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Abstract. Lock-free shared data structures in the setting of distributed comput-
ing have received a fair amount of attention. Major motivations of lock-free data
structures include increasing fault tolerance of a (possibly heterogeneous) sys-
tem and alleviating the problems associated with critical sections such as priority
inversion and deadlock. For parallel computers with tightly-coupled processors
and shared memory, these issues are no longer major concerns. While many of
the results are applicable especially when the model used is shared memory multi-
processors, no prior studies have considered improving the performance of a par-
allel implementation by way of lock-free programming. As a matter of fact, often
times in practice lock-free data structures in a distributed setting do not perform
as well as those that use locks. As the data structures and algorithms for parallel
computing are often drastically different from those in distributed computing, it
is possible that lock-free programs perform better. In this paper we compare the
similarity and difference of lock-free programming in both distributed and par-
allel computing environments and explore the possibility of adapting lock-free
programming to parallel computing to improve performance. Lock-free program-
ming also provides a new way of simulating PRAM and asynchronous PRAM
algorithms on current parallel machines.

Keywords: Lock-free Data Structures, Parallel Algorithms, Shared Memory, High-
Performance Algorithm Engineering.

1 Introduction

Mutual exclusion locks are widely used for interprocess synchronization due to their
simple programming abstractions. However, they have an inherent weakness in a (pos-
sibly heterogeneous and faulty) distributed computing environment, that is, the crash-
ing or delay of a process in a critical section can cause deadlock or serious performance
degradation of the system [18, 28]. Lock-free data structures (sometimes called con-
current objects) were proposed to allow concurrent accesses of parallel processes (or
threads) while avoiding the problems of locks.
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1.1 Previous Results

Lock-free synchronization was first introduced by Lamport in [25] to solve the concur-
rent readers and writers problem. Early work on lock-free data structures focused on
theoretical issues of the synchronization protocols, e.g., the power of various atomic
primitives and impossibility results [3, 7, 11, 12, 13, 16], by considering the simple con-
sensus problem where n processes with independent inputs communicate through a set
of shared variables and eventually agree on a common value. Herlihy [20] unified much
of the earlier theoretic results by introducing the notion of consensus number of an
object and defining a hierarchy on the concurrent objects according to their consensus
numbers. Consensus number measures the relative power of an object to reach dis-
tributed consensus, and is the maximum number of processes for which the object can
solve the consensus problem. It is impossible to construct lock-free implementations
of many simple and useful data types using any combination of atomic read, write,
test&set, fetch&add and memory-to-register swap because these primitives have con-
sensus numbers either one or two. On the other hand, compare&swap and load-linked,
store-conditional have consensus numbers of infinity, and hence are universal meaning
that they can be used to solve the consensus problem of any number of processes. Lock-
free algorithms and protocols have been proposed for many of the commonly used data
structures, e.g., linked lists [37], queues [21, 26, 35], set [27], union-find sets [2], heaps
[6], and binary search trees [14, 36]. There are also efforts to improve the performance
of lock-free protocols [1, 6].

While lock-free data structures and algorithms are highly resilient to failures, un-
fortunately, they seem to come at a cost of degraded performance. Herlihy et al. stud-
ied practical issues and architectural support of implementing lock-free data structures
[19, 18], and their experiments with small priority queues show that lock-free imple-
mentations do not perform as well as lock-based implementations. LaMarca [24] devel-
oped an analytical model based on architectural observations to predict the performance
of lock-free synchronization protocols. His analysis and experimental results show that
the benefits of guaranteed progress come at the cost of decreased performance. Shavit
and Touitou [32] studied lock-free data structures through software transactional mem-
ory, and their experimental results also show that on a simulated parallel machine lock-
free implementations are inferior to standard lock-based implementations.

1.2 Asynchronous Parallel Computation

Cole and Zajichek [9] first introduced lock-free protocols into parallel computing when
they proposed asynchronous PRAM (APRAM) as a more realistic parallel model than
PRAM because APRAM acknowledges the cost of global synchronization. Their goal
was to design APRAM algorithms with fault-resilience that perform better than straight-
forward simulations of PRAM algorithms on APRAM by inserting barriers. A parallel
connected components algorithm without global synchronization was presented as an
example. It turned out, however, according to the research of lock-free data structures in
distributed computing, that it is impossible to implement many lock-free data structures
on APRAM with only atomic register read/write [3, 20]. Attiya et al. [4] proved a lower
bound of logn time complexity of any lock-free algorithm on a computational model
that is essentially APRAM that achieves approximate agreement among n processes in



518 G. Cong and D. Bader

contrast to constant time of non-lock-free algorithms. This suggests an Ω(logn) gap
between lock-free and non-lock-free computation models.

Currently lock-free data structures and protocols are still mainly used for fault-
tolerance and seem to be inferior in performance to lock-based implementations. In this
paper we consider adapting lock-free protocols to parallel computations where multi-
ple processors are tightly-coupled with shared memory. We present novel applications
of lock-free protocols where the performance of the lock-free algorithms beat not only
lock-based implementations but also the best previous parallel implementations. The
rest of the paper is organized as follows: section 2 discusses the potential advantages
of using lock-free protocols for parallel computations; section 3 presents two lock-free
algorithms as case studies; and section 4 is our conclusion.

2 Application of Lock-Free Protocols to Parallel Computations

Fault-tolerance typically is not a primary issue for parallel computing (as it is for dis-
tributed computing) especially when dedicated parallel computers with homogeneous
processors are employed. Instead we are primarily concerned with performance when
solving large instances. We propose novel applications of lock-free protocols to parallel
algorithms that handle large inputs and show that lock-free implementations can have
superior performance.

A parallel algorithm often divides into phases and in each phase certain operations
are applied to the input with each processor working on portions of the data structure.
For irregular problems there usually are overlaps among the portions of data structures
partitioned onto different processors. Locks provide a mechanism for ensuring mutu-
ally exclusive access to critical sections by multiple working processors. Fine-grained
locking on the data structure using system mutex locks can bring large memory over-
head. What is worse is that many of the locks are never acquired by more than one
processor. Most of the time each processor is working on distinct elements of the data
structure due to the large problem size and relatively small number of processors. Yet
still extra work of locking and unlocking is performed for each operation applied to the
data structure, which results in a large execution overhead.

The access pattern of parallel processors to the shared data structures makes lock-
free protocols via atomic machine operations an elegant solution to the problem. When
there is work partition overlap among processors, usually it suffices that the overlap is
taken care of by one processor. If other processors can detect that the overlap portion is
already taken care of, they no longer need to apply the operations and can abort. Atomic
operations can be used to implement this “test-and-work” operation. As the contention
among processors is low, the overhead of using atomic operations is expected to be
small. Note that this is very different from the access patterns to the shared data struc-
tures in distributed computing, for example, two producers attempting to put more work
into the shared queues. Both producers must complete their operations, and when there
is conflict they will retry until success.

In some recent experimental studies on symmetric multiprocessors (SMPs) [14, 36]
the design and implementation of lock-free data structures involves mutual-exclusions
and are not strictly lock-free in the sense that a crash inside the critical region prevents



Lock-Free Parallel Algorithms: An Experimental Study 519

application progress. Mutual-exclusion is achieved using inline atomic operations and
is transparent to users because it is hidden in the implementation of the data structures.
Both Fraser [14] and Valois [36] show that for many search structures (binary tree, skip
list, red-black tree) well-implemented algorithms using atomic primitives can match
or surpass the performance of lock-based designs in many situations. However, their
implementations comprise the guarantee of progress in case of failed processes. “Lock-
free” here means free of full-fledged system mutex locks and are actually block-free
using spinlocks. Spinlocks do make sense in the homogeneous parallel computing en-
vironment with dedicated parallel computers where no process is particularly slower
than others and the program is computation intensive. It is a better choice to busy-wait
than to block when waiting to enter the critical section. In this paper we also study the
application of busy-wait spinlocks to parallel algorithms. We refer interested readers to
[30, 35] for examples of block-free data structures.

3 Lock-Free Parallel Algorithms

In this section we present parallel algorithms that are either mutual-exclusion free or
block-free to demonstrate the usage of lock-free protocols. Section 3.1 considers the
problem of resolving work partition conflicts for irregular problems using a lock-free
parallel spanning tree algorithm as an example. Section 3.2 presents an experimental
study of a block-free minimum spanning tree (MST) algorithm. As both algorithms take
graphs as input, before we present the algorithms, here we describe the the collection
of graph generators and the parallel machine we used.

We ran our shared-memory implementations on the Sun Enterprise 4500, a uniform-
memory-access shared memory parallel machine with 14 UltraSPARC II processors and
14 GB of memory. Each processor has 16 Kbytes of direct-mapped data (L1) cache and
4 Mbytes of external (L2) cache. The clock speed of each processor is 400 MHz.

Our graph generators include several employed in previous experimental studies of
parallel graph algorithms for related problems. For instance, mesh topologies are used
in the connected component studies of [15, 17, 22, 23], the random graphs are used by
[8, 15, 17, 22], and the geometric graphs are used by [8, 15, 17, 22, 23].

– Meshes. Mesh-based graphs are commonly used in physics-based simulations and
computer vision. The vertices of the graph are placed on a 2D or 3D mesh, with
each vertex connected to its neighbors. 2DC is a complete 2D mesh; 2D60 is a 2D
mesh with the probability of 60% for each edge to be present; and 3D40 is a 3D
mesh with the probability of 40% for each edge to be present.

– Random Graph. A random graph of n vertices and m edges is created by ran-
domly adding m unique edges to the vertex set. Several software packages generate
random graphs this way, including LEDA [29].

– Geometric Graphs. Each vertex has a fixed degree k. Geometric graphs are gen-
erated by randomly placing n vertices in a unit square and connecting each vertex
with its nearest k neighbors. [31] use these in their empirical study of sequential
MST algorithms. AD3 ([23]) is a geometric graph with k = 3.

For MST, uniformly random weights are associated with the edges.



520 G. Cong and D. Bader

3.1 Lock-Free Protocols in Parallel Spanning Tree

We consider the application of lock-free protocols to the Shiloach-Vishkin parallel
spanning tree algorithm [33, 34]. This algorithm is representative of several connectiv-
ity algorithms that adapt the graft-and-shortcut approach, and is implemented in prior
experimental studies. For graph G = (V,E) with |V | = n and |E| = m, the algorithm
achieves complexities of O(logn) time and O((m+n) logn) work under the arbitrary
CRCW PRAM model.

The algorithm takes an edge list as input and starts with n isolated vertices and m
processors. Each processor Pi (1 ≤ i ≤ m) inspects edge ei = (vi1 ,vi2) and tries to graft
vertex vi1 to vi2 under the constraint that vi1 < vi2 . Grafting creates k ≥ 1 connected
components in the graph, and each of the k components is then shortcutted to to a sin-
gle supervertex. Grafting and shortcutting are iteratively applied to the reduced graphs
G′ = (V ′,E ′) (where V ′ is the set of supervertices and E ′ is the set of edges among
supervertices) until only one supervertex is left. For a certain vertex v with multiple
adjacent edges, there can be multiple processors attempting to graft v to other smaller
vertices. Yet only one grafting is allowed, and we label the corresponding edge that
causes the grafting as a spanning tree edge. This is a partition conflict problem.

Two-phase election can be used to resolve the conflicts. The strategy is to run a race
among processors, where each processor that attempts to work on a vertex v writes its
id into a tag associated with v. After all the processors are done, each processor checks
the tag to see whether it is the winning processor. If so, the processor continues with
its operation, otherwise it aborts. Two-phase election works on platforms that provide
write atomicity. A global barrier synchronization among processors is used instead of
a possibly large number of fine-grained locks. The disadvantage is that two runs are
involved.

A natural solution to the work partition problem is to use lock-free atomic instruc-
tions. When a processor attempts to graft vertex v, it invokes the atomic compare&swap
operation to check whether v has been worked on. If not, the atomic nature of the opera-
tion also ensures that other processors will not work on v again. The detailed description
of the algorithm and an inline assembly function for compare&swap can be found in
[10].

We compare the performance of the lock-free Shiloach-Vishkin spanning tree im-
plementation with four other implementations that differ only in how the conflicts are
resolved. In Table 1 we describe the four implementations.

Table 1. Five implementations of Shiloach-Vishkin’s parallel spanning tree algorithm

Implementation Description
span-2phase conflicts are resolved by two-phase election
span-lock conflicts are resolved using system mutex locks
span-lockfree no mutual exclusion, races are prevented by atomic updates
span-spinlock mutual exclusion by spinlocks using atomic operations
span-race no mutual exclusion, no attempt to prevent races
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Among the four implementations, span-race is not a correct implementation and
does not guarantee correct results. It is included as a baseline to show how much over-
head is involved with using lock-free protocols and spinlocks.

Experimental Results. In Fig. 1 we see span-lock does not scale with the number
of the processors, and is consistently the approach with the worst performance. span-
2phase, span-lockfree, and span-spinlock scale well with the number of processors,
and the execution time of span-lockfree and span-spinlock is roughly half of that of
span-2phase. It is interesting to note that span-lockfree, span-spinlock and span-race
are almost as fast as each other for various inputs, which suggests similar overhead for
spinlocks and lock-free protocols, and the overhead is negligible.

Fig. 1. The performance of the spanning tree implementations. The vertical bars from left to right
are span-lock, span-2phase, span-lockfree, span-spinlock, and span-race, respectively

3.2 Block-Free Parallel Algorithms

For parallel programs that handle large inputs on current SMPs, spinlocks are a better
choice than the blocking system mutex locks. Spinlocks are simpler, take less memory
and do not involve the kernel. Due to the large inputs and relatively smaller number
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of processors available, most of the time each processor is working on distinct data
elements, and the contention over a certain lock or data element is very low. Even in
case of contention, as the expected time that a processor spends in the critical section is
short, it is much cheaper to busy wait for a few cycles than to block. In the previous ex-
perimental study with the spanning tree algorithm, we have already seen that spinlock
is a good candidate for mutual exclusion. As an example we next present a parallel min-
imum spanning tree (MST) algorithm using spinlocks for synchronization that achieves
a more drastic performance improvement.

Parallel Borůvka’s Algorithm and Previous Experimental Studies. Given an undi-
rected connected graph G with n vertices and m edges, the minimum spanning tree
(MST) problem finds a spanning tree with the minimum sum of edge weights. In
our previous work [5], we studied the performance of different variations of parallel
Borůvka’s algorithm. Borůvka’s algorithm is comprised of Borůvka iterations that are
used in many parallel MST algorithms. A Borůvka iteration is characterized by three
steps: find-min, connected-components and compact-graph. In find-min, for each vertex
v the incident edge with the smallest weight is labeled to be in the MST; connect-
components identifies connected components of the induced graph with the labeled
MST edges; compact-graph compacts each connected component into a single super-
vertex, removes self-loops and multiple edges, and re-labels the vertices for consistency.

Here we summarize each of the Borůvka algorithms. The major difference among
them is the input data structure and the implementation of compact-graph. Bor-ALM
takes an adjacency list as input and compacts the graph using two parallel sample sorts
plus sequential merge sort; Bor-FAL takes our flexible adjacency list as input and runs
parallel sample sort on the vertices to compact the graph. For most inputs, Bor-FAL
is the fastest implementation. In the compact-graph step, Bor-FAL merges each con-
nected components into a single supervertex that gets the adjacency list of all the ver-
tices in the component. Bor-FAL does not attempt to remove self-loops and multiple
edges, and avoids runs of extensive sortings. Self-loops and multiple edges are filtered
out in the find-min step instead. Bor-FAL greatly reduces the number of shared mem-
ory writes at the relatively small cost of an increased number of reads, and proves to be
efficient as predicted on current SMPs.

A New Implementation. Now we present an implementation with spinlocks (denoted
as Bor-spinlock) that further reduces the number of memory writes. In fact the input
edge list is not modified at all in Bor-spinlock, and the compact-graph step is com-
pletely eliminated. The main idea is that instead of compacting connected components,
for each vertex there is now an associated label supervertex showing to which super-
vertex it belongs. In each iteration all the vertices are partitioned among the processors.
For each vertex v of its assigned partition, processor p finds the adjacent edge e with
the smallest weight. If we compact connected components, e would belong to the su-
pervertex v′ of v in the new graph. Essentially processor p finds the adjacent edge with
smallest weight for v′. As we do not compact graphs, the adjacent edges for v′ are scat-
tered among the adjacent edges of all vertices that share the same supervertex v′, and
different processors may work on these edges simultaneously. Now the problem is that
these processors need to synchronize properly in order to find the edge with the mini-
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mum weight. Again this is an example of the irregular work-partition problem. Fig. 2
illustrates the specific problem for the MST case.
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Fig. 2. Example of the race condition between two processors when Borůvka’s algorithm is used
to solve the MST problem

On the top in Fig. 2 is an input graph with six vertices. Suppose we have two proces-
sors P1 and P2. Vertices 1, 2, and 3, are partitioned on to processor P1 and vertices 4, 5,
and 6 are partitioned on to processor P2. It takes two iterations for Borůvka’s algorithm
to find the MST. In the first iteration, the find-min step of Bor-spinlock labels < 1,5 >,
< 5,3 >, < 2,6 > and < 6,4 > to be in the MST. connected-components finds vertices
1, 3, and 5, in one component, and vertices 2, 4, and 6, in another component. The MST
edges and components are shown in the middle of Fig. 2. Vertices connected by dashed
lines are in one component, and vertices connected by solid lines are in the other com-
ponent. At this time, vertices 1, 3, and 5, belong to supervertex 1′, and vertices 2, 4, and
6, belong to supervertex 2′. In the second iteration, processor P1 again inspects vertices
1, 2, and 3, and processor P2 inspects vertices 4, 5, and 6. Previous MST edges < 1,5 >,
< 5,3 >, < 2,6 > and < 6,4 > are found to be edges inside supervertices and are ig-
nored. On the bottom in Fig. 2 are the two supervertices with two edges between them.
Edges < 1,2 > and < 3,4 > are found by P1 to be the edges between supervertices 1′
and 2′, edge < 3,4 > is found by P2 to be the edge between the two supervertices. For
supervertex 2′, P1 tries to label < 1,2 > as the MST edge while P2 tries to label < 3,4 >.
This is a race condition between the two processors, and locks are used in Bor-spinlock
to ensure correctness. The formal description of the algorithm is given in [10].

We compare the performance of Bor-spinlock with the best previous parallel im-
plementations. The results are shown in Fig. 3. Bor-FAL is the fastest implementation
for sparse random graphs, Bor-ALM is the fastest implementation for meshes. From
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Fig. 3. Comparison of the performance of Bor-spinlock against the previous implementations.
The horizontal line in each graph shows the execution time of the best sequential implementation

our results we see that with 12 processors Bor-spinlock beats both Bor-FAL and Bor-
ALM, and performance of Bor-spinlock scales well with the number of processors. In
Fig. 3, performance of Bor-lock is also plotted. Bor-lock is the same as Bor-spinlock
except that system mutex locks are used. Bor-lock does not scale with the number of
processors. The performance of the best sequential algorithms among the three candi-
dates, Kruskal, Prim, and Borůvka, is plotted as a horizontal line for each input graph.
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For all the input graphs shown in Fig. 3, Bor-spinlock tends to perform better than the
previous best implementations when more processors are used. Note that a maximum
speedup of 9.9 for 2D60 with 1M vertices is achieved with Bor-spinlock at 12 proces-
sors. Fig. 3 demonstrates the potential advantage of spinlock-based implementations for
large and irregular problems. Aside from good performance, Bor-spinlock is also the
simplest approach as it does not involve sorting required by the other approaches.

4 Conclusions

In this paper we present novel applications of lock-free and block-free protocols to par-
allel algorithms and show that these protocols can greatly improve the performance of
parallel algorithms for large, irregular problems. As there is currently no direct support
for invoking atomic instructions from most programming languages, our results suggest
it necessary that there be orchestrated support for high performance algorithms from
the hardware architecture, operating system, and programming languages. Two graph
algorithms are discussed in this paper. In our future work, we will consider applying
lock-free and block-free protocols to other types of algorithms, for example, parallel
branch-and-bound.
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