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Abstract

Our study in this paper focuses on implementing parallel
spanning tree algorithms on SMPs. Spanning tree is an im-
portant problem in the sense that it is the building block for
many other parallel graph algorithms and also because it
is representative of a large class of irregular combinatorial
problems that have simple and efficient sequential imple-
mentations and fast PRAM algorithms, but often have no
known efficient parallel implementations. In this paper we
present a new randomized algorithm and implementation
with superior performance that for the first-time achieves
parallel speedup on arbitrary graphs (both regular and ir-
regular topologies) when compared with the best sequential
implementation for finding a spanning tree. This new algo-
rithm uses several techniques to give an expected running
time that scales linearly with the number p of processors for
suitably large inputs (n > p2). As the spanning tree prob-
lem is notoriously hard for any parallel implementation to
achieve reasonable speedup, our study may shed new light
on implementing PRAM algorithms for shared-memory par-
allel computers.

The main results of this paper are

1. A new and practical spanning tree algorithm for sym-
metric multiprocessors that exhibits parallel speedups
on graphs with regular and irregular topologies; and

2. An experimental study of parallel spanning tree algo-
rithms that reveals the superior performance of our
new approach compared with the previous algorithms.

The source code for these algorithms is freely-available
from our web site hpc.ece.unm.edu.

∗This work was supported in part by NSF Grants CAREER ACI-00-
93039, ITR ACI-00-81404, DEB-99-10123, ITR EIA-01-21377, Biocom-
plexity DEB-01-20709, and ITR EF/BIO 03-31654.

1. Introduction

Finding a spanning tree of a graph is an important build-
ing block for many graph algorithms, for example, bicon-
nected components and ear decomposition, and can be used
in graph planarity testing. The best sequential algorithm
for finding a spanning tree of a graph G = (V,E) where
n = |V | and m = |E| uses depth- or breadth-first graph
traversal, whose time complexity is O(m+ n). The imple-
mentation of the sequential algorithm is very efficient (lin-
ear time with a very small hidden constant), and the only
data structure used is a stack or queue which has good lo-
cality features. However, graph traversal using depth-first
search is inherently sequential and not known to parallelize
efficiently [38]. Thus, the previous approaches for parallel
spanning tree algorithms use novel techniques other than
traversal that are conducive to parallelism and have poly-
logarithmic time complexities. In practice, none of these
parallel algorithms has shown significant parallel speedup
over the best sequential algorithm for irregular graphs.

Symmetric multiprocessor (SMP) architectures, in
which several processors operate in a true, hardware-based,
shared-memory environment, are becoming commonplace.
Indeed, most of the new high-performance computers are
clusters of SMPs having from 2 to over 100 processors
per node. The ability to provide uniform-memory-access
(UMA) shared-memory for a significant number of proces-
sors brings us much closer to the ideal parallel computer
envisioned over 20 years ago by theoreticians, the Parallel
Random Access Machine (PRAM) (see [25, 39]) and thus
may enable us at last to take advantage of 20 years of re-
search in PRAM algorithms for various irregular computa-
tions (such as spanning tree and other graph algorithms).
Moreover, as supercomputers increasingly use SMP clus-
ters, SMP computations will play a significant role in su-
percomputing.

While an SMP is a shared-memory architecture, it is by
no means the PRAM used in theoretical work — synchro-
nization cannot be taken for granted, memory bandwidth is
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limited, and performance requires a high degree of local-
ity. The significant feature of SMPs is that they provide
much faster access to their shared-memory than an equiv-
alent message-based architecture. Even the largest SMP to
date, the 106-processor Sun Fire Enterprise 15000 (E15K)
[7, 8], has a worst-case memory access time of 450ns (from
any processor to any location within its 576GB memory);
in contrast, the latency for access to the memory of another
processor in a distributed-memory architecture is measured
in tens of µs. In other words, message-based architectures
are two orders of magnitude slower than the largest SMPs
in terms of their worst-case memory access times.

Parallel Algorithms for Spanning Tree: For a sparse
graph G = (V,E) where n = |V | and m = |E|, various
deterministic and randomized techniques have been given
for solving the spanning tree problem on PRAM models.
Known deterministic algorithms include the following re-
sults. EREW PRAM:: Nash and Maheshwari’s approach
[33] takes O

(
log2 n

)
time with O

(
n2

)
operations and im-

proves from Hirschberg, Chandra and Sarwate’s CREW al-
gorithm [22] by building data structures to eliminate the
current reads; Phillips [36] and Kruskal, Rudolph, and
Snir [30] gave algorithms that run in O

(
log2 n

)
time with

O((m+ n) logn) work; Chong and Lam’s approach [10]
takes O(logn loglogn) time with O((m+ n) logn loglogn)
work; and is further improved by Chong, Han, and Lam
[11] with a O(logn) time and O(n logn) work algorithm.
CREW PRAM: Hirschberg et al. [22] designed an
O

(
log2 n

)
time, O

(
n2 logn

)
work algorithm; Chin, Lam,

and Chen [9] improved the algorithm to take O
(
log2 n

)
time

and O
(
n2

)
work by exploiting the adjacency matrix as the

representing data structure; Han and Wagner’s algorithm
[19] runs in O

(
log2 n

)
time with O((m+ n logn) logn)

work; and Johnson and Metaxas’s algorithm [26, 27] runs

in O
(

log3/2 n
)

time with O
(
(m+ n) log3/2 n

)
operations.

CRCW PRAM: There are fast algorithms that use concur-
rent writes. Shiloach and Vishkin [40] and Awerbuch and
Shiloach [1] developed algorithms that run in O(logn) time
with O((m+ n) logn) work; both Cole and Vishkin’s algo-
rithm [13] and Iwama and Kambayashi’s algorithm [24]
run in O(logn) time with O((m+ n)α(m,n)) work, where
α is the inverse Ackermann’s function. Iwana and Kam-
bayashi’s algorithm improves the Cole and Vishkin algo-
rithm by removing the expander graph so that the hidden
constant in the asymptotic notation becomes smaller.

Gazit [15] and Halperin and Zwick [18] have designed
optimal randomized approaches for parallel spanning tree
that run in O(logn) time with high probability on the
CRCW and EREW PRAM, respectively. The algorithm of
Halperin and Zwick [18] is actually a mixture of several pre-
vious algorithms; it borrows the maximum-hooking method
from Chong and Lam [10] to resolve possible grafting con-

flicts, complicated growth control method from Johnson
and Metaxas [26, 27] which is the key technique for them

to achieve an O
(

log3/2 n
)

algorithm, and other techniques

from Gazit [15] and Karger, Klein, and Tarjan [28]. In [35]
Pettie and Ramachandran give an optimal randomized min-
imum spanning tree algorithm that is simpler than that of
Halperin and Zwick.

Related Experimental Studies: As we described in the
previous section, the research community has produced a
rich collection of theoretic deterministic and randomized
spanning tree algorithms. Yet for implementations and ex-
perimental studies, to our knowledge there is no parallel
implementation of spanning tree (or the related problems
such as connected components that produce a spanning
tree) that achieves significant parallel speedup on sparse,
irregular graphs when compared against the best sequen-
tial implementation. In our study we carefully chose sev-
eral known PRAM algorithms and implemented them for
shared-memory (using appropriate optimizations described
by Greiner [17], Chung and Condon [12], Krishnamurthy et
al. [29], and Hsu et al. [23]), and compared these with our
new randomized approach. Our results to our knowledge
are the first to achieve any reasonable parallel speedup for
both regular and irregular graphs.

Greiner [17] implemented several connected compo-
nents algorithms (Shiloach-Vishkin, Awerbuch-Shiloach,
“random-mating” based on the work of Reif [37] and
Phillips [36], and a hybrid of the previous three) using
NESL on the Cray Y-MP/C90 and TMC CM-2. On ran-
dom graphs Greiner reports a maximum speedup of 3.5 us-
ing the hybrid algorithm when compared with a depth-first
search on a DEC Alpha processor. Hsu, Ramachandran, and
Dean [23] also implemented several parallel algorithms for
connected components. They report that their parallel code
runs 30 times slower on a MasPar MP-1 than Greiner’s re-
sults on the Cray, and about half as fast as Greiner’s CM-2
code, but Hsu et al.’s implementation uses one-fourth of the
total memory used by Greiner’s hybrid approach. Krishna-
murthy et al. [29] implemented a connected components
algorithm (based on Shiloach-Vishkin [40]) for distributed
memory machines. Their code achieved a speedup of 20
using a 32-processor TMC CM-5 on graphs with underly-
ing 2D and 3D regular mesh topologies, but virtually no
speedup on sparse random graphs. Goddard, Kumar, and
Prins [16] implemented a connected components algorithm
(motived by Shiloach-Vishkin) for a mesh-connected SIMD
parallel computer, the 8192-processor MasPar MP-1. They
achieve a maximum parallel speedup of less than two on
a random graph with 4096 vertices and about one-million
edges. For a random graph with 4096 vertices and fewer
than a half-million edges, the parallel implementation was
slower than the sequential code. Chung and Condon [12]
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implemented a parallel minimum spanning tree (MST) al-
gorithm based on Borůvka’s algorithm. On a 16-processor
CM-5, for geometric graphs with 32,000 vertices and av-
erage degree 9 and graphs with fewer vertices but higher
average degree, their code achieved a parallel speedup of
about 4, on 16-processors, over the sequential Borůvka’s al-
gorithm, which was 2–3 times slower than their sequential
Kruskal algorithm. Dehne and Götz [14] studied practical
parallel algorithms for MST using the BSP model. They
implemented a dense Borůvka parallel algorithm, on a 16-
processor Parsytec CC-48, that works well for sufficiently
dense input graphs. Using a fixed-sized input graph with
1,000 vertices and 400,000 edges, their code achieved a
maximum speedup of 6.1 using 16 processors for a ran-
dom dense graph. Their algorithm is not suitable for sparse
graphs.

2. Parallel Spanning Tree Algorithms for
SMPs

Here we present an overview of the three parallel span-
ning tree algorithms we have implemented. We refer the
reader to [4] for further detail and proof of correctness. Ac-
cording to the complexities of the algorithms, programming
complexity, constant factors hidden in the asymptotic no-
tation, we choose two representative PRAM algorithms to
implement for SMPs, i.e, the Shiloach-Vishkin (SV) and the
Hirschberg-Chandra-Sarwate (HCS) algorithms, using ap-
propriate optimizations suggested by [17, 23, 29, 12]. Our
modified HCS algorithm for spanning tree results in similar
complexities and running time as that of SV when imple-
mented on an SMP, and hence, we leave it out of further dis-
cussion. Through the experience we gained by implement-
ing these two algorithms, we developed a new randomized
algorithm with superior performance in all of our experi-
ments.

The Shiloach-Vishkin Algorithm:: The Shiloach-Vishkin
algorithm (SV) is in fact a connected-components algorithm
[40, 1]. This algorithm is representative of several con-
nectivity algorithms in that it adapts the widely used graft-
and-shortcut approach. Through carefully designed grafting
schemes the algorithm achieves complexities of O(logn)
time and O((m+ n) logn) work under the arbitrary CRCW
PRAM model. It can be extended naturally to solve the
spanning tree problem under the priority CRCW PRAM
model with the same complexity bound. Yet for implemen-
tation on an SMP, the tightly-synchronized concurrent steps
(read and write) are unrealistic and modification of the al-
gorithm is necessary, as we discuss next.

The basic problem of adapting this algorithm on SMPs
as a spanning tree algorithm is that it may graft a tree onto
two or more different trees or onto the tree itself and pro-

duce cycles. This is allowable in the connected components
algorithm as long as the connected vertices are labeled as
in the same component, yet it will be an issue in the span-
ning tree algorithm for this may produce some false tree
edges. It is in fact a race condition between processors that
wish to graft a subtree rooted at one vertex onto different
trees. The mismatch between the priority CRCW model and
a real SMP is as follows. On the priority CRCW model (as-
sumed by the original algorithm) arbitration among the pro-
cessors during each step is provided by the model, yet most
SMPs can only provide arbitrary concurrent writes with a
cost. One straightforward solution uses locks to ensure that
a tree gets grafted only once. The locking approach intu-
itively is slow and not scalable, and our test results agree.
Another approach is to always shortcut the tree to rooted
star (to avoid grafting a tree onto itself) and run an elec-
tion among the processors that wish to graft the same tree
before actually performing the grafting. Only the winner
of the election grafts the tree (to avoid grafting a tree onto
multiple other trees). This approach is also used by other
researchers [24, 17] to handle the race conditions in their
spanning tree algorithms. The running time of the algo-
rithm is now O

(
log2 n

)
; the additional logn factor comes

from shortcutting (pointer jumping). Optimizations are pos-
sible for the election approach. Please see [4] for additional
optimization details.

SV is sensitive to the labeling of vertices, since alterna-
tive labelings of the vertices may incur different numbers of
iterations to terminate the algorithm. For the best case, one
iteration of the algorithm may be sufficient, and the running
time of the algorithm will be O(logn). Whereas for an ar-
bitrary labeling of the same graph, the number of iterations
needed will be from one to logn. We expect to see similar
behaviors for the class of algorithms that use the “grafting
and short-cutting” approach.

A New Spanning Tree Algorithm For SMPs: Our new
parallel spanning tree algorithm for shared-memory multi-
processors has two main steps: 1) stub spanning tree, and 2)
work-stealing graph traversal. Work-stealing is a random-
ized technique used for load balancing the graph traversals
and yields an expected running time that scales linearly with
the number of processors for suitably large inputs. Unlike
the SV approach, the labeling of vertices does not affect the
performance of our new algorithm.
Stub Spanning Tree: In the first step, one processor gener-
ates a stub spanning tree, that is, a small portion of the span-
ning tree by randomly walking the graph for O(p) steps.
The vertices of the stub spanning tree are evenly distributed
into each processor’s queue, and each processor traverses
from the first element in its queue.
Work Stealing Graph Traversal: The basic idea of this
step is to let each processor traverse the graph similar to the
sequential algorithm in such a way that each processor finds
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Data : (1) An adjacency list representation of
graph G = (V,E) with n vertices, (2) a
starting vertex root for each processor, (3)
color: an array of size n with each element
initialized to 0, and (4) parent: an array of
size n.

Result : p pieces of spanning subtrees; except for
the starting vertices, each vertex v has
parent (v) as its parent.

begin
1. color my starting vertex with my label i and
place it into my queue Qi

color [root] = i
Enqueue(Qi,root)

2. start breadth-first search from root, color the
vertices that have not been visited with my label i
until queue Qi is empty.
2.1 while Not-Empty(Qi) do

2.2 v = Dequeue(Qi)
2.3 for each neighbor w of v do

2.4 if (color [w] = 0) then
2.5 color [w] = i
2.6 parent [w] = v
2.7 Enqueue(Qi,w)

end

Algorithm 1: Modified Graph Traversal Step for our
SMP Algorithm for Processor i, for (1 ≤ i ≤ p). Note
that the starting vertex root for each processor that ini-
tially is held in each processor’s queue Qi is the corre-
sponding vertex from the stub spanning tree.

a subgraph of the final spanning tree. (After the traversals,
the spanning subtrees are connected by the stub spanning
tree.) In order for this step (see Alg. 1) to perform correctly
and efficiently, we need to address the following two issues:
1) coloring the same vertex simultaneously by multiple pro-
cessors, that is, a vertex may appear in two or more subtrees
of different processors, and 2) balancing the load among the
processors.

As we will show the algorithm runs correctly even when
two or more processors color the same vertex. In this situa-
tion, each processor will color the vertex and set as its parent
the vertex it has just colored. Only one processor succeeds
at setting the vertex’s parent to a final value. For example,
using Fig. 1, processor P1 colored vertex u, and processor P2

colored vertex v, at a certain time they both find w unvisited
and are now in a race to color vertex w. It makes no dif-
ference which processor colored w last because w’s parent
will be set to either u or v (and it is legal to set w’s parent to
either of them; this will not change the validity of the span-
ning tree, only its shape). Further, this event does not create
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Figure 1. Two processors P1 and P2 see vertex
w as unvisited, so each is in a race to color w
and set w’s parent pointer. The shaded area
represents vertices colored by P1, the black
area represents those marked by P2, and the
white area contains unvisited vertices.

cycles in the spanning tree. Both P1 and P2 record that w is
connected to each processor’s own tree. When various pro-
cessors visit each of w’s unvisited children, its parent will
be set to w, independent of w’s parent.
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P4

P3

x

Figure 2. Unbalanced load: processors P1, P2,
and P3, each color only one vertex while pro-
cessor P4 colors the remaining n−3 vertices.

For certain shapes of graphs or ordering of traversals,
some processors may have little work to do while others are
overloaded. For example, using Fig. 2, after generating a
stub spanning tree (black vertices), processors P1, P2, P3,
and P4, start a traversal from designated starting points. In
this case P1, P2, and P3, color no other vertices than u, v, and
w, while processor P4, starting from vertex x, has significant
work to do. In this example for instance, this results in all
but one processor sitting idle while a single processor per-
forms almost all the work, and obviously no speedup will
be achieved. We remedy this situation as follows.

To achieve better load-balancing across the processors,
we add the technique of work stealing to our algorithm, i.e.,
whenever any processor finishes with its own work (that
is, it cannot reach any other unvisited vertex), it randomly
checks other processors’ queues. If it finds a non-empty
queue, the processor steals part of the queue. Work steal-
ing does not affect the correctness of the algorithm, because
when a processors takes elements from a queue, all of the
elements are already colored and their parents have already
been set, and no matter which processor inspects their un-
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visited children, they are going to be set as these children’s
parents. As we show later in our experimental results, we
find that this technique keeps all processors equally busy
performing useful work, and hence, evenly balances the
workload for most classes of input graphs.

Arguably there are still pathological cases where load-
balancing could fail to balance the load among the proces-
sors. For example, when connectivity of a graph (or por-
tions of a graph) is very low (the diameter of the graph is
large), queues of the busy processors may contain only a
few elements (in extreme cases, the queue of a busy pro-
cessor could contain only one element). In this case work
awaits busy processors while idle processors starve. We ar-
gue that this case is very rare (see Section 3); however, we
next propose a detection mechanism that can detect the sit-
uation and invoke a different spanning tree algorithm that is
robust to this case.

The detecting mechanism uses condition variables to co-
ordinate the state of processing. Whenever a processor be-
comes idle and finds no work to steal, it will go to sleep
for a duration on a condition variable. Once the number of
sleeping processors reaches a certain threshold, we halt the
SMP traversal algorithm, merge the grown spanning sub-
tree into a super-vertex, and start a different algorithm, for
instance, the SV approach. In theoretic terms, the perfor-
mance of our algorithm could be similar to that of SV in
the worst-case, but in practical terms this mechanism will
almost never be triggered; for instance, in our experimen-
tal studies with a collection of different types of graphs, we
never encountered such a case.

When an input graph contains vertices of degree two,
these vertices along with a corresponding tree edge can be
eliminated as a simple preprocessing step. Clearly, this op-
timization does not affect correctness of the algorithm, and
we can assume that this procedure has been run before the
analysis in the next section.

3. Analysis of the SMP Spanning Tree Algo-
rithms

We compare our new SMP algorithm with the implemen-
tation of SV both in terms of complexity and actual per-
formance (in Section 4). Our analyses use an SMP com-
plexity model similar to that of Helman and JáJá [21] that
has been shown to provide a good cost model for shared-
memory algorithms on current symmetric multiprocessors
[20, 21, 2, 3]. The model uses two parameters: the input size
n, and the number p of processors. Running time T (n, p)
is measured by the triplet 〈TM(n, p) ; TC(n, p) ; B(n, p)〉,
where TM(n, p) is the maximum number of non-contiguous
main memory accesses required by any processor, TC(n, p)
is an upper bound on the maximum local computational
complexity of any of the processors, and B(n, p) is the num-

ber of barrier synchronizations. This model, in compari-
son with PRAM, is more realistic in that it penalizes al-
gorithms with non-contiguous memory accesses that often
result in cache misses and algorithms with more synchro-
nization events.

Our spanning tree algorithm takes advantage of the
shared memory environment in several ways. First, the in-
put graph’s data structure can be shared by the processors
without the need for the difficult task of data partitioning
often required by distributed-memory algorithms. Second,
load balancing can be performed asynchronously using the
lightweight work stealing protocol. Unlike the SV imple-
mentation that is sensitive to both the labeling and topol-
ogy of input graph, the running time of our new approach
is dependent on the topology and nondeterministic races
amongst processors. Next, we give the complexity analy-
ses of these approaches.
SMP Traversal Based:

The first step that generates a stub spanning
tree is executed by one processor in T (n, p) =
〈TM(n, p) ; TC(n, p) ; B(n, p)〉 = 〈O(p) ; O(p) ; 1〉. In
the second step, the work-stealing graph traversal step
needs one non-contiguous memory access to visit each
vertex, and two non-contiguous accesses per edge to find
the adjacent vertices, check their colors, and set the parent.
For almost all graphs, the expected number of vertices

processed per processor is O
(

n
p

)
with the work-stealing

technique; and hence, we expect the load to be evenly
balanced. (Palmer [34] proved that almost all random
graphs have diameter two.) During the tree-growing
process, a small number of vertices may appear in more
than one queue because of the races among the processors.
Analytically, we could model this as a Poisson process that
depends on parameters related to system and problem char-
acteristics. However, this number will not be significant.
Our experiments show that the number of vertices that
appear in multiple processors’ queues at the same time are
a miniscule percentage (for example, less than ten vertices
for a graph with millions of vertices).

We expect each processor to visit O
(

n
p

)
ver-

tices; hence, the expected complexity of the sec-
ond step is T (n, p) = 〈TM(n, p) ; TC(n, p) ; B(n, p)〉 =〈

n
p + 2 m

p ; O
(

n+m
p

)
; 1

〉
. Thus, the expected running time

for our SMP spanning tree algorithm is given as T (n, p) ≤〈
5 n

p + 2 m
p + O(p) ; O

(
n+m

p

)
; 2

〉
, with high probability.

For realistic problem sizes (n � p2), this simplifies to

T (n, p) ≤
〈

O
(

n+m
p

)
; O

(
n+m

p

)
; 2

〉
, the algorithm scales

linearly with the problem size and number of processors,
and we use only a constant number of barrier synchroniza-
tions.
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Shiloach-Vishkin (SV):
The SV algorithm is modified from the determinis-

tic connected components algorithms for finding spanning
trees with p shared-memory processors. SV iterates from
one to logn times depending on the labeling of the vertices.
In the first “graft-and-shortcut” step of SV, two passes are
used to ensure that a tree is not grafted onto multiple other
trees. In each pass, there are two non-contiguous mem-
ory accesses per edge. Thus, each of the two passes of

the first step has cost T (n, p) =
〈

2 m
p + 1 ; O

(
n+m

p

)
; 1

〉
.

The second step of the SV connected components algo-
rithm does not need to be run for spanning tree, since all
the trees are grafted in the first step. The final step of
each iteration runs pointer jumping to form rooted stars
to ensure that a tree is not grafted onto itself, with cost

T (n, p) =
〈

n logn
p ; O

(
n logn

p

)
; 1

〉
. In general, SV needs

multiple iterations to terminate. Assuming the worst-case
of logn iterations, the total complexity for SV is T (n, p) ≤〈

n log2 n
p +

(
4 m

p + 2
)

logn ; O
(

n log2 n+m logn
p

)
; 4 logn

〉
.

Comparing the analyses, we predict that our randomized

approach has less computation
(

O
(

n+m
p

))
than the deter-

ministic SV approach that has worst-case computational re-

quirements of O
(

n log2 n+m logn
p

)
. Even if SV iterates only

once, there is still approximately logn times more work
per iteration. Considering memory accesses, our SMP al-
gorithm is more cache friendly, having a small number of
non-contiguous memory accesses per the input size. On
the other hand, SV has a multiplicative factor of approxi-
mately 1

5 log2 n more non-contiguous accesses per vertex as-
signed to each processor. Our SMP approach also uses less
synchronization (O(1)) than the SV implementation that re-
quires O(logn).

4. Experimental Results

This section summarizes the experimental results of our
implementation and compares our results with previous ex-
perimental results. We tested our shared-memory imple-
mentation on the Sun E4500, a uniform-memory-access
(UMA) shared memory parallel machine with 14 Ultra-
SPARC II 400MHz processors and 14 GB of memory. Each
processor has 16 Kbytes of direct-mapped data (L1) cache
and 4 Mbytes of external (L2) cache. We implement the al-
gorithms using POSIX threads and software-based barriers
[5].

Experimental Data: Next we describe the collection of
sparse graph generators that we use to compare the perfor-
mance of the parallel spanning tree graph algorithms. Our
generators include several employed in previous experimen-
tal studies of parallel graph algorithms for related problems.

For instance, we include the 2D60 and 3D40 mesh topolo-
gies used in the connected component studies of Greiner
[17], Krishnamurthy et al. [29], Hsu et al. [23], and God-
dard et al. [16], the random graphs used by Greiner [17],
Chung and Condon [12], Hsu et al. [23], and Goddard et
al. [16], and the geometric graphs used by Chung and Con-
don [12], and the “tertiary” geometric graph AD3 used by
Greiner [17], Hsu et al. [23], Krishnamurthy et al. [29],
and Goddard et al. [16]. In addition, we include generators
from realistic applications such as geographic graphs and
from pathological cases such as degenerate chain graphs.

• Regular and Irregular Meshes Computational sci-
ence applications for physics-based simulations and
computer vision commonly use mesh-based graphs.

– 2D Torus The vertices of the graph are placed on
a 2D mesh, with each vertex connected to its four
neighbors.

– 2D60 2D mesh with the probability of 60% for
each edge to be present.

– 3D40 3D mesh with the probability of 40% for
each edge to be present.

• Random Graph We create a random graph of n ver-
tices and m edges by randomly adding m unique edges
to the vertex set. Several software packages generate
random graphs this way, including LEDA [31].

• Geometric Graphs and AD3 In these k-regular
graphs, n points are chosen uniformly and at random
in a unit square in the Cartesian plane, and each ver-
tex is connected to its k nearest neighbors. Moret and
Shapiro [32] use these in their empirical study of se-
quential MST algorithms. AD3 is a geometric graph
with k = 3.

• Geographic Graphs Research on properties of wide-
area networks model the structure of the Internet as a
geographic graph [6]. We classify geographic graphs
into two categories, flat and hierarchical. Flat mode
takes into account the geographical locations of ver-
tices when producing edges. First the vertices are ran-
domly placed on a square, then for each pair of the
vertices, an edge connects them according to the dis-
tance between them and other parameters. Hierarchi-
cal mode models the Internet with the notions of back-
bones, domains, and subdomains. Several vertices are
placed in the square, and a backbone is created con-
necting these locations. In a similar way domains and
subdomains are created around certain locations of the
backbone.
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Figure 3. This plot shows the scalability of
our SMP spanning tree algorithm using p = 8
processors compared with the sequential al-
gorithm for a random graph. For these exper-
iments, the speedup of the parallel algorithm
is between 4.5 and 5.5.

Performance Results and Analysis: The performance
plots in Fig. 4 are for the regular and irregular meshes
(torus, 2D60 and 3D40), the random, geometric and AD3,
and geographic classes of graphs, and the degenerate chain
graphs. Note that only the mesh and degenerate chain
graphs are regular; all of the remaining graphs used are
irregular. In these plots, the horizontal line labeled “Se-
quential” represents the time taken for the best sequential
spanning tree algorithm—in our experiments, breadth-first
search—to find a solution on the same input graph using a
single processor on the Sun E4500.

In the case of the torus inputs, we observe that the ini-
tial labeling of vertices greatly affects the performance of
the SV algorithm, but the labeling has little impact on our
algorithm. In all of these graphs, we note that the SV ap-
proach runs faster as we employ more processors. How-
ever, in many cases, the SV parallel approach is slower than
the best sequential algorithm. For p > 2 processors, in our
testing with a variety of classes of large graphs, our new
spanning tree algorithm is always faster than the sequen-
tial algorithm, and executes faster as more processors are
available. This is remarkable, given that the sequential al-
gorithm is linear time with a very small hidden constant in
the asymptotic complexity.

Fig. 3 shows the scalability of our SMP spanning tree
algorithm using p = 8 processors compared with the se-
quential algorithm for a random graph with m = 1.5n edges.
For these experiments, the speedup of the parallel algorithm
compared with the sequential approach ranges between 4.5
and 5.5.

5. Conclusions and Future Work

In summary, we present optimistic results that for the
first time, show that parallel spanning tree algorithms run
efficiently on parallel symmetric multiprocessors for graphs
with regular and irregular topologies. Our new implemen-
tation scales nearly linearly with the problem size and the
number of processors for suitably large input graphs. Our
randomized approach uses a load balancing scheme based
upon work stealing. Our new parallel algorithm has supe-
rior performance when compared with prior deterministic
parallel approaches that we modify for SMPs. Through
comparison with the best sequential implementation, we see

experimentally that our approach runs in O
(

n+m
p

)
expected

time over a variety of regular and irregular graph topologies.
Further, these results provide optimistic evidence that com-
plex graph problems that have efficient PRAM solutions,
but often no known efficient parallel implementations, may
scale gracefully on SMPs. Our future work includes val-
idating these experiments on larger SMPs, and since the
code is portable, on other vendors’ platforms. We plan to
apply the techniques discussed in this paper to other re-
lated graph problems, for instance, minimum spanning tree
(forest), connected components, and planarity testing algo-
rithms, for symmetric multiprocessors.
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Figure 4. Comparison of parallel spanning tree algorithms for regular and irregular graphs with
n = 1M vertices. The top row of plots uses tori with row-major order and random labeling of the
vertices followed by a random graph with m = 20M ≈ n logn edges. The second row uses two irregular
torus graphs 2D60 and 3D40, and a geometric graph with k = 3 (AD3). The third row plots are for
geographic inputs with flat and hierarchical modes. The bottom row plots use a degenerate graph
with a sequential and random labeling of the vertices. Note that these performance charts are log-log
plots.
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