
417MEASURING HPC PRODUCTIVITY

A FRAMEWORK FOR MEASURING
SUPERCOMPUTER PRODUCTIVITY

Marc Snir1

David A. Bader2

Abstract

We propose a framework for measuring the productivity
of high performance computing (HPC) systems, based on
common economic definitions of productivity and on utility
theory. We discuss how these definitions can capture
essential aspects of HPC systems, such as the impor-
tance of time-to-solution and the trade-off between pro-
gramming time and execution time. Finally, we outline a
research program that would lead to the definition of
effective productivity metrics for HPC that fit within the
proposed framework.

Key words: Productivity, High-performance computing,
performance metrics, benchmarks

Acknowledgments

This work is supported in part by DARPA Contracts
NBCHC-02-0056 and NBCH30390004. MS is also sup-
ported in part by DOE Grant DE-FG02-03ER25560. DAB
is also supported in part by NSF Grants CAREER ACI-
00-93039, ITR EIA-01-21377, Biocomplexity DEB-01-
20709, and ITR EF/BIO 03-31654. The content of this
paper evolved as the result of discussions that involved
James C. Browne, Brad Chamberlain, Peter Kogge,
Ralph Johnson, John McCalpin, Rami Melhem, David
Padua, Allan Porterfield, Peter Santhanam, Burton Smith,
Thomas Sterling, and Jeffrey Vetter. We thank the review-
ers for their useful comments.

1 Introduction

Productivity is an important subject of economic study,
for obvious reasons. At the microeconomic level, an
increase in productivity results in an increase in firm
profits. At the macroeconomic level, an increase in pro-
ductivity boosts the gross domestic product (GDP). An
important concern is to ensure that productivity is prop-
erly measured, as improper measures will lead to subop-
timal investment and policy decisions, at the micro and
the macro levels.

The recent Defense Advanced Research Projects Agency
(DARPA) High Productivity Computing Systems (HPCS)
initiative (http://www.darpa.mil/ipto/programs/hpcs/) has
raised the issue of proper productivity measurements, in
the context of high performance computing (HPC). The
motivation is the same as in the general economic realm:
proper productivity measures will lead to better invest-
ments and better policy decisions in HPC. The HPC world
has been obsessively focused on simple performance met-
rics, such as peak floating-point performance, or perform-
ance on the Linpack benchmark (TOP500 Supercomputer
Sites, http://www.top500.org/). It would seem that these
performance measures have often been used as proxies for
total productivity measures, resulting in gross distortions
in investment decisions.

In this paper we propose a framework for measuring
the productivity of HPC systems. The basic framework is
introduced in Section 2 and is discussed in Section 3. A
possible approach for defining productivity metrics is
introduced and discussed in Section 4. We conclude with
a brief discussion.

2 Basics

Productivity is usually defined, in economics, as the
amount of output per unit of input. Thus, the labor pro-
ductivity of workers in the car industry can be measu-
red as the number of cars produced per work hour (or,
inversely, as the number of work hours needed to pro-
duce a car). The labor productivity of the US economy is
measured as the ratio between the GDP and worker
hours in the US. In this definition, one input measure
(hours worked) is compared to one output measure (cars
produced or GDP).

It is important to realize, in the first example, that the
productivity of the car workers depends not only on their
skills or motivation but also on the equipment available in
car factories, and on the type of car manufactured. By the

1 COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS AT
URBANA CHAMPAIGN, USA

2 ELECTRICAL AND COMPUTER ENGINEERING, UNIVER-
SITY OF NEW MEXICO, ALBUQUERQUE, NM, USA

The International Journal of High Performance Computing Applications,
Volume 18, No. 4, Winter 2004, pp 417–432
DOI: 10.1177/1094342004048535
© 2004 Sage Publications

www.sagepublications.com

418 COMPUTING APPLICATIONS

measure of work hours per car, workers in a heavily auto-
mated (more capital intensive) plant are likely to be more
productive than workers in a less automated (less capital
intensive) plant. Also, workers that produce Rolls-Royce
cars are likely to be less productive than workers that
produce Saturn cars, if productivity is measured in the
number of cars.

The last bias can be avoided, to a large extent, if instead
of counting car units one counts units of car value, i.e. the
monetary value of cars produced in one work hour. In
some contexts it may be useful to also measure the units
of input in terms of their cost, e.g. by counting salary
expenses, rather than hours of work. This is especially
important for inputs that are heterogeneous and have no
obvious common measure. If we do so, then productivity
becomes a unit-less measure, namely the ratio between
value produced and value of one of the inputs consumed
to produce this value.

In some cases, it is useful to consider more than one
input. Total productivity measures attempt to consider
the sum of all inputs together. In order to obtain a mean-
ingful measure, the various inputs need to be properly
weighted. One obvious choice is to weight them by their
cost, in which case productivity becomes the ratio bet-
ween the units of output (or value of output) and cost of
inputs.

The same approach can be used to measure the pro-
ductivity of a factor or a set of factors, e.g. the productiv-
ity of a car plant, the productivity of a production line,
the productivity of information technology in the car
industry, etc.

Suppose that we are to apply the same approach to
define the productivity of supercomputing systems. The
productivity of a supercomputer would be defined as the
total units of output produced by this system, divided by
its cost. We are faced with an immediate problem: how do
we measure the output of a supercomputer? Clearly, sim-
ple measures such as the number of operations performed
or the number of jobs run will not do. As we do not have
an efficient market for supercomputing results, we cannot
use output market value, either.

Utility theory, as axiomatized by von Neumann and
Morgenstern (1947) (see also Fishburn, 1970), provides a
way out. Utility theory is an attempt to infer subjective
value, or utility, from choices. Utility theory can be used
in decision making under risk or uncertainty. Utility the-
ory can be assumed to be descriptive, i.e. used to describe
how people make choices. Alternatively, it can be assumed
to be prescriptive or normative, i.e. used to describe how
people should make choices under a rational model of
decision making. This paper espouses this latter view.

Formally, one assumes a set X of outcomes and a rela-
tion > that expresses preferences of some rational agent
over outcomes or lotteries of outcomes. A “lottery” is a

finite subset of outcomes {x1, ..., xk} X, with associated
probabilities p1, ..., pk; pi = 1. We denote by (X) the
set of lotteries over outcomes in X. Note that (X) is a
convex set: are lotteries, and , then
αx + (1 – α)y is a lottery in (X).

The preference relation is assumed to fulfill the fol-
lowing axioms.

1. > is complete, i.e. either x > y or y > x for all
.

2. > is transitive, i.e. if x > y and y > z, then x > z for
all .

3. Archimedean axiom: if x > y > z then there exist α
and β, 0 < α < β < 1, such that y > αx + (1 – α)z
and βx + (1 – β)z > y. This is a weak continuity
axiom for lotteries.

4. Independence Axiom: x > y if and only if αx +
(1 – α)z > αy + (1 – α)z. This axiom asserts that pre-
ferences between x and y are unaffected if we com-
bine both with another outcome in the same way.

These axioms are satisfied if and only if there is a real-
valued utility function U such that

1. U represents >, i.e. x, y (x), x > y U(x) > U(y);
2. U is affine, i.e. x, y (X), α [0, 1], U(αx +

(1 – α)y) = αU(x) + (1 – α)U(y).

Furthermore, U is unique, up to positive linear transforma-
tions. Thus, if “rational” preferences are expected to sat-
isfy the four listed axioms, then any system of rational
preferences can be represented by a utility function. The
utility function is unit-less.

The utility function that represents the preferences of
an agent can be estimated indirectly by assessing these
preferences, e.g. by offering the agent a series of hypothet-
ical choices. Clearly, this approach may not be very prac-
tical in an environment where there are multiple, complex
outcomes. However, many of the results in this paper do
not depend on the exact shape of the utility function.

One assumes that the total value of a supercomputer’s
output is defined by the (rational) preference of some agent
(e.g. a lab director, or a program manager). The agent’s
preference can be represented by a utility function. We
can now use the utility produced by the supercomputer as
a measure of its output.

We shall define the productivity of a supercomputer
system as the ratio between the utility of the output it
computes to the cost of the system. This measure depends
on the preferences of an agent, rather than being objec-
tively defined. This is unavoidable: the value of the out-
put of a supercomputer may vary from organization to
organization; as long as there is no practical way to trade
supercomputer outputs, there is no way to directly com-

⊂
∑ ∆

∆
x y ∆ X()∈, 0 α 1≤ ≤

∆

x y z, ∆ X()∈,

x y ∆ X()∈,

∀ ∈∆ ⇒
∀ ∈∆ ∈

419MEASURING HPC PRODUCTIVITY

pare the worth of a supercomputer for one organization to
the worth of a supercomputer for another organization.
(An indirect comparison can be made by ascertaining how
much an organization is willing to pay for the machine.)
In any case, much of what we shall say in this paper is
fairly independent of the exact shape of the utility func-
tion. The units of productivity are utility divided by a mon-
etary unit such as dollars.

The definition allows for some flexibility in the defini-
tion of a “system”. This may include the machine only, or
it may include all the expenses incurred in using the sys-
tem, including capital and recurring cost for the building
that hosts it, maintenance, software costs, etc. One defini-
tion is not intrinsically better than the other: The first def-
inition makes sense when the only choice considered is
whether to purchase a piece of hardware. The second def-
inition makes sense when one considers long-term choices.

If one wishes to account for all costs involved in the
use of a system, then one faces a cost allocation problem;
many of the expenses incurred (such as replacement cost
of the capital investment in a machine room) may be
shared by several systems. It is not always straightfor-
ward to properly allocate a fraction of the cost to each
system. Various solutions have been proposed to this
problem (see, for example, Young, 1994). This issue of
cost evaluation and cost allocation may be non-trivial, but
is a standard accounting problem that occurs in the same
form at any firm that uses information technology, and is
addressed by many accounting textbooks. We shall not
pursue this matter further.

To the same extent that we can extend the definition of
what a “system” is, we can restrict it to include only the
resources made available to one application. Here, again,
we face the problem of proper cost allocation (or of proper
resource pricing), which we do not address in this paper.

The utility of an output is a function of its timeliness.
A simulation that predicts the weather for Wednesday
November 5, 2003 is valuable if completed on Tuesday
November 4, or earlier; it is most likely worthless if com-
pleted on Thursday November 6. Thus, the utility of an
output depends not only on what is computed, but also on
when the computation is performed. Completion time is
part of the output definition, and is an argument that
influences utility.

Our discussion will focus on time-to-solution as a varia-
ble parameter that affects the utility of an output. The result
of a computation may have other parameters that affect
its utility, such as its accuracy, or its trustworthiness (i.e.
the likelihood that the code used is a correct implementa-
tion of the algorithm it is supposed to embody). In some
situations, time-to-solution may be fixed, but other
parameters can be varied. Thus, one may fix the period of
time dedicated to a weather simulation, but vary the accu-
racy of the simulation (grid resolution, accuracy of phys-

ics representation, number of scenarios simulated, etc.).
The general framework can accommodate such variants.

3 Discussion of Basic Framework

To simplify the discussion, we consider in this section an
idealized situation where a system S will be purchased
uniquely to develop from scratch and solve once a prob-
lem P. By “system”, we mean the programming environ-
ment that is used to develop the code and the (hardware
and software) system that is used to run it. There are mul-
tiple possible choices of systems to purchase, program-
ming language to use for implementing the application,
programming efforts to invest in coding and tuning the
application, etc. What is the rationale for such choices?

We study the problem by assuming three independent
variables: T, the time-to-solution; S, the system used; and
U, the utility function that represents preferences on out-
comes. Thus, given, S and T, we minimize the cost of
solving problem P on system S in time T. We denote the
(minimal) cost of such a solution by C(P, S, T). Each time-
to-solution T is associated with a utility U = U(P, T) and
a productivity

Then, the ideal productivity of system S for problem P is
defined to be

.

 is the (best possible) productivity for prob-
lem P on system S, relative to utility function U =U(P, T).
Note that productivity normally indicates a measured ratio
of outputs to inputs, in a given environment; ideal produc-
tivity is a measure of productivity that can be potentially
obtained, assuming optimal decisions.

Our ultimate purpose is to be able to compare the
“value” of vendor systems. We say that system S1 is better
than system S2 for problem P with respect to utility func-
tion U if > .

The formalism of this section reflects two obvious
observations.

1. The ideal productivity of a system depends on
the type of application that is run on this system;
a collection of networked PCs may be the most
productive system to look for evidence of extrater-
restrial intelligence (especially when the compute
time is freely donated; Anderson et al., 2002), but
may not be very productive for simulating nuclear
explosions (Advanced Simulation and Computing,

Ψ P S T U, , ,() U P T,()
C P S T, ,()
-------------------------.=

Ψ P S U, ,() maxTΨ P S T U, , ,() maxT
U P T,()

C P S T, ,()
-------------------------= =

Ψ P S U ⋅ ⋅,(), ,()

Ψ P S1 U ⋅ ⋅,(), ,() Ψ P S2 U ⋅ ⋅,(), ,()

420 COMPUTING APPLICATIONS

http://www.nnsa.doe.gov/asc/). For some applica-
tions, the ideal productivity is an open question;
for example, protein folding using idle cycle-steal-
ing from networked PCs (e.g. Stanford’s Folding@
Home project; Shirts and Pande, 2000) versus
using innovative architectures (e.g. the IBM Blue-
Gene project; Allen et al., 2001).

2. The productivity of a system depends on the time
sensitivity of the result that is represented by the
utility function U. If the result is as valuable if
obtained 20 years from now as if obtained in a
week, then there is no reason to buy an expensive
supercomputer; one can just wait until the computa-
tion fits on a PC (or a game machine). On the other
hand, if it is very important to complete the compu-
tation in a week, then an expensive high-end
machine and a quick prototyping programming envi-
ronment may prove the more productive system.

We can use the same approach to compare other alterna-
tives, by suitably redefining what we mean by a “system”.
For example, assume that we want to compare two pro-
gramming environments that are both supported on a ven-
dor system, in order to decide which should be used to
solve problem P. Define S1 to be the system with the first
programming environment and S2 to be the system with the
second programming environment, and proceed as before.

We proceed now to discuss more in detail costs and
utilities.

3.1 UTILITY

Utility U(P, T) is a decreasing function of time-to-
solution T, as illustrated in Figure 1, because there is no
loss in acquiring information earlier (information does

not deteriorate), and there may be some benefit. (A possi-
ble counterexample is a situation where the cost of stor-
ing the output of a computation until it can be acted upon
is high. However, in cases of interest to us, the cost of
storing the result of a computation is insignificant com-
pared to the cost of the computation itself.) In many envi-
ronments, the value of a solution may steeply decline
over time: intelligence quickly loses its value; weather
must be simulated accurately in time to provide a predic-
tion, etc. At the other extreme, fundamental research is
relatively time-insensitive, so that value declines moder-
ately with time. This motivates two value–time curves. A
deadline driven utility is defined by

. (1)

This yields the step-function curve illustrated in Figure 2.
The curve illustrated in Figure 3 corresponds to fixed,
time-independent utility, i.e.

(2)

The curve in Figure 4 illustrates a staircase function that
approximates a commonly occurring situation in industry,
or in national labs (see, for example, Peterson et al., 1989):
the highest utility is associated with “near-interactive
time” computations, i.e. a computation that takes less
than a coffee break so that it can be part of an uninter-
rupted engineering development cycle. Above a certain
time, computations tend to be postponed to overnight
runs, so the next level represents the utility of a computation
performed overnight, which can be part of a daily devel-
opment cycle. The third threshold corresponds to the util-

Fig. 1 Utility decreases with time. Fig. 2 Deadline-driven utility.

U P T,()
u if T deadline≤
0 if T deadline>




=

U P T,() u.=

421MEASURING HPC PRODUCTIVITY

ity of computations that cannot be carried out overnight,
and which tend to be done “once in a project lifetime”.

3.2 COST

Cost can be decomposed into development cost CD,
and execution cost CE. In a simplified model, develop-
ment and execution are disjoint in time. Thus, C(P, S, T) =
CD(P, S, TD) + CE(P, S, TE), where TD is the development
time, TE is the execution time, and T = TD + TE.

Execution cost is the cost of the system used for exe-
cution. This includes purchasing, deployment, and opera-
tion, cost of the system (hardware and software); cost of
the maintenance and repair of the system; cost of the
building needed to host the machine (if this is considered
part of the system); cost of electrical power and other
supplies; etc. The operation cost includes the time to train
operators, insert and extract information and run the pro-
gram (response time), and handle special requests from
users. Some of the costs may be shared (e.g. cost of
machine room) and need to be allocated appropriately.

Development cost includes initial development activi-
ties such as requirements gathering, design and planning,
code development, documentation, and testing. It also
includes the cost of operating the software and maintain-
ing it, the cost to make changes and updates, the cost of
porting to new systems, the cost of recovering from its
failures, and the cost of integrating other software with it.
A more accurate measurement should include other fac-
tors such as future savings in labor costs in future soft-
ware projects if the software is well designed and can be
reused. In this first approximation, we do not take all
these additional factors into account. Development cost
also includes the cost of training programmers when a
new language or computer system is used.

Software cost is often measured in terms of hours of
labor (assuming uniform wages), while hardware cost is
often measured in terms of machine time. An initial per-
formance study may focus on these two measures only.
However, even if one is willing to only use these two
coarse measures, one needs to worry about the “exchange
rate” between these two measures. The time spent in par-
allelizing and tuning a high performance code can repre-
sent a significant fraction of the total software development
effort. Nevertheless, it is seldom the case that tuning stops
only when no further performance improvement is possi-
ble. This implies an implicit trade-off between the extra
programming effort needed to further reduce execution
time and the savings in machine time resulting from this
effort. To address this trade-off, we need to measure both
compute time and programmer time using a common
measure, namely a monetary unit such as dollars. It is
then possible (in principle) to also address the difference
between the different classes of workers with a wide
range of skills that are usually involved in the develop-
ment and deployment of a software system.

3.3 WHAT IS THE SHAPE OF THE
CURVES?

As explained in Section 3.1, the utility function U(P, T) is
most likely a decreasing function C(P, S, T) of time. One
can similarly expect the cost function to be a decreasing
function of time. This is so because one needs to increase
development cost in order to reduce development time and
one needs to increase execution cost in order to decrease
execution time. In order to reduce development time, one
may increase the number of programmers. However, an
increase in the number of programmers assigned to a pro-
gramming task does not usually result in a proportional

Fig. 3 Time-independent utility. Fig. 4 Staircase utility function.

422 COMPUTING APPLICATIONS

decrease in development time (Brooks, 1975). Similarly,
in order to reduce execution cost, one may use a machine
with more processors. However, speedup is seldom linear
in the number of processors. Thus, stretching the time-to-
solution reduces cost (up to a point) but also reduces the
utility of the result.

By composing the cost–time curve and the utility–
time curve one obtains a productivity–time curve:

= U(P, T) / C(P, S, T). Little can be said,
a priori, about its shape: it depends on how fast cost
decreases when one stretches the time-to-solution versus
how fast the utility of the result decreases. In many cases
we expect a unimodal curve as illustrated in Figure 5,
with one optimal solution that gives us the ideal (opti-
mal) productivity. At one end, if we stretch development
time beyond the bare minimum possible then productiv-
ity increases, since the marginal cost for a reduction in
time-to-solution is very steep, when we get close to the
minimum. At the other end, if we stretch the time-to-
solution too much then productivity decreases, since
there are almost no further cost savings, while utility
continues to drop.

Consider the following two extremes.
Flat utility-time curve (equation (2)). Productivity is

inversely proportional to cost, and, hence is monotoni-
cally increasing:

.

If utility does not decrease over time, then the devel-
opment and execution process with the slowest practi-
cal progress rate, which is the cheapest, will also be
the most productive. There is no reason to ever use a
parallel machine, or to have more than one application

developer working on a project, if time is not an issue.
Parallelism increases some costs in order to reduce time-
to-solution. Its use is premised on the assumption of
decreasing utility with time. This clearly indicates why
one must take into account the fact that utility decreases
over time.

Deadline-driven utility–time curve (equation (1)).
Productivity is inversely proportional to cost and increases,
up to the deadline, then immediately drops to zero:

.

Since cost is monotonically decreasing, we obtain a curve
as illustrated in Figure 6. In this case, the most productive
solution is the one that accelerates time-to-solution so as
to meet the deadline, but no more. This ignores uncer-
tainty and risk. In practice, uncertainty on the time needed
to solve the problem will lead to a solution that provides
a margin of safety from the deadline. We shall further
revisit this issue in Section 3.5.

3.4 DUALITY

The discussion of the last sections assumed time T to be
the free parameter, and cost C to be the dependent param-
eter. That is, one sets time-to-solution, and spends the
amount needed in order to achieve that deadline. Instead,
one can set the budget, and look at time-to-solution as
dependent on budget. We define, accordingly, T(P, S, C)
to be the minimal time needed to solve problem P on sys-
tem S with cost C. It is easy to see that

Fig. 5 Productivity as a function of time-to-solution.

Ψ P S T U, , ,()

Ψ P S T U, , ,() U P T,()
C P S T, ,()
------------------------- u

C P S T, ,()
-------------------------= =

Fig. 6 Productivity for deadline-driven utility function.

Ψ P S T U, , ,()
u C P S T, ,()⁄ if T deadline≤
 0 if T deadline>




=

Ψ P S U, ,() maxc
U P T P S C, ,(),()

C
---.=

423MEASURING HPC PRODUCTIVITY

Using this formulation, productivity is maximized by
considering, for each possible cost, the least time-to-
solution achievable for this cost, and hence the best pro-
ductivity achieved with this cost; then picking that cost
that optimizes productivity. Thus, if one understands
what time-to-solution can be achieved for each cost, one
has the information needed to compute productivity, for
any utility function. This formulation has the advantage
of being closer to the way decisions are made in most
firms and organizations: budget is allocated and comple-
tion time is a result of this allocation.

3.4.1 Minimizing Time-to-Solution. As mentioned in
Section 3.2, time-to-solution T(P, S, C) includes devel-
opment time TD and execution time TE: T = TD + TE.
There is a trade-off between the two, as added develop-
ment time can lead to reduced execution time: more time
spent tuning and parallelizing an application leads to less
running time. This is especially true for large-scale paral-
lel systems, where added development time spent in par-
allelizing an application can reduce execution time by
orders of magnitude. The same observation applies to
applications that have to be executed in sequence many
times: added development time can significantly reduce
execution time.

Assume a fixed cost C for development and execution.
A fixed application can be developed and executed using
different combinations of development time and execu-
tion time. These combinations will be described by a
curve similar to the curves in Figure 7. Total time will be
minimized by one (or more) points on this curve, the
point where marginal increase in development time is
equal to the marginal decrease in execution time. This
optimum point defines T(P, S, C). The optimum is achieved
at point where the asymptote to the curve has a 135° slope.
Indeed, we seek the minimum of T = TD + TE, under the
constraint CD(P, S, TD) + CE(P, S, TE) = C. This is achieved
when

The discussion in this section assumes that the cost func-
tions are differentiable.

3.5 Uncertainty and Risk

The discussion in the previous sections assumed that the
time-to-solution achieved for a given cost (or, equiva-
lently, the cost of achieving a given time-to-solution) are
perfectly known. In practice, there is some uncertainty
about the time-to-solution. One can model this by assum-
ing that T(P, S, C) the time-to-solution function, is sto-
chastic, i.e. T(P, S, C) defines a probability distribution
on the solution time, given the problem, system and cost.
We now define

In this model, for each cost C, we compute the ratio of
the expected utility achieved over that cost. The (ideal)
productivity is obtained by maximizing over C.

We analyze a concrete example, in order to illustrate
these definitions. Assume a deadline driven utility:

.

Assume, first, that completion time is related to cost as:

.

Then

.

Optimal decision making will stretch completion time
T(P, S, C) to match the deadline d, thus achieving uti-
lity 1, while minimizing cost to equal C =1 / d. This is the
result derived in Section 3.3.

Assume now that completion time is stochastic: the
completion time is uniformly distributed in the interval
[(1 – δ) / C, (1 + δ) / C], where 0 < δ <1. Then completion
time has mean 1 / C, and variance σ2 = (δ / C)2. Then

If δ <1 / 3 then the maximum of E(U) / C is obtained
when C = (1 + δ) / d. The mean completion time then

Fig. 7 Constant cost curves.

∂CD

∂TD

∂CE

∂TE

---------, or
∂TE

∂TD

--------- 1.–= =

Ψ P S U, ,() maxc
E U P T P S C, ,(),()()

C
--.=

U P T,()
1 if T d≤
0 if T d>




=

T P S C, ,() 1 C⁄=

Ψ P S U, ,() 1 d⁄=

1
3

E U P T,()() Pr T d≤()=

0 if d 1 δ–() C⁄<
d 1 δ–() C⁄–

2δ
--------------------------------- if 1 δ–() C d 1 δ+() C⁄≤ ≤⁄

1 if d 1 δ+() C⁄().>





=

424 COMPUTING APPLICATIONS

equals 1 / C = d / (1 + δ). Thus, the larger the variance,
the smaller the expected completion time that maximizes
productivity, and the smaller the productivity. A larger
uncertainty on completion time forces one to a more con-
servative schedule, thus reducing the resulting utility. In
this example, productivity is optimized by a schedule that
totally avoids the risk of missing the deadline. In general,
the optimal solution may be obtained for a schedule that
entails some risk of missing the deadline.

A more robust analysis should account for the fact
that uncertainty about time-to-completion decreases as
a project progresses. Rather than a single decision point,
one should think of a continuous decision process where,
at any point in time, one picks the branch that maximizes
expected productivity, given current knowledge.

3.6 RANKING SYSTEMS

It is tempting to expect that a study such as ours will pro-
vide one figure of merit for systems or, at the least, a lin-
ear ordering. This is unlikely to happen.

Definition: System S1 dominates system S2 (S1 > S2) if
(P, S1 ,U) (P, S2 ,U) for any problem P and util-

ity function U.
If S1 dominates S2, then is clearly preferable to S2. This

could occur, for example, when S1 is identical to S2,
except that S1 is cheaper, or has hardware that runs
faster, or a compiler produces faster code, etc. However,
in general, systems are not well ordered: (P, S1 ,U) >

(P, S2 ,U), for some problem P but (, S1 ,U) <
(, S2 ,U) for some other problem , or (P, S1 ,)

< (P, S2 ,) for some other utility function . For
example, system S1 is better for “scientific” applications,
but system S2 is better for “commercial” applications. Or,
system S1 is better when time-to-solution is paramount,
but system S2 is better for applications that are less time-
sensitive. Thus, we should not expect one figure of merit
for systems, but many such figures of merits. These do
not provide a total ordering of systems from most pro-
ductive to least, but rather indicate how productive a sys-
tem is in a specific context, for a specific set of appli-
cations and specific time sensitivity. We discuss in the
next section how one can define such figures of merits,
i.e. productivity metrics.

4 Metrics and Predicting Time-to-
Solution

The discussion in the previous sections implies that one
can estimate the productivity of a system, if one can esti-
mate the time-to-solution (or other critical features of a
solution) achieved for various problems, given a certain
investment of resources (including programmer time and
machine time). Indeed, the time-to-solution determines

the utility of the system and the resources invested deter-
mine the system cost; both together determine productiv-
ity. How can one undertake such a study?

An ideal framework for such a study is provided by the
following approach. Each system S is characterized by
metrics M1(S), ..., Mn(S). These metrics could include
parameters that contribute directly to execution perform-
ance, such as the number of processors on the target system,
processor speed, memory, etc.; parameters that relate to
availability, such as MTBF; parameters that relate to pro-
gramming performance, such as support for various lan-
guages, libraries and tools; and parameters that quantify
the quality of this support.

The characteristics of such metrics are that they are

• (reasonably) easy to measure on existing systems and
to predict for future systems;

• application independent.

Similarly, each problem P is characterized by metrics
L1(P), ..., Lm(P). These application metrics could include
static code parameters such as source lines of code
(SLOCs); execution parameters such as number of instruc-
tions, instruction mix, and degrees of locality (e.g. spatial,
temporal) found in the memory references; metrics to
characterize the complexity of the software, and the com-
plexity of the subject domain; metrics to characterize how
well specified the problem is, and how likely the specifi-
cation is to evolve; and so on. The characteristics of such
metrics are that they are

• (reasonably) easy to measure on existing applications
and to predict for future problems;

• system independent.

A model predicts time-to-solution as a function of the
system and problem parameters:

.

The system metrics M1(S), ..., Mn(S) will be productivity
metrics for the system. For reasons explained in Sec-
tion 3.6, we should not expect that one, or even a few,
parameters will categorize a system: this is a high-dimen-
sional space.

The existence of a model that can predict time-to-
solution validates the system metrics: it shows that the
metrics used are complete, i.e. have captured all essential
features of the systems under discussion. Furthermore, the
model provides a measure of the sensitivity of time-to-solu-
tion to one or another of the metrics. If the model is ana-
lytical, then measures how sensitive is time-to-solution
to metric Mi, as a function of the system and the applica-
tion under consideration.

Ψ ≥ Ψ

Ψ
Ψ Ψ P′
Ψ P′ P′ Ψ U′

Ψ U′ U′

T P S C, ,() T L1 P() ... Lm P() M1 S() ... Mn S() C,, ,,,,()≈

∂T
∂Mi

425MEASURING HPC PRODUCTIVITY

Models are likely to be stochastic: one does not obtain
a single predicted time-to-solution, but a distribution on
time-to-solution. In fact, one is likely to do with even
less; namely with some statistical information on the dis-
tribution of time-to-solution. The model validity is tested
by measuring actual time-to-solution and then comparing
it to predicted time-to-solution for multiple applications
and multiple systems. The number of validating measure-
ments should be large relative to the number of free
parameters used in the model, so as to yield statistically
meaningful estimates of the parameters and error mar-
gins.

We introduced cost as a model parameter in order to
be able to compare different resources using a common
yardstick. Researchers may prefer to use parameters that
can be measured without referring to price lists or to
procurement documents. Rather than cost, one can use
parameters that, to first order, determine cost. The cost of
a system is determined (to first approximation) by the
system configuration (processor speed, number of proc-
essors, memory per processor, system bandwidths, inter-
connection, etc.); these parameters are part of the system
metrics. The software development cost is determined (to
first approximation) by the number of programmer hours
invested in the development. Thus, a more convenient
model may use

where H is the number of hours invested in code devel-
opment and TE is the execution time of the program as a
function of the system (or system metrics), problem (or
problem metrics), and hours of code development. We
expect that the curve that depicts TE as a function of H
will be similar to the curve in Figure 8, with two asymp-
totes: there is a minimal development effort Hmin that is
needed to get a running program, irrespective of perform-

ance; and there is a minimal execution time Tmin that
will not be improved upon, irrespective of tuning efforts.
A nearly L-shaped curve indicates rigidity: increasing
development time does not significantly decrease the run-
ning time. In such a case the execution time can be approxi-
mated as

.

If so, then one can study development effort Hmin and
execution performance Tmin separately; the first depends
only on the software metrics of the problem and the sys-
tems, while the second depends only on the performance
metrics of the problem and the system.

4.1 DISCUSSION

The general framework outlined in the previous section
is not new. It has been used to study execution time (see,
for example, Abandah and Davidson, 1998; Snavely et
al., 2002), and it has been used, implicitly, in many soft-
ware engineering studies, to predict development cost or
maintenance cost of software as a function of various
program metrics (see, for example, Boehm et al., 1995).
We do not propose to repeat all the work that has been
done in this area. However, there are good reasons to
believe that new work is needed.

1. The development process for high performance
scientific codes is fairly different from the devel-
opment processes that have been traditionally
studied in software engineering. Research is needed
to develop software productivity models that fit
this environment.

2. Development time and execution time have been
traditionally studied as two independent prob-
lems. This approach is unlikely to work for HPC
because execution time is strongly affected by
investments in program development, and a sig-
nificant fraction of program development is devoted
to performance tuning. Note that much of the
effort spent in the porting of codes from system to
system is also a performance tuning effort related
to different performance characteristics of differ-
ent systems, rather than a correctness effort
related to different semantics. Our formulation
emphasizes this dependency.

3. The utility function imposes constraints on the
development time allowable to communities that
use HPC. For instance, one discipline may have
problems with a deadline – driven utility, so users
develop run-once “Kleenex” codes, while another

Fig. 8 Execution time as function of development effort.

TE P S H, ,() TE L1 P() ... Lm P() M1 S() ... Mn S() H,, ,,,,()≈

TE

∞ if H Hmin<
Tmin if H Hmin≥




=

426 COMPUTING APPLICATIONS

discipline may have problems with a nearly time-
independent utility and use highly optimized soft-
ware systems developed over many years.

There will be an inherent tension between the desire to
have a short list of parameters and the desire to have accu-
rate models. A full specification of performance aspects
of large hardware systems may require many hundreds or
thousands of parameters: feeds and speed of all compo-
nents, sizes of all stores, detailed description of mecha-
nisms and policies, etc. If we compress this information
into half a dozen or so numbers, then we clearly lose
information. A model with a tractable number of parame-
ters will not be able to fully explain the performance of
some (many?) applications.

The appropriate number of metrics to use will depend
on the proposed use of these metrics and models. One
may wish to use such metrics and models so as to predict
with good accuracy the performance of any application
on a given system. In such a case, the system metrics pro-
vide a useful tool for application design. Such a goal is
likely to require detailed models and long parameter lists.
Our goal is more modest: we would like a set of metrics
and a model that provides a statistically meaningful pre-
diction of performance for any fixed system, and for large
sets of applications. While the error on the estimation of
programming time or execution time for any individual
application can be significant, the average error over the
entire application set is small. This is sufficient for pro-
viding a meaningful “measure of goodness” for systems,
and is useful as a first rough estimate of the performance
a system will provide in a given application domain.

4.2 PERFORMANCE-ORIENTED SYSTEM
METRICS

For over ten years, the HPC community has mostly relied
upon a single metric to rank systems, i.e. the maximum
achievable rate for performing floating-point operations
while solving a dense system of linear equations (e.g.
Linpack). As a significant service to the community and
with substantial value to the vendors and customers of
high-end systems, Dongarra et al. release these rankings,
known as the Top500 List, in a semi-annual report (http:/
/www.top500.org/). While this metric has encouraged
vendors to increase the fraction of peak performance
attained for running this benchmark problem, the impact
of these optimizations on the performance of other codes
is not clear. For instance, the performance of integer
codes (from problems using discrete mathematics, tech-
niques from operations research, and emerging disci-
plines such as computational biology) may not correlate
well with floating-point performance. In addition, codes
without spatial or temporal locality may not achieve the

same performance as Linpack, a regular code with a high
degree of locality in its memory reference patterns.

In an ideal model, productivity metrics will span the
entire range of factors that affect the performance of
applications. If the code is memory-intensive, and with a
high degree of spatial locality but no temporal locality,
performance typically depends upon the system’s maxi-
mum sustainable memory bandwidth (for instance, as
measured by the Stream Benchmark; HPC Challenge
Benchmark, http://icl.cs.utk.edu/hpcc/; McCalpin, 2004).
For another code with low degrees of locality (essen-
tially uniformly random accesses to memory locations)
the RandomAccess benchmark (see http://icl.cs. utk.edu/
hpcc/), which reports the maximum giga-updates-per-
second (GUPS) rate for randomly updating entries a
large table held in memory, may be a leading metric for
accurately predicting performance. Thus, when seeking a
necessary set of system metrics for good accuracy of the
model, metrics should reveal bottlenecks for achieving
higher application performance. In modern systems, in
addition to the memory bandwidth, integer perform-
ance, and memory latency, the following factors are
often identified as limiting the performance for at least
some codes. These factors illustrate some important met-
rics but are by no means a necessary or sufficient list of
system metrics:

• sustainable I/O bandwidth for large transfers (best
case);

• sustainable I/O bandwidth for large transfers that do
not allow locality;

• floating-point divide, square root, transcendental func-
tions;

• bit twiddling operations (data motion and computa-
tion);

• global, massively concurrent atomic memory updates
for irregular data structures, such as those used in
unstructured meshes, e.g. graph coloring, maximal
independent set.

The metrics are formally defined by microbenchmarks,
i.e. experiments that measure the relevant metric. In
many cases, the experiment consists of running (repeat-
edly) a specific code, and measuring its running time.

The metrics so far reveal performance characteristics
usually dependent on a single hardware feature. Metrics
may also include more complex operations that depend
on multiple hardware features. These metrics often are
referred to as “common critical kernels”, and could
include metrics for the rates of the following types of
operations:

• scatter/gather;
• scans/reductions;

427MEASURING HPC PRODUCTIVITY

• finite elements, finite volumes, fast Fourier trans-
forms, linear solvers, matrix multiply;

• list ranking: find the prefix-sums of a linked list;
• optimal pattern matching;
• database transactions;
• histogramming and integer sorting;
• LP solvers;
• graph theoretic solvers for problems such as traveling

sales person, minimum spanning tree, max flow, and
connected components;

• mesh partitioners.

Such kernels can be defined by a specific code, or can be
defined as a paper and pencil task (or both).

The advantage of using metrics that measure specific
hardware features is that it is relatively easy to predict
their values for new systems, at system design time.
Indeed, in many cases, these parameters are part of the
system specification. The disadvantage is that it may be
harder to predict the performance of a complex code
using only these basic parameters.

It is harder to predict the performance of a kernel
when hardware is not extant. On the other hand, it may
be easier to predict the performance of full-blown codes
from the performance of kernels. In many cases, the run-
ning time of a code is dominated by the running time of
kernels or solvers that are very similar or identical to the
common critical kernels. In such a case, the performance
of a code is not improved significantly by additional tun-
ing, once a base programming effort has occurred. The
performance can be modeled as a linear combination of
the performance of the common kernels, i.e.

where the weights α1, ..., αn are problem parameters and
M1, ..., Mn are system metrics defined by the running
time of common kernels on the system. (To simplify the
discussion, we assume a fixed problem size and a fixed
machine size. In the general case, they both need to
appear as system and problem metrics, respectively.)

4.3 PERFORMANCE-ORIENTED
APPLICATION METRICS

In order to estimate the execution time of a program,
the system metrics need to be combined with application
metrics. Ideally, these application metrics should be
defined from the program implementing an application,
with no reference to parameters from the system execut-
ing the program. However, almost no high-level pro-
gramming notation provides a “performance semantics”

that supports such analysis. Notable exceptions are
NESL (Blelloch, 1996; Blelloch and Greiner, 1996) and
Cilk (Blumofe et al., 1996). NESL provides a composi-
tional definition of the Work (number of operations) and
the Depth (critical path length) of a program, together
with an implementation strategy that runs NESL pro-
grams in time O(Work / P + Depth) on P processors.
Cilk provides an expected execution time of a “fully
strict” multithreaded computation on P processors, each
with an LRU cache of C pages, in O((Work + mM) / P +
mCDepth) where Work and Depth are defined as before,
M is the number of cache misses (in a sequential compu-
tation), C is the size of the cache, and m is the time
needed to service a miss.

Application metrics are more commonly defined by
using an abstract machine and specifying a mapping of
programs to that abstract machine. At the least, this
abstract machine model is parametrized by the number of
processors involved in the computation (JaJa, 1992; Reif,
1993); the model may include more parameters describ-
ing memory performance (Aggarwal et al., 1989; 1990)
or interprocessor communication performance (Culler et
al., 1993). In this approach, one does not define explicitly
application metrics; these are defined implicitly via algo-
rithmic analysis which derives a formula that relates
input size and abstract model parameters to running time.
The prediction of the running time on an actual machine
is achieved by setting the parameters of the abstract
machine to match the actual machine characteristics.

Algorithmic analysis is essential in the design of per-
forming software. Furthermore, algorithmic analysis can
account correctly for complex interdependences which
have the effect that the running time of a program is not a
s imple addition of the running time of components.
Unfortunately, this approach also has many limitations, as
follows.

• A simple model such as the PRAM model facilitates
analysis, but ignores many key performance issues,
such as locality, communication costs, bandwidth lim-
itations, and synchronization. One can develop more
complex models to reflect additional performance fac-
tors, but then analysis becomes progressively harder.
Furthermore, there is no good methodology to figure
out what is “good enough”: there is no way of bound-
ing the error that the model obtains when certain fac-
tors are ignored.

• A complete analysis of a real application code is
impractical. Instead, one makes educated guesses
about the small performance-critical code regions and
analyzes these, ignoring a large fraction of the remain-
ing code. However, which parts of a large code cause
performance bottlenecks may change from system to
system.

TE S P H, ,()
∞ if H Hmin<
α1M1 S() ... αnMn S()+ + Tmin= if H Hmin≥




≈

428 COMPUTING APPLICATIONS

• The mapping of an algorithm expressed in a high-level
language to a system is a complex process, involving
decisions made by compilers, operating systems, and
run-time environments. These are typically ignored in
algorithmic analysis. Worse, since algorithms are
designed for a simple execution model (fixed number
of processors, all running at the same speed), any devi-
ation from the simple execution model appears as an
anomaly that may cause performance problems, not as
a strategy that improves performance.

• For many problems (e.g. optimization solvers and
problems with irregular data structures such as those
that use sparse matrix and graph representations), it is
not sufficient to characterize input by size; in general,
it may not be possible to derive a simple closed-form
formula for the performance of a code.

An alternative measurement based approach is to extract
application metrics from measurements performed dur-
ing application execution. Typical metrics may include
the following (see, for example, Abandah and Davidson,
1998; Snavely et al., 2002):

• the number of operations executed by the program;
• the characterization of memory accesses that includes

their number and their distribution;
• the characterization of internode communication that

includes the number of messages and the amount of
data communicated between nodes.

Such parameters can be combined with machine parame-
ters to predict the total running time on a system other
than that where measurements were taken. This presumes
that one has correctly identified the key parameters, has
the right model, and that the application parameters do
not change as the code is ported. For example, a compiler
can affect operation count or memory access pattern; the
effect is assumed to be negligible, in this approach.

Finally, the two approaches can be combined in a
hybrid method that develops a closed-form analytical
formula for running time as a function of application and
machine parameters, but uses measurements to estimate
some of the application parameters. For example, the
execution time for sequential code might be measured,
while communication time is estimated from a model of
communication performance as a function of application
traffic pattern and system interconnect performance (see,
for example, Kerbyson et al., 2001). The hybrid approach
has the disadvantage that it cannot be as fully automated
as the measurement-based approach; it also has the
advantage that it often can derive a parametric applica-
tion model that is applicable to a broader set of inputs.

So far, we have assumed that applications are described
as a combination of low-level operations, such as addi-

tions, multiplications, memory accesses, etc. Alterna-
tively, it may be possible to characterize applications as
combinations of higher level components, such as the
common critical kernels described in Section 4.2. This is
likely to be valid when most of the computation time is
actually spent in one of the listed kernels. However, the
approach may still be valid even if this is not the case,
provided that the set of kernels is rich enough and “spans”
all of the applications under consideration. Then, each
application can be represented as a weighted sum of ker-
nels (running on inputs of the right size).

4.4 SOFTWARE PRODUCTIVITY

System metrics can be defined using micro benchmarks,
i.e. carefully defined experiments that measure key fea-
tures of the system. This approach has been frequently
used to characterize hardware features (Hristea et al.,
1997; Hey and Lancaster, 2000). The design of such per-
formance micro benchmarks is derived from an under-
standing of the key performance bottlenecks of modern
microprocessors. The experiments attempt to measure
the impact of each important hardware feature in iso-
lation. It is tempting to attempt the use of a similar
approach for measuring software productivity: we would
characterize the key subactivities in HPC software devel-
opment and attempt to measure the impact of the devel-
opment environment on each such subactivity. A first
step in this direction is to understand the key steps in
software development and how they might differ in HPC,
as compared to commercial software development.

4.4.1 Requirements/Specifications. This phase defines
the requirements for the software and the necessary spec-
ifications. In the commercial environments, the biggest
challenge is to keep changes to the requirements at a min-
imum during the execution of the project. In HPC projects,
the challenge may not be managing the changes to the
specifications, but gathering of the specifications in ade-
quate details for clarity of design and implementation.
The crashing of the Mars Climate Orbiter on the surface
of the planet due to the software calculations being made
in the wrong units (Imperial versus metric) shows the
importance of this step. Any errors in the requirements
can easily lead to churns in the design causing major pro-
ductivity impacts. Software engineering tooling in this
phase has been very weak.

4.4.2 Design. This is the phase of a software project
when high-level (and, if applicable, low-level) architec-
ture of the software is defined from a set of requirements.
Typically this is carried out by highly skilled software/
application designers. Depending on the process enforced
and the size of the development group, the design docu-

429MEASURING HPC PRODUCTIVITY

ments can be very formal to casual. In the commercial
arena, the productivity during design can be increased by
the use of design languages, such as the unified modeling
language (UML), which allow substantial automated
analysis of the design and generate some lower level arti-
facts for an easier implementation. In the HPC arena,
such as calculations in nuclear physics experiments, sim-
ulating combat scenarios, weather predictions, protein
folding, etc., design is not likely to be written a priori.
Conceptual progress, model definition, and programming
are all performed concurrently by a skilled researcher/
technician (who may not be a trained as a professional
software engineer) and hence some of the design aids in
commercial software do not apply. Design and modeling
end up being captured in the code implementation and
one may have some design documentation only after the
fact for maintenance or analysis purposes. Parallel design
also poses specific complexity usually not found in com-
mercial environments.

4.4.3 Code Development and Debugging. This is the
phase during which a code is developed and debugged
from specification or design. In the commercial arena,
significant progress has been made in providing inte-
grated development environments (IDEs) that can signif-
icantly increase the programmer productivity. Typical
IDEs come with higher level components that can be eas-
ily used by the programmer for producing significant
functionality in a very short time. Some examples in this
area are the development of graphical user interfaces
(GUIs), connection to databases, network socket connec-
tions, etc. These environments are also quite capable of
providing language specific debugging tools for catching
errors via static code analysis (e.g. unassigned variables,
missing pointers, etc.) There are also documented exam-
ples of improved productivity as a result of the adoption
of Java as the programming language instead of C++. In
the HPC arena, languages and development environments
are still not advanced enough to be able to provide similar
productivity enhancements in the creation and debugging
of the parallel code. However, this is an area where signif-
icant progress is possible, by adapting existing IDEs to
the HPC arena, adding tools that deal with parallel cor-
rectness and performance, and by taking advantage of
existing/emerging components for HPC (libraries and
frameworks).

4.4.4 Testing and Formal Verification. Testing of com-
mercial software can easily take 30–70% of the develop-
ing effort depending on the nature of the software and the
reliability assurance required (RTI, 2002). Testing involves
four key activities: test design, test generation, test exe-
cution, and debugging. A clear understanding of what the
software is expected to do is essential for efficient and

effective testing of the software. In the commercial arena,
there has been considerable automation in test execution
compared to the other three activities. In practice, testing
is rarely exhaustive. Even though it is the most common
way of doing software quality assurance, testing (due to
the sampling nature) does not preclude residual software
defects in the program. Formal verification of the design
or code or model checking may be the only way to ensure
some critical behavior of the software, but this does not
scale for a wide range of behavior. However, in the HPC
arena, testing is typically carried out as a part of coding.
Unlike commercial applications, typically the calcula-
tions are limited in the number of outputs the programs
can produce. Therefore, for mission critical software
applications, formal verification of the program and/or
model checking may indeed be a viable option. Here, too,
there should be many opportunities for adapting com-
mercial tools and practices to HPC.

4.4.5 Code Tuning for Performance. By definition HPC
codes have high performance requirements that often jus-
tify a significant investment in performance tuning,
beyond what is common in commercial code develop-
ment. This problem is compounded by the difficulties of
achieving good performance on large scalable systems
and by the large variation among hardware systems.
Thus, tuning is likely to be a more significant component
of software development for HPC than for commercial
codes.

4.4.6 Code Evolving. As many HPC codes are experi-
mental in nature, we can expect these codes to evolve at a
faster rate than commercial codes. This increases the
importance of tools for automated testing, especially of
tools that can test a new code version against a “golden
version”. In many HPC environments, there is a close
interaction between the code developers and the code
users (indeed, they will often be one and the same). This
close interaction has many obvious advantages. It has
one important disadvantage in that it leads to a less for-
mal process for defect reporting and tracking, and hence
often to an inferior capture of process information about
software evolution. Hence, tools that facilitate such cap-
ture are very important.

4.5 Software Productivity Benchmarks

4.5.1 Process Benchmarks. Although there is an exten-
sive literature on software metrics, and models that pre-
dict how hard it is to develop and maintain codes, as a
function of code metrics, there is little, if any, that applies
specifically to HPC. While there is a vigorous debate on
the productivity of various programming models, e.g.
message passing versus shared memory, the debate is

430 COMPUTING APPLICATIONS

almost entirely based on anecdotal evidence, not meas-
urement. Thus, we believe that it is imperative to initiate
a research program that will produce experimental data to
settle such arguments.

We envisage software productivity experiments which
focus on a well-defined task that can be accomplished by a
programmer of some experience within a reasonable time
frame, e.g. developing code with 500–1500 SLOC for a
well-defined scientific problem. The experiments will
focus on one aspect of software development and mainte-
nance and will compare two competing environments:
e.g. OpenMP (Official OpenMP Specifications, http://
www.openmp.org/specs/) versus MPI (MPI: A Message-
Passing Interface Standard, http://www.mpi-forum.org/
docs/mpi-11-html/mpi-report.html). Compact application
benchmarks, such as the NAS application kernels (Bailey
et al., 1995), could be used for that purpose. Examples of
software development activities are listed below.

Code development and debugging. Develop and
debug a code from specification. This experiment tests
the quality of the programming model and of the pro-
gramming environment used for coding and debugging.

Code tuning. Tune code until it achieves 50% (or 70%,
etc.) of “best” performance. Best performance can be
defined by the performance achieved by a vendor tuned
version of the code. These experiments are very impor-
tant as they allow us to study the trade-off between coding
time and execution time. Code tuning can be defined to
involve performance for a fixed number of processors, or
performance for a range of processor numbers, thus
becoming a “code scaling” study. Note that code tuning
tests not only the programming model, but the quality of
the implementation and of the performance tools.

Code evolving. This is the same experiment as for code
development and tuning, except that one does not start
from a specification, but from an existing code. One can
test evolution that results from a specification change (e.g.
change solver), or evolution that results from a system
change (e.g. port shared memory code to message pass-
ing, or vice versa). In the latter case, the difficulty of the
task depends both on the source model and on the target
model.

The most obvious measure of the difficulty of such
an activity is programming effort: how long does it take
a programmer to achieve the desired result? For results
to be meaningful, one needs to perform experiments in
a controlled environment (e.g. students after an intro-
ductory course, experienced programmers), with large
enough populations so as to derive meaningful statistics.
The experiments should be performed in academia or by
research labs, not by the vendors themselves.

4.5.2 Product Benchmarks. In addition to (or instead
of) the process metric of programmer time, one can meas-

ure product metrics: metrics of the produced software. In
the traditional commercial software development envi-
ronment, there have been different attempts to measure
software productivity and relate it to software metrics.
Typically this is expressed as the ratio of what is being
produced to the effort required to produce it. For example,
the number of SLOC is a commonly used measure of the
programmer output and then the number of lines of code
per programmer month is the resulting productivity met-
ric. This has the specific advantage that the measurement
of the lines of code in a program can be easily automated.
However, it suffers from the most common criticism that
the same functionality can be delivered by different
implementations with widely different lines of code count
based on the style of the programmer, programming lan-
guage, development environments using CASE tools, etc.
This results in a serious possibility of manipulation of the
measurement of the lines of code to increase the produc-
tivity value. Also, the number of lines of code does not
quite capture the complexity or the specific aspects of
functionality implemented by a programmer. Thus, as an
alternative to the lines of code, some organizations have
used function points as the measure of programmer output
(Albrecht and Gaffney, 1983). Function points are defined
explicitly in terms of the implemented function (number
of inputs, outputs, etc). Unfortunately, due to some of the
subjective elements of the functional definition, the
counting of the function points cannot be automated (Ver-
ner et al., 1989). Also, some valid and real programming
elements do not end up contributing to function points,
and consequently this metric ends up undercounting
implemented functionality. More recently, with the increas-
ing popularity of software design using UML, there is
more interest in considering some measurements based
on the UML artifact, “use case”. So far, this approach still
suffers from the handicap that not all use cases are the
same, and a more detailed characterization of a use case is
necessary before serious software output measures can be
defined. The literature is replete with many alternative
measures for code “complexity” (e.g. cyclomatic com-
plexity; McCabe and Watson, 1994). Of particular impor-
tance for HPC are more recently developed software
metrics that seem more applicable to OO code (Tahvildari
and Singh, 2000a). The measurement of many of those
can be automated, but it is not always clear how well they
predict programming effort. Of particular importance for
our purpose is to develop and assess software metrics that
capture the “parallel complexity of codes”. Programmers
have an intuitive notion of code that has low “parallel
complexity” (simple communication and synchronization
patterns), compared to code with high “parallel complexity”
(complex communication and synchronization patterns).
We expect more synchronization bugs in codes with high
parallel complexity. It would be useful to provide a for-

431MEASURING HPC PRODUCTIVITY

mal definition to this intuitive notion and to correlate
“parallel complexity” to debugging and tuning time.

We are left with no clear choice to adopt for measuring
software productivity in the HPC environment from the
traditional commercial software arena. Our problem is
compounded by the fact that the development of HPC
code has its own unique challenges (difficulty of coding
parallel code, importance of performance tuning), and by
the fact that we are interested in models that can be used
to compare programming models or systems. This is not
a focus of most work on software productivity. While the
problem is challenging, we feel this still is a direction
worth pursuing.

We can use product metric measurements as a “proxy”
for the three activities we discussed in the previous
section.

Code development. For example, we can assess the
quality of a particular programming model by the com-
plexity of the software needed to code a particular prob-
lem from a specification. This approach has been used to
assess the impact of using pattern-based systems for par-
allel applications (Tahvildari and Singh, 2000b).

Code tuning. One can assess the difficulty of tuning
for a particular system by comparing the code complex-
ity of a “vanilla” implementation to the code complexity
of an optimized implementation.

Code evolution. One can assess the difficulty of code
evolution by measuring the complexity of the changes
needed in a code to satisfy a new requirement.

5 Summary

In this paper we have outlined a framework for measur-
ing the productivity of HPC systems and we have
described possible experiments and research directions
suggested by this framework. Some of this research is
now starting, under the DARPA HPCS program (http://
www.darpa.mil/ipto/programs/hpcs/). The problem of meas-
uring productivity is a complex one; it has vexed econo-
mists over many decades, in much simpler contexts than
that considered in this paper. Thus, we should not expect
quick answers or complete solutions. However, the prob-
lem of measuring productivity is also fundamental to any
rational resource allocation process in HPC. Thus, even
partial progress in this area is better than nothing. We
hope that the framework suggested in this paper will con-
tribute to such progress.

AUTHOR BIOGRAPHIES

David A. Bader is an Associate Professor and Regents'
Lecturer in the Departments of Electrical and Computer
Engineering and Computer Science at the University of
New Mexico (UNM). He received his PhD in electrical

engineering in 1996 from the University of Maryland,
and was awarded a National Science Foundation (NSF)
Postdoctoral Research Associateship in Experimental
Computer Science before joining UNM in 1998. He is an
NSF CAREER Award recipient, an investigator on sev-
eral NSF awards, a distinguished speaker in the IEEE Com-
puter Society Distinguished Visitors Program and Dr Bader
serves on the Steering Committees of the IPDPS and HiPC
conferences, and is the General Co-Chair for IPDPS
(2004–2005), and Vice General Chair for HiPC (2002–
2004). He has served on numerous conference program
committees related to parallel processing, is an associate
editor for the IEEE Trans on Parallel and Distributed
Systems and the ACM Journal of Experimental Algorith-
mics, a Senior Member of the IEEE Computer Society,
and a Member of the ACM. He has co-authored over 60
papers on parallel algorithms, combinatorial optimiza-
tion, and computational biology and genomics.

Marc Snir is Michael Faiman and Saburo Muroga Pro-
fessor and Head of the Department of Computer Science
at the University of Illinois at Urbana-Champaign. Dr
Snir's research interests include large-scale parallel sys-
tems, parallel computer architecture, and parallel pro-
gramming. He received a PhD in mathematics from the
Hebrew University of Jerusalem in 1979. He worked at
NYU on the NYU Ultracomputer project in 1980–1982;
at the Hebrew University of Jerusalem in 1982–1986; and
at the IBM T. J. Watson Research Center from 1986 to
2001. At IBM he headed research that led to the IBM SP
scalable parallel system, he contributed to Power 4 and
Intel server architecture, and he initiated the Blue Gene
project. Dr Snir has published over 100 papers on compu-
tational complexity, parallel algorithms, parallel architec-
tures, interconnection networks, compilers and parallel
programming environments; he was a major contributor
to the design of MPI. Marc Snir is an ACM Fellow and
IEEE Fellow. He serves on the editorial board of Parallel
Processing Letters and ACM Computing Surveys.

References

Abandah, G. A. and Davidson, E. S. 1998. Configuration inde-
pendent analysis for characterizing shared-memory appli-
cations. Proceedings of the 12th International Parallel
Processing Symposium, 485–491, Orlando, Fl.

Aggarwal, A., Chandra, A. K., and Snir, M. 1989. On commu-
nication latency in PRAM computations. Proceedings of
the ACM Symposium on Parallel Algorithms and Architec-
tures, Santa Fe, NM, 11–21.

Aggarwal, A., Chandra, A. K., and Snir, M. 1990. Communica-
tion complexity of PRAMs. Theoretical Computer Sci-
ence 71(1):3–28.

Albrecht, A. J. and Gaffney, J. E. Jr. 1983. Software function
source lines of code and development effort prediction: a

432 COMPUTING APPLICATIONS

software science validation. IEEE Transactions on Soft-
ware Engineering 6:639–647.

Allen, F. et al. 2001. Blue Gene: a vision for protein science
using a petaflop supercomputer. IBM Systems Journal
40(2):310–327.

Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M., and
Werthimer, D. 2002. SETI@home: an experiment in pub-
lic-resource computing. Communications of the ACM
45(11):56–61.

Bailey, D.H. et al. 1995. The NAS Parallel Benchmarks 2.0,
Report NAS-95-010.

Blelloch, G. E. 1996. Programming parallel algorithms. Com-
munications of the ACM 39(3):85–97.

Blelloch, G. E. and Greiner, J. 1996. A provable time and space
efficient implementation of NESL. Proceedings of ACM
SIGPLAN International Conference on Functional Pro-
gramming, Philadelphia, PA, 213–225.

Blumofe, R. D., Frigo, M., Joerg, C. F., Leiserson, C. E. and
Randall, K. H. 1996. An analysis of dag-consistent dis-
tributed shared-memory algorithms. Proceedings of the
8th Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), Padua, Italy, 297–308.

Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R.
and Selby, R. 1995. Cost models for future software life
cycle processes: COCOMO 2.0. Annals of Software Engi-
neering 1:57–94.

Brooks, F. P. 1975. The Mythical Man-Month: Essays on Soft-
ware Engineering, Addison-Wesley, Reading, MA.

Culler, D. E., Karp, R. M., Patterson, D. A., Sahay, A.,
Schauser, K. E., Santos, E., Subramonian, R. and von
Eicken, T. 1993. LogP: towards a realistic model of paral-
lel computation. Proceedings of Principles and Practice
of Parallel Programming, San Diego, CA, 1–12.

Fishburn, P. C. 1970. Utility Theory for Decision Making,
Lively, New York.

Hey, T. and Lancaster, D. 2000. The development of Parkbench
and performance prediction. International Journal of High
Performance Computing Applications 14(3):205–215.

Hristea, C., Lenoski, D., and Keen, J. 1997. Measuring memory
hierarchy performance of cache-coherent multiprocessors
using micro benchmarks. Proceedings of Conference on
Supercomputing, San Jose, CA, 1–12.

JaJa, J. 1992. An Introduction to Parallel Algorithms, Addison-
Wesley, New York.

Kerbyson, D. J., Alme, H. J., Hoisie, A., Petrini, F., Wasserman,
H. J. and Gittings, M. 2001. Predictive performance and
scalability modeling of a large-scale application. Proceed-
ings of Supercomputing Conference (SC01), Denver, CO.

McCabe, T. J. and Watson, A. H. 1994. Software complexity.
Crosstalk, Journal of Defense Software Engineering
7(12):5–9.

McCalpin, J. D. 2004. STREAM: sustainable memory band-
width in high performance computers, http://www.cs.
virginia.edu/stream/.

Peterson, V. L., Kim, J., Holst, T. L., Deiwert, G. S., Cooper,
D. M., Watson, A. B. and Bailey, F. R. 1989. Supercom-
puter requirements for selected disciplines important to
aerospace. Proceedings of the IEEE 77(7):1038–1055.

Reif, J. H. 1993. Synthesis of Parallel Algorithms, Morgan
Kaufmann, San Francisco, CA.

RTI. 2002. The Economic Impacts of Inadequate Infrastructure
for Software Testing, Report 02-3.

Shirts, M. and Pande, V. S. 2000. Screen savers of the world
unite! Science 1903–1904.

Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R.
and Purkayastha, A. 2002. A framework for performance
modeling and prediction. Proceedings of Supercomputing
(SC02), Baltimore, MD.

Tahvildari, L. and Singh, A. 2000a. Categorization of object-
oriented software metrics. Proceedings of the IEEE Cana-
dian Conference on Electrical and Computer Engineer-
ing, Halifax, Canada, 235–239.

Tahvildari, L. and Singh, A. 2000b. Impact of using pattern-
based systems on the qualities of parallel application. Pro-
ceedings of the IEEE International Conference on Paral-
lel and Distributed Processing Techniques and
Applications (PDPTA), Las Vegas, NV, 1713–1719.

Verner, J. M., Tate, G., Jackson, B., and Hayward, R. G. 1989.
Technology dependence in function point analysis: a case
study and critical review. Proceedings of the 11th Interna-
tional Conference on Software Engineering, Pittsburgh,
PA, 375–382.

von Neumann, J. and Morgenstern, O. 1947. Theory of Games
and Economic Behavior, 1953 edition. Princeton Univer-
sity Press, Princeton, NJ.

Young, H. P. 1994. Cost allocation. Handbook of Game Theory
with Economic Applications, R. J. Aumann and S. Hart,
editors, Elsevier, Burlington, MA, 1193–2235.

