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Abstract

Many parallel algorithms for graph problems start
with finding a spanning tree and rooting the tree to de-
fine some structural relationship on the vertices which
can be used by following problem specific computations.
The generic procedure is to find an unrooted spanning
tree and then root the spanning tree using the Euler tour
technique. With a randomized work-time optimal un-
rooted spanning tree algorithm and work-time optimal
list ranking, finding rooted spanning trees can be done
work-time optimally on EREW PRAM w.h.p. Yet the Eu-
ler tour technique assumes as “given” a circular adja-
cency list, it is not without implications though to con-
struct the circular adjacency list for the spanning tree
found on the fly by a spanning tree algorithm. In fact
our experiments show that this “hidden” step of con-
structing a circular adjacency list could take as much
time as both spanning tree and list ranking combined.
In this paper we present new efficient algorithms that
find rooted spanning trees without using the Euler tour
technique and incur little or no overhead over the un-
derlying spanning tree algorithms.

We also present two new approaches that construct
Euler tours efficiently when the circular adjacency list
is not given. One is a deterministic PRAM algorithm
and the other is a randomized algorithm in the symmet-
ric multiprocessor (SMP) model. The randomized al-
gorithm takes a novel approach for the problems of con-
structing the Euler tour and rooting a tree. It computes a
rooted spanning tree first, then constructs an Euler tour
directly for the tree using depth-first traversal. The tour
constructed is cache-friendly with adjacent edges in the
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tour stored in consecutive locations of an array so that
prefix-sum (scan) can be used for tree computations in-
stead of the more expensive list-ranking.
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1 Introduction

Many parallel algorithms for graph problems, e.g.,
biconnected components, ear decomposition, and pla-
narity testing, at some stage require finding a rooted
spanning tree to define some structural relationship on
the vertices. The standard approach for finding a rooted
spanning tree combines two algorithms: an (unrooted)
spanning tree algorithm and rooting a tree using the Eu-
ler tour technique, which can be done work-time opti-
mally w.h.p. (see Pettie and Ramachandran [12], and
JáJá [8]). In practice, however, there is a gap between
the input representations assumed by these two algo-
rithms. For most spanning tree algorithms the input
graphs are represented as either adjacency or edge lists,
while for the Euler tour technique, a special circular
adjacency list is required where additional pointers are
added to define an Euler circuit on the Eulerian graph
induced by the tree that visits each directed edge ex-
actly once. To convert a plain adjacency list into a
circular adjacency list, first the adjacency list of each
vertex v is made circular by adding pointers from vi to
v(i+1) mod d(v)−1 where d(v) is the degree of v, and vi

(0 ≤ i ≤ d(v)− 1) are the neighbors of v. Then for any
edge < u,v > there are cross pointers between the two
anti-parallel arcs < u,v > and < v,u >. Setting up these
cross pointers is the major problem. In the literature, the
circular adjacency list is usually assumed as “given” for
the Euler tour technique. In the case of the rooted span-
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ning tree problem, however, as the results of the span-
ning tree algorithm are scattered among the adjacency
or edge list, setting up the cross pointers efficiently is no
longer trivial, especially when it is sandwiched between
two very fast parallel algorithms.

Natural questions then arise: are there better direct
techniques to root a tree and what additional work is
required to convert an efficient spanning tree algorithm
into one that produces a rooted spanning tree. If we con-
sider the rooted spanning tree problem as a single prob-
lem instead of two subproblem steps, a new approach
reveals itself. Many existing efficient parallel spanning
tree algorithms adapt a graft-and-shortcut approach to
build a tree in a bottom-up fashion. We observe that
grafting defines a natural structural relationship on the
vertices. Thus the required information to root a tree is
already largely paid for. In Section 2 we present new
approaches for finding a rooted spanning tree directly
without using the Euler tour technique. The new algo-
rithms incur little or no overhead over the underlying
spanning tree algorithms.

The Euler tour technique is one of the basic building
blocks for designing parallel algorithms, especially for
tree computations (JáJá [8], and Karp and Ramachan-
dran’s survey in [15]). For example, pre- and post-order
numbering, computing the vertex level, computing the
number of descendants, and finding a centroid, can be
done work-time optimally on EREW PRAM by apply-
ing the Euler tour technique. In Tarjan and Vishkin’s
biconnected components algorithm [14] that originally
introduced the Euler tour technique, the input is an edge
list with the cross pointers between twin edges < u,v >
and < v,u > established as given. This makes it easy to
set up later the cross pointers of the Euler tour defined
on a spanning tree, yet setting the circular pointers needs
additional work because now a list tail has no informa-
tion of where the list head is. An edge list with cross
pointers is an unusual data structure from which arises
the subtle question as to whether we should include the
step of setting the cross pointers in the execution time
and whether it is appropriate for other spanning tree al-
gorithms. For more natural representations, for exam-
ple, a plain edge list without cross pointers, Tarjan and
Vishkin recommend sorting to set up the cross point-
ers. After selecting the spanning tree edges, they sort all
the arcs < u,v > with min(u,v) as the primary key, and
max(u,v) as the secondary key. The arcs < u,v > and
< v,u > are then next to each other in the resulting list
so that the cross pointers can be easily set. We denote
the Tarjan-Vishkin approach as Euler-Sort. Our experi-
mental results show that using sorting to set up the cross

pointers can take more time than the spanning tree al-
gorithm and list ranking combined. Two new efficient
algorithms for the construction of Euler tours without
sorting nor given circular adjacency lists are presented
in Section 3. The first, a PRAM approach, is based on
the graft-and-shortcut spanning tree algorithm, and the
second, using a more realistic SMP model, computes
a cache-friendly Euler tour where prefix-sum (scan) is
used for the tree computation.

Section 4 compares the performance of our new
rooted spanning tree algorithms (RST-Graft and
RST-Trav) over the spanning tree approach, and our two
new Euler tour construction approaches (Euler-Graft
and Euler-DFS) versus the Tarjan-Vishkin approach
(Euler-Sort).

2 New Parallel Rooted Spanning Tree Al-
gorithms

In this section we present two new rooted spanning
tree algorithms without using the Euler tour technique.
Both algorithms compute a rooted spanning tree directly
without having to go through the intermediate step of
finding an unrooted spanning tree. One of the algorithms
is based on the “graft and shortcut” spanning tree algo-
rithm (denoted as RST-Graft), and the other is based on
a new graph traversal spanning tree algorithm for SMPs
(denoted as RST-Trav).

2.1 Rooted Spanning Tree: Graft and Shortcut
Approach (RST-Graft)

RST-Graft is based on Shiloach-Vishkin’s connected
component algorithm (from which a spanning tree algo-
rithm ST-Graft can be derived [1]) that adopts the “graft
and shortcut” approach. We observe that ST-Graft can
be extended naturally to deal with rooted spanning tree
problems. In ST-Graft for a graph G = (V,E) where
|V | = n and |E| = m we start with n isolated vertices
and m PRAM processors. Each processor Pi (1 ≤ i ≤ m)
tries to graft vertex vi to one of its neighbors u under the
constraint that u < vi. Grafting creates k ≥ 1 connected
components in the graph, and each of the k components
is then shortcut to a single supervertex. The approach
continues to graft and shortcut on the reduced graphs
G′ = (V ′,E ′) with V ′, the set of supervertices, and E ′,
the set of edges among supervertices, until only one ver-
tex is left.

For a rooted spanning tree algorithm, we need to set
up the parent relationship on each vertex. Note that
grafting defines the parent relationship naturally on the
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vertices. With RST-Graft we set parent(u) to v each time
an edge e =< u,v >∈ E causes the grafting of the sub-
tree rooted the supervertex of u onto the subtree of v.
One issue we face with this approach is that for one ver-
tex its parent could be set multiple times by the grafting,
hence creating conflicts as shown in Fig. 1.

   subtree A                                  subtree B

v u

r

w

Figure 1. Setting the parent relationship.
The parent of v was initially set to w, then
set to u.

In Fig. 1, after the ith iteration, there are two sub-
trees A and B, and the white arrows show the current
parent relationship on the vertices where parent(v) is
set to w in subtree A. In the (i + 1)st iteration, sub-
tree A is grafted onto subtree B by edge < u,v > and
parent(v) is set to u as shown by the dashed line with
a white arrow. To merge the two subtrees consistently
into one rooted spanning tree, we need to reroot subtree
A at v and reverse the parent relationship for vertices on
the path from v to root r of subtree A as shown by the
dashed lines with black arrows.

Existing algorithms for rerooting a tree also use the
Euler tour technique. Instead we give our new, faster
algorithm that uses pointer-jumping and broadcasting.
The basic idea is to find all the vertices that are on the
path from v to r and reverse their parent relationship;
that is, if u = parent(v), we now set parent(u) = v. Note
that simply chasing the parent pointer from v to r has
Θ(H(v)) complexity where H(v) is the height of v and
in the worst case could be Θ(n) where n is the number
of vertices in the tree.

In our algorithm to reroot a tree from r to the new
root r′, associated with each vertex u in the tree is an
array PR of size O(logn). All vertices that ever become
u’s parent in the process of pointer jumping are put into
PR. Fig. 2 shows an example of PR for the vertices after
pointer jumping.

Information stored in PR is useful when we try to find
all the vertices that are on the path from u and root r.

r          x          y         w         z          v          s          t          u
PR: r          r        x,r        y,r      w,y,r   z,wx,r  v,z,y,r  s,w,x,r t,s,z,r

3 3 3
22

1

3
�
�
�

�
�
�

Figure 2. Illustration of PR for each ver-
tex after pointer jumping. The number on
each edge shows the step during which
the message is broadcasted.

We find these vertices in a way that is similar to that of
broadcasting over a binary tree. Take Fig. 2 as an ex-
ample. Here we denote the processor assigned to work
on vertex v processor Pv. Except for processor Pr whose
vertex is always on some path to r, initially only pro-
cessor Pu knows that its vertex is on the path. In the
first step, Pu checks its PR array, finds z on the path,
and broadcasts a message to processor Pz. In the second
step, there are two processors Pu and Pz that are aware
that their vertices are on the path, so they both again
check their PR and broadcast messages to Py and Ps, re-
spectively. In the step that follows, there will be four
processors broadcasting, and so on.

Lemma 1 Identifying all the vertices on the path from u
to root r can be done in O(logn) time with n processors
on EREW PRAM.

Proof PR for each vertex v is created by recording
v’s parent during pointer-jumping. Pointer-jumping can
be done in O(logn) time with n processors on EREW
PRAM. With PR available for each vertex v, all the ver-
tices on the path from u to root r can be identified by
broadcasting from v in O(logn) time with n processors
on EREW PRAM. �

Lemma 2 Rerooting a tree can be done in O(logn) time
with n processors on EREW PRAM.

Proof By Lemma 1, identify the vertices on the path
from u to root r. This takes O(logn) time with n pro-
cessors on EREW PRAM. Reversing the pointers can be
done in O(1) time with n processors by finding a ver-
tex’s parent and setting the parent of a vertex’s parent to
be the vertex itself. �

Alg. 1 in Appendix A is a formal description of our
algorithm that reroots a tree from r to u.

For any of the unrooted spanning tree algorithms
that adopts the graft and shortcut approach (e.g., span-
ning tree algorithms based on Shiloach-Vishkin’s and
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Hirschberg et al.’s connected component algorithm [13,
6], see [1] for a survey and comparison), we can extend
it to a rooted spanning tree algorithm with Alg. 1. In our
RST-Graft algorithm, whenever an edge < u,v > causes
the grafting of one subtree A that contains u onto another
subtree B that contains v, except when it is the case that
u is the root of A, our rooted spanning tree algorithm in-
vokes the tree rerooting algorithm to reroot A at u. Alg. 2
in Appendix A is the formal description of RST-Graft.

Note that Alg. 1 reroots one subtree, while in each it-
eration of RST-Graft, multiple graftings can happen and
multiple subtrees need to be rerooted. We show that re-
rooting a forest of subtrees can be done within the same
complexity for rooting one subtree.

Lemma 3 A forest of subtrees with a total of n vertices
can be rerooted in O(logn) time with n processors on
EREW PRAM.

Proof For each subtree Ti with size ni, we can reroot
Ti with ni processors within O(logni) time on EREW by
applying the same argument of Lemma 2. With ∑i ni = n
and maxi ni ≤ n, we can reroot the subtrees within the
stated complexity bound. �

Theorem 1 RST-Graft computes a rooted spanning tree
on CRCW PRAM in O

(
log2 n

)
time with O(m) proces-

sors.

Proof Steps 1, 2, 3 and 4, of Alg. 2 run in O(1) time
with m processors; moreover, Step 2 requires arbitrary
CRCW PRAM. Step 5 is the pointer-jumping step that
runs in O(logn) time with n processors. Step 6 is the re-
rooting step that takes O(logn) time with n processors.
During each iteration the number of (super)vertices is
reduced at least by half, and since there are O(logn)
iterations, RST-Graft can be performed on an arbitrary
CRCW PRAM with O

(
log2 n

)
time using m processors.

�

Note that although RST-Graft has an additional logn
factor compared with the best approach in theory, the
logn factor is determined by both the underlying span-
ning tree algorithm which we found to be more practi-
cal than most other spanning tree algorithms with lower
running times, and by the tree rerooting algorithm. Our
experimental results show that RST-Graft runs almost as
fast as ST-Graft.

2.2 Rooted Spanning Tree: Graph Traversal
Approach (RST-Trav)

Previously we designed a parallel spanning tree algo-
rithm that achieves good speedup over the best sequen-

tial spanning tree algorithm on SMPs [1]. We observe
that this algorithm is also a rooted spanning tree algo-
rithm without any further overhead because it builds a
spanning tree by finding the parent of each vertex. Here
we give a brief description of the algorithm, and refer
interested readers to our spanning tree papers for de-
tails. First a small rooted subtree Ts with size O(p)
is created where p is the number of processors. Then
each processor picks a unique leaf l from Ts and starts
growing a subtree rooted at l by breadth-first traversal.
In the process of breadth-first search, a processor will
check a vertex’s color, and if it is not colored, color it
with a color that is associated with the processor, and set
its parent. Under the assumption of sequential memory
consistency, the algorithm correctly computes a span-
ning tree by setting up the parent relation for each ver-
tex in the graph. Without further modification, this al-
gorithm also produces a rooted spanning tree algorithm
(RST-Trav), so the accompanying experimental results
can also be used for rooted spanning tree. One caveat
of RST-Trav is that in some very rare cases, there may
be a limit to the parallelism of this approach and a de-
tection scheme allows the algorithm fall back to either
Shiloach-Vishkin’s or Hirschberg et al.’s algorithm. As
RST-Graft is a rooted spanning tree algorithm based on
Shiloach-Vishkin’s algorithm, in case of encountering
such graphs, we can fall back to RST-Graft.

3 Efficient Construction of Euler Tours

In this section we show two new approaches for con-
structing Euler tours without sorting. The first one is in
the PRAM framework that finds the twin edge < v,u >
of edge < u,v > in the edge list during the spanning tree
algorithm, and the second one uses the more realistic
SMP model that instead builds a tour from a rooted tree
based on the DFS ordering of the edges. We denote the
first approach Euler-Graft, the second Euler-DFS.

3.1 Euler Tour Construction: Graft and Short-
cut Approach (Euler-Graft)

As with RST-Graft, twin edges can be found with
some small overhead during the graft-and-shortcut span-
ning tree algorithm. The key observation is that for any
iteration in the spanning tree algorithm edge < u,v > is
inspected and a grafting happens only if v’s supervertex
is less than u’s supervertex and the twin < x = v,y = u >
is somewhere else in the edge list. < x,y > would
have caused the grafting if the inspection is to com-
pare whether v’s supervertex is less than u’s superver-
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tex. To identify < x,y > without having to search for
it, we re-run the iteration and do the comparison in the
other direction. Note that in an iteration we need to find
O(m) twin edges. If an edge causes this same grafting
as < u,v >, we know it is the twin of < u,v >. This
is true under the condition that in every iteration a su-
pervertex is grafted only by one processor to one other
supervertex. To guarantee that this condition holds on
CRCW PRAM, basically a tournament is run between
the processors that try to graft a certain supervertex v,
and only the winner gets to graft v. The graft and short-
cut approach runs with O(logn) time with m processors
on arbitrary CRCW [1, 14].

Theorem 2 With m processors using the graft-and-
shortcut spanning tree algorithm, the twin pointers for
the Euler tour can be set in O(logn) time on CRCW
PRAM.

Proof In each iteration of the graft-and-shortcut span-
ning tree algorithm two inspection rounds are executed.
For edge < u,v >, the first round checks whether v’s
supervertex is less than u’s supervertex and if < u,v >
causes a grafting, associates with u’s supervertex the
< u,v > location in the edge list. In the second round for
edge < x,y > we check whether x’s supervertex is less
than y’s supervertex, and if true, then associate with x’s
supervertex the location of < x,y >’s twin in the edge
list. When the algorithm terminates, each edge in the
spanning tree finds its twin. The running time is the
same as the spanning tree algorithm, which is O(logn)
time with m processors on arbitrary CRCW. �

After the twin pointer is set, we can construct an Eu-
ler tour in O(1) time with n processors. This approach
can be easily combined with RST-Graft, so with one sin-
gle run of a graft-and-shortcut spanning tree algorithm,
we have spanning tree, rooted spanning tree, and Euler
tour, for the tree.

3.2 Euler Tour Construction: DFS Approach
(Euler-DFS)

Generally list ranking is needed to perform tree com-
putations with the Euler tour. For an edge < u,v >, the
next edge < v,w > could be far away from < u,v > in the
list with no spatial locality. For any fast implementations
on modern computer systems, temporal and spatial lo-
cality of the algorithm and the data structures are crucial
for good performance. An algorithm with good tempo-
ral and spatial locality lends itself to cache-friendly im-
plementations. It is desirable that for an Euler tour the
consecutive edges are placed nearby each other in the

list. We present a randomized algorithm under the SMP
model that constructs an optimal tour in terms of spa-
tial locality, i.e., consecutive edges in the tour are placed
into consecutive memory locations in the list. Under the
SMP model, there are two parts to an algorithm’s com-
plexity, ME the memory access complexity (number of
non-contiguous memory accesses) and TC the computa-
tion complexity [5]. Parameters of the model include the
problem size n and the number of processors p. The ME

term recognizes the importance that memory accesses
have over an algorithm’s performance. Recognizing that
p is usually far smaller than n, which is true for most ac-
tual problems and architectures, has significant impact
on the design of algorithms. Euler-DFS is one such ex-
ample.

Given a rooted spanning tree T with root r, the ba-
sic idea of our algorithm is first to break T into s
tree blocks by randomly choosing s− 1 vertices (called
rep vertices). As r is a natural rep vertex the total num-
ber of rep vertices is s. The resulting tree blocks are
non-overlapping except at the s rep vertices, and the
rep vertices form a rep-tree (short for representative
tree) if we shrink a tree block into a single rep vertex.
Fig. 3 illustrates the notion of tree blocks.

a

b

c

d

a

d
b

c

Figure 3. Illustration of tree blocks. On
the left, four rep vertices a, b, c, and d, are
chosen. Tree blocks are circled by dotted
lines. On the right is the rep-tree.

Each of these tree blocks is then traversed in DFS or-
der creating s local Euler tours for the s subtrees. We
then combine the s local Euler tours into one global tour
for which each local tour is broken up at each rep vertex
it encounters to incorporate the local tour of the tree
block represented by that rep vertex. To do so for each
rep vertex we need to compute where its local tour starts
in the global tour for T . This is achieved by doing
some tree computations on the much smaller rep-tree.
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We do post-order numbering and DFS numbering on
rep-tree and record in local dfs num the DFS numbering
of each rep vertex in its parent’s tree block. global start
is the location in the global tour where rep vertex’s lo-
cal tour starts, and g size is the size of the subtree (not
tree block) rooted at rep vertex. g size can be com-
puted in one post-order traversal of rep-tree. Then in
the order of DFS numbering, for each rep vertex v with
predecessor u and parent w, we set v’s g size to be
u.global start + v.local dfs num if u = w, otherwise set
v.global start to be w.global start + t + v.local dfs num
where t is the sum of the g size of the siblings of v listed
before v in the DFS ordering.

The pseudo-code of our algorithm is as follows, in
which the input is a rooted tree T with n vertices and
root r, and the output is an Euler tour E with consecu-
tive edges of the tour stored in consecutive memory lo-
cations.

• (1): For processor Pi (0 ≤ i ≤ p− 1), if i n
p ≤ r ≤

(i+1) n
p −1, choose uniformly and at random s

p −1
non-root vertices as rep vertices and add r to the
rep vertices; otherwise, choose uniformly and at
random s

p vertices as rep vertices. The result is that
T is broken into s tree blocks B1, · · · ,Bs, with each
processor owning the rep vertices of s

p blocks.

• (2): Processor Pi traverses each of its s
p tree blocks

rooted at the rep vertices in DFS order, creating s
p

local Euler tours of the blocks. With each edge e of
the tour is associated a position that now records the
location of e in the local tour. With each rep vertex
is associated a local dfs num that records the DFS
numbering of the rep vertex in its parent’s tree
block.

• (3): Processor P0 computes post-order numbering
and DFS numbering of the rep-tree formed by the s
rep vertices. In one post-order traversal, the sub-
tree size g size rooted at each rep vertex can be
computed. For root r, r.global start = 0. In the
order of DFS numbering, if a rep vertex v has a pre-
decessor u that is also its parent w (u = w), which
means from r to v the global tour is the pieces
of local tours that have been seen during the DFS
traversal, then set v.global start = w.global start +
v.local dfs num; otherwise extra spaces are needed
to accommodate other local tours. One way to look
at this is w’s global start is now available, and we
know the DFS numbering of v in w’s tree block, so
there must have been other rep vertices S visited in
DFS order before v (or otherwise u = v). Hence,

extra spaces are needed to accommodate the tours
of the subtrees (not blocks) rooted at the vertices
in S , and they are v’s siblings. Let t be the sum of
the g size of the siblings of v listed before v in the
DFS ordering in w’s tree block. v.global start =
w.global start + t + v.local dfs num.

• (4): For each of the s
p tours defined by the

rep vertices on processor Pi, for each edge e in
the ordering of the appearance in the local tour,
if e =< u,v > with u being a rep vertex, add δ =
u.global start to position of e and all edges follow-
ing e until the appearance of another rep vertex; if
e =< u,v > with v being a rep vertex, increase δ
by v.g size.

• (5): For each of the s
p tours defined by the

rep vertices on processor Pi, copy each edge e in
the tour into location e.position of tour E .

Let |B| be the size of block B, that is, the number of
vertices in the tree block. We show that the largest tree
block Bi has size less than cn

s (where c is some small
constant greater than one) with probability at least 1−
e−c.

Lemma 4
P

(
|Bi| ≥ cn

s

)
≤ e−c.

Proof Suppose Ti is the smallest subtree of T that
contains Bi. As each vertex is equally likely to be a
rep vertex, the probability that a rep vertex is outside of
Ti is

n− cn
s

n
=

s− c
s

,

while the probability that a rep vertex is inside Ti is c
s .

Let
A be the event that |Bi| ≥ cn

s ,
B be the event that no rep vertex splits Ti (A ⊆ B),
Θk be the event that k rep vertices fall in Ti, and
Λk be the event that k rep vertices fall outside Ti.
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P
(
|Bi| ≥ cn

s

)
= P(A) ≤ P(B)

≤
s

∑
k=1

P(Θk)P(Λs−k)

=
s

∑
k=1

(
s− c

s

)s−k (c
s

)k

=
(

s− c
s

)s s

∑
k=1

(
c

s− c

)k

≤
(

s− c
s

)s

≤ e−c

�

The expected size of a tree block is n+s−1
s ≈ n

s when
n is large. By Lemma 4 the probability that the largest
number of vertices visited by a particular processor de-
viates from n

p by a constant factor of α is bounded by

e(−αs)/p, which can be bounded by n−λ for some λ > 0 if
s
p ≥ lnn. Hence with high probability the work is fairly
balanced among the processors, and the expected run-
ning time of the algorithm is O(n/p+ lnn) with p pro-
cessors when n � p and s = p lnn.

4 Experimental Results

This section summarizes the experimental results of
our implementation. We compare the performance of
ST-Graft and RST-Graft on a variety of input graphs.
As for RST-Trav, [1] give a comprehensive experimen-
tal study. We test our shared-memory implementation
on the Sun Enterprise 4500, a uniform memory access
(UMA) shared memory parallel machine with 14 Ultra-
SPARC II processors and 14 GB of memory. Each pro-
cessor has 16 Kbytes of direct-mapped data (L1) cache
and 4 MBytes of external (L2) cache. The clock speed
of each processor is 400 MHz.

4.1 Experimental Data

Next we describe the collection of graph generators
that we use to compare the performance of the paral-
lel rooted spanning tree graph algorithms. Our genera-
tors include several employed in previous experimental
studies of parallel graph algorithms for related problems.
For instance, we include the mesh topologies used in the
connected component studies of [4, 9, 7, 3], the random
graphs used by [4, 2, 7, 3], the geometric graphs used
by [2], and the “tertiary” geometric graph AD3 used by
[4, 7, 9, 3].

• Meshes Computational science applications for
physics-based simulations and computer vision
commonly use mesh-based graphs. In the 2D
Mesh, the vertices of the graph are placed on a 2D
mesh, with each vertex connected to its four neigh-
bors.

• Random Graph We create a random graph of n
vertices and m edges by randomly adding m unique
edges to the vertex set. Several software packages
generate random graphs this way, including LEDA
[10].

• Geometric Graphs and AD3 In these k-regular
graphs, n points are chosen uniformly and at ran-
dom in a unit square in the Cartesian plane, and
each vertex is connected to its k nearest neighbors.
Moret and Shapiro [11] use these in their empiri-
cal study of sequential MST algorithms. AD3 is a
geometric graph with k = 3.

4.2 Performance Results and Analysis

Fig. 4 contains the performance comparison between
the rooted spanning tree algorithm RST-Graft, Euler
tour construction algorithm Euler-Graft and the span-
ning tree algorithm ST-Graft. These algorithms are all
based on the graft-and-shortcut approach. In the fig-
ure the ratios of the running time of RST-Graft/ST-Graft
and Euler-Graft/ST-Graft are given. For most input
graphs, the overhead of the RST-Graft over ST-Graft is
within 25%, and for each input graph, there are cases
that RST-Graft actually runs faster than ST-Graft which
is caused by the different number of iterations due to
the races among the processors. In each iteration of
ST-Graft, there are two runs of grafting, the first one is
a competition run and the second one actually performs
the grafting. In Euler-Graft, a third run is needed to find
the twin edges for the tree edges, so we expect to see
roughly 50% overhead of Euler-Graft/ST-Graft. This is
true for the input graphs shown in Fig. 4. 2D Mesh is
an anomaly where Euler-Graft actually runs faster than
ST-Graft, because the optimization (compacting edge
list) for ST-Graft does not work efficiently for this spe-
cial input graph.

In Fig. 5 we plot the running times of the two ap-
proaches for computing the rooted spanning tree and Eu-
ler tour. Euler-DFS is our approach using ST-Trav from
[1], and Euler-Sort is based on Tarjan and Vishkin’s
approach although we replace the spanning tree algo-
rithm with our much faster algorithm ST-Trav. Gener-
ally Euler-DFS is 3-5 times faster than Euler-Sort. Note
that the comparison result would be more dramatic if we
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Figure 4. The performance ratio of the run-
ning times of RST-Graft and Euler-Graft
over the spanning tree algorithm ST-Graft.
In each plot, the left- and right-hand bars
correspond to RST-Graft and Euler-Graft,
respectively, as compared with ST-Graft.

compare only the two approaches for rooted spanning
tree, our rooted spanning tree algorithm could be an or-
der of magnitude faster than the traditional approach of
spanning tree plus Euler tour. In practice this compari-
son would be fair if after finding a rooted spanning tree
the algorithm no longer does any tree computation. If it
does, as in the case of Tarjan and Vishkin’s biconnected
component algorithm, we compare two algorithms that
achieve the same functionality, that is, they both com-
pute the rooted spanning tree and Euler tour. In addition
to running faster, Euler-DFS tends to be more flexible
(only computes Euler tour when needed), simpler (no
sorting is involved) and uses less memory (no need to
maintain the twin information). One other advantage
of Euler-DFS that does not affect the performance but
is a useful property is that it takes the straightforward
adjacency list representation of the input graphs. While
Euler-Sort needs both adjacency list (required by the fast
spanning tree algorithm otherwise it is even slower) and

Figure 5. Comparison of Euler-DFS and
Euler-Sort running times for various input
graphs.

edge list representation, which is clumsy and doubles
the memory usage. With Euler-DFS, as the number of
processors increases, it is observed that parallel memory
writes (e.g., copying tour elements into appropriate lo-
cations) start to dominate the execution time. We expect
better scalability results of Euler-DFS on platforms with
more scalable memory bandwidth.

5 Conclusions

We presented new algorithms for rooted spanning
trees and rerooting a tree without having to compute
the Euler tour. These algorithms have little or no over-
head over the underlying spanning tree algorithms, and
the technique will greatly reduce the running time and
programming complexity of an algorithm if no further
tree computations are required. Two new approaches
of computing an Euler tour are also discussed when the
pointers between twin edges are not given. For all the in-
put graphs we tested, Euler-DFS runs much faster than
the sorting approach. As Euler tour is fundamental in
tree computations, our results will have impact on the
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implementation of higher-level algorithms, for exam-
ple, tree computations, biconnected components, lowest
common ancestors, upward accumulation, etc. Our re-
sults are also examples that algorithm engineering tech-
niques pay off in parallel computing.
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A Algorithms

Input: 1. A rooted tree T with n vertices, root r,
and new root u
2. Array PRv for each vertex v

Output: Rooted tree T ′ with root at u
begin

if i = u then On-Path[i]←1 else On-Path[i]←
0 ;
j ← size(PRi)−1 ;
for h ← 1 to 
logn� do

if On-Path[i]=1 and j ≥ 1 then
On-Path[PRi[ j]] ← 1 ;
j ← j−1 ;

if On-Path[i]=1 then
parent[parent[i]] ← i

end

Algorithm 1: Algorithm for rerooting a tree on pro-
cessor Pi, for (0 ≤ i ≤ n−1)

Input: Undirected graph G = (V,E) with n ver-
tices, m edges

Output: A rooted spanning tree T of G
begin

while Number of Connected Component > 1
do

1. for i ← 1 to n in parallel do D[i] ← i;
2. for i ← 1 to n in parallel do

for each neighbor j of i in parallel do
if D[ j] < D[i] then

Winner[D[i]] ← K
3. for i ← 1 to n in parallel do

for each neighbor j of i in parallel do
if D[ j] < D[i] AND Winner[D[i]]
=K then

D[D[i]] ← D[ j];
parent[i] ← j;
Label i as the new root of the
old subtree;

4. j=0;
5. for i ← 1 to n in parallel do

if D[i] �= D[D[i]] then
PR[ j] ← D[i];
j ← j + 1 ;

6. for each i that is labeled as the new
root of a subtree do

call Alg. 1 to reroot the subtree
end

Algorithm 2: Algorithm for finding rooted spanning
tree on processor K
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