ergy, removing reflections. The UPML ABC is a variant of
Berenger’s Perfectly Matched Layer [3] technique, and it is
a slab of artificial material. The properties of the slab are
set up so as to absorb all incoming electromagnetic energy.
Deeper into a PML absorber slab, the absorbance of the ma-
terial is increased polynomially or geometrically. We chose
to increase the absorbance polynomially.

3 Parallel FDTD calculations
3.1 FDTD and MPI Parallelization

In this part, details on MPI parallelization for FDTD are
given. To make comparisons easier, a serial version of the
algorithm is presented first:

The MPI programming paradigm assumes that data
structures are not shared, but divided among the multiple
processors used. This idea of storage division calls for a
domain decomposition technique. Since the field updates

Efc|?,j+1.,k -
Aj
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Algorithm: Serial-FDTD

Do one time initialization work;

Initialize fields, apply initial conditions;

for ¢t = I to tmax do

for i, j, k = 1 to imax, jmax, kmax do

Update electric fields using magnetic fields;
Update magnetic fields using updated electric
fields;
Update fields at boundaries, apply boundary

conditions;
end
end

Algorithm 1: Serial FDTD algorithm.

at a mesh point take field values from surrounding points,
exchanges are required at domain boundaries. Alg. 2
implements domain decomposition using MPI message
passing, and is a modification of the preceding serial FDTD
algorithm.

The number of required field components to exchange
grows with total surface area of the domains, which is
proportional to both the total size of the mesh and the
number of processors (or distinct domains) used in calcu-
lation. This is an overhead cost that is brought by domain
decomposition.

On the other hand, the MPI parallelization is advan-
tageous not only because it allows one to take advantage
of a parallel machine to reduce execution time, but it also
has the very important features of distributed allocation
and distributed storage allowing for the solution of larger
problem instances. With MPI parallelized FDTD, the
total storage used is nearly evenly divided between the
MPI processes. Hence, the per-process storage is low, and
it becomes lower as the number of processes increases.
This enables one to calculate with larger meshes and even
overcome the 32-bit storage limit problem in the parallel
systems built using commodity 32-bit system components.
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Algorithm: MPI-FDTD

Do one time initialization work;

Initialize fields, apply initial conditions;

for = I to tmax do

for i, j, k = 1 to imax, jmax, kmax do

Using MPI message passing, exchange
magnetic fields with neighbors;
Update electric fields using magnetic fields;
Using MPI message passing, exchange up-
dated electric fields with neighbors;
Update magnetic fields using updated electric
fields;
Update fields at boundaries, apply boundary

conditions;
end
end

Algorithm 2: MPI parallelized FDTD algorithm.

3.2 FDTD and OpenMP

Many modern large-scale computer systems are net-
works of connected shared memory SMP nodes, using com-
bined distributed and shared memory approaches. In these
systems, message passing in a node is emulated on shared
memory and message passing between nodes uses actual
messages. In order to efficiently harness the computational
power of such systems, one has to use both shared and dis-
tributed memory approaches together [1].

Inspecting the field update equations, a simple fact is re-
alized: When the electric fields are being updated, the mag-
netic fields are only read, and when the magnetic fields are
being updated, the electric fields are only read. As long as
the field update loops are kept separate, these calculations
can be completed in a multi-threaded environment. There
is no risk of a race condition as long as different threads
update different field components. There is also no do-
main distribution overhead problem as long as the storage
is shared and accessible by all the threads.

In our approach, we use the OpenMP shared memory
parallel programming standard. The FDTD code maps nat-
urally to the OpenMP paradigm, and has the benefits men-
tioned above. However, there are several down sides of
shared memory FDTD:

e OpenMP lacks support for distributed allocation of
shared structures, causing bottlenecks on some sys-
tems.

e Since the data set is very large, there are many cache
misses, affecting performance and scalability severely.

e Optimization of OpenMP constructs is not trivial and
requires extensive experimentation and optimization.
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To solve the first issue, we use the distributed allocation
and automated data relocation features available on an SGI
Origin 2000 [4]. SGI's OpenMP implementation accepts
several environment variables which affect how the system
allocates data and how data is relocated at run-time to op-
timize access latency. It is possible to make the system al-
locate data with a first-touch policy, which distributes data
properly if the storage is allocated by all the processors in
parallel. Since OpenMP does not have such support, the
first-touch policy is not useful. Another policy is to allocate
each page of storage on different regions of the distributed
memory, that is, the round robin allocation. That way, ac-
cess latency is not optimized, but any bottlenecks caused by
massive usage of a single portion of the physical memory
is prevented. The third policy is the usage of a predeter-
mined storage map, which requires a separate run to gen-
erate the map first. The allocated pages can be relocated
by the system automatically to minimize access latency in-
curred by two processors, according to the usage statistics
by each processor, yielding optimal memory placement at
run time. For our case, we find round-robin allocation with
automatic relocation best.

To solve the second problem, we employ some methods
to reduce the total storage requirement (to contain the num-
ber of total cache misses) as well as rearrangement of cal-
culations to make better use of caches and prefetch features.
To reduce the storage requirement, our implementation uses
a lookup table and stores material properties as short one-
byte integers referring to this table. Specifically, 12 double
complex parameters are replaced per grid point. This ap-
proach reduces the storage requirement by almost half and
boosts scalability, as shall be discussed in the next section.

Last but not least, algorithm engineering techniques [2]
of explicit timings, educated guesses and trial-and-error are
used in the rearrangement of FDTD equations to increase
prefetch efficiency and to optimize OpenMP options such
as whether it would be more efficient to use SHARED or
FIRSTPRIVATE and whether an SGI extension to OpenMP,
the NEST construct, should be used. The effects of all these
optimizations will be discussed in the next section.

3.3 Hybrid FDTD: Using OpenMP and MPI to-
gether

Shared memory machines do not scale up beyond a cer-
tain number of processors as overheads become unbear-
able. To obtain a more general parallel FDTD application,
OpenMP and MPI are used together. In this case, the cal-
culations performed in the MPI storage domains go mul-
tithreaded. This gives the option to choose how the pro-
cessors are shared between MPI processes and how many
OpenMP threads are used in each MPI process. It also re-
duces the MPI domain decomposition overhead, since there
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will not be as many domains as a pure MPI parallelized
FDTD. Where OpenMP is not supported, one can of course
use just MPI with only a change in compiler options and no
changes in the source code. The hybrid algorithm is:

Algorithm: Hybrid-FDTD
Do one time initialization work;
Using OpenMP multithreading, initialize fields, ap-
ply initial conditions;
for = I to tmax do
for i, j, k = 1 to imax, jmax, kmax do
Using MPI message passing, exchange mag-
netic fields with neighbors;
Using OpenMP multithreading, update
electric fields using magnetic fields;
Using MPI message passing, exchange up-
dated electric fields with neighbors;
Using OpenMP multithreading, update
magnetic fields using updated electric fields;
Using OpenMP multithreading, update
fields at boundaries, apply boundary condi-
tions;
end
end

Algorithm 3: MPI-OpenMP hybrid parallelized FDTD
algorithm.

In the next section, we shall present and discuss the re-
sults obtained.

4 Results and Discussion

In this section, we shall concentrate on the performance
analysis of the OpenMP parallelized FDTD since MPI par-
allelized FDTD has been around long enough to reach
standard university curricula. Performance tests of MPI-
based and hybrid FDTD schemes will be discussed in a fu-
ture work in order to keep this paper concise and focused
on the issues with and optimization of OpenMP enhanced
FDTD codes. The FDTD application code analyzed here
has two versions: The first version implements OpenMP in
a straightforward manner, relying mostly on compiler op-
timizations. The second (a further optimized version) is
derived from the first version and includes changes to im-
prove cache usage and reduce memory footprint, as men-
tioned earlier. Analysis has been made on an SGI Origin
2000 featuring 350 MHz MIPS R12000 processors.

Figure 1 shows the execution times of the two versions
of the code for a sample case. For this sample, the mesh
contains 188x188x78 grid points, and the calculation was
allowed to run for 3000 time steps. The time scale is in
seconds, which means the calculation completes in almost
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5 hours when run on a single processor. For uses of physics
research, the calculation often has to be repeated with a dif-
ferent set of parameters (such as in a sweep of the frequen-
cies emitted by the sources). As a result, the total time re-
quired can easily become several weeks when a single pro-
cessor is employed.

Execution Time (SGI O2k)
210° \ 7

—O=— V2 time {secs)
T ==[1==v1 time {secs)

Time (secs)

No. Procs.

Figure 1. Execution times on the SGI Origin
2000

The speedup curves (Figure 2) obtained from the same
system make it easier to see that a straightforward OpenMP
parallelization does not quite provide an efficient answer for
our needs.

Usage of the profiling facilities [4] available on the SGI
Origin as a first probe indicates that the program has a prob-
lem of cache and prefetch misses. The average reuse rate for
L1 cache lines are 10.4, whereas for L2 cache this rate drops
to only 3.4 (see Table 1). To appreciate these results as well
as the problem itself, a closer look at the profile statistics is
necessary.

Without doubt, the most time consuming parts of such
an FDTD calculation are the electromagnetic field updates.
Formulated in the complex equations (11) and (12), these
updates are performed at every grid point for every time
step. The main data for these equations are the fields and the
constant factors'. At every time step, a complete sweep of
the space grid (and this data) is performed. Considering that
32-byte double complex variables are used for the fields, a
small calculation shows a whopping amount of 200 MB is
necessary for electromagnetic field data storage alone. As

I'The terms with € and
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Speedup (SGI O2K)
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Speedup
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Figure 2. Speedups on the SGI Origin 2000

the problem size grows, this exceeds current cache sizes ex-
cept for perhaps the highest-end systems available.

The situation is even more complicated by the form of
the field update equations (11) and (12). A closer look indi-
cates that, 27 floating point numbers have to be loaded for
every grid point at every time step per each of the two equa-
tions: 9 floating point numbers per the 3 spatial components
mapped at every grid point. Moreover, the access patterns
are far too complicated to allow for any optimizations, and
they are even not at a stride to fit into cache.

Hence, there are two different performance problems:
one is about the complicated access patterns and the other
is about the high number of cache misses. In fact, the
first problem somewhat contributes to the second one, since
complicated access patterns with large strides often incur
cache misses. Both of these problems indicate that our code
is memory bound, and its performance will depend on the
performance of the memory subsystem.

Our solution to the first problem mentioned above is to
merge all the field updates for one grid point into one big
loop. Although the access patterns are still complex when
the field updates are taken one spatial component at a time,
the updates for all three spatial components per grid point
per field access close array elements in aggregate. Profiling
the code confirms that the rate of prefetch cache misses is
reduced from 43.3% to 28.2% (Table 1).

To improve cache usage is to find ways to slow down, if
not prevent, cache flushing as the calculation goes on and
new data is read into the cache. Since the data set does not
fit into the cache, prevention is not an option for our case.
The other option, to slow down, calls for inventing ways to
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Categories Statistics (v1) | Statistics (v2)
Data mispredict
/Data scache hits 0.003954 0.007023
Instruction mispredict
/Inst. scache hits 0.043838 0.064697
L1 Cache Line Reuse 10.412669 17.648883
L2 Cache Line Reuse 3.375819 4.589698
L1 Data Cache Hit Rate 0.912378 0.946377
L2 Data Cache Hit Rate 0.771471 0.821099
Time accessing memory
/Total time 0.638376 0.576530
Memory BW (MB/s,
avg per proc) 186.573422 150.096080
Cache misses/cycle (avg) 2.572237 1.557080
Prefetch cache miss rate 0.433175 0.282235

Table 1. Various statistics for the two versions
of the application (SGI Origin 2000, 8 proces-
sors)

reduce memory footprint of the data set. Our solution is to
implement a lookup table which would keep the few con-
stant factors used in cache. The elements of this table are
pointed to by short (1-byte) integers, which replace the old
storage of constant factors, which are floating point num-
bers. In our implementation, 12 constant factors are used
per grid point (4 factors per 3 spatial components). By im-
plementing the lookup table, we are able to reduce the over-
all memory footprint in half, and the cache line reuse rates
are improved to 17.7 for L1 cache and 4.6 for L2 cache (Ta-
ble 1).

The SGI Origin 2000 is a cache coherent, non-uniform
memory access (ccNUMA) distributed shared memory plat-
form. Since OpenMP lacks support for distributed alloca-
tion of shared storage, an OpenMP parallelized code using
default allocation policies allocates storage from a single
segment of the distributed memory. This single location
bombarded by many processors is bound to become a mem-
ory hotspot and a bandwidth bottleneck. Indeed, timings
of the second version of the code on 8 processors indicate
4975 seconds for the running time when default allocation
policies are used (versus 2828 seconds?).

The Origin has facilities to migrate pages of data auto-
matically to a closer position to the processors using them
most. To activate this feature, one sets an environment
variable named _DSM_MIGRATION. Another environment
variable, _DSM_PLACEMENT, affects the policies used
to determine the physical location of the pages allocated.
The default, named first touch allocation causes memory
pages become allocated closer to the first processor access-

2with round-robin allocation and automated data migration
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ing to them. This same policy is the culprit that causes an
OpenMP parallelized code to allocate all the shared storage
from one single location. An alternative, allocating pages in
a round robin fashion from all available distributed memory
locations, is available and can be activated by setting the
aforementioned environment variable. During our runs, we
activate both of these features.

5 Conclusions and Future Directions

To sum up; we have designed, implemented and ana-
lyzed an FDTD simulation for a challenging physics prob-
lem which takes weeks to compute without parallel calcu-
lations. We indicated how an OpenMP based parallel im-
plementation could be improved and gave quantitative in-
dications to support our suggestions. The results suggest
that OpenMP parallelization can be used together with an
MPI domain distribution scheme to get a high performance,
hybrid parallelized FDTD application to harness the power
of newer parallel systems constructed out of interconnected
SMP nodes.

Another lesson that has been learned is, relatively
newer technologies in software and programming (such as
OpenMP) can shed a new light to the application areas
where the methods are well known and beyond a certain
age. It may take time to see how an improved technology or
technique could help in probable application areas that look
unrelated or impossible at first sight.

As for future work, we will be studying the performance
characteristics exhibited by this application under several
other architectures, so as to expose details on how to get
better performance from these machines. As of the prepara-
tion date of this document, analysis is under way on Sun Ul-
traSparc and IBM Power based platforms. The intimate ex-
perience gained in optimizing the application on the Origin
2000 and other architectures will be useful as case studies
and the knowledge will help the designs of future scientific
simulations that achieve the highest performance.
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