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Computational biology has been revolutionized
by advances in both computer hardware and software algo-
rithms. Examples include assembling the human genome
and using gene-expression chips to determine which genes
are active in a cell [11, 12]. High-throughput techniques

for DNA sequencing and analysis of gene expression have led to
exponential growth in the amount of publicly available genomic
data. For example, the genetic sequence information in the National
Center for Biotechnology Information’s GenBank database has
nearly doubled in size each year for the past decade, with more than
37 million sequence records as of August 2004. Biologists are keen
to analyze and understand this data, since genetic sequences deter-
mine biological structure, and thus the function, of proteins. Under-
standing the function of biologically active molecules leads to
understanding biochemical pathways and disease-prevention strate-
gies and cures, along with the mechanisms of life itself. 

Increased availability of genomic data is not incremental. The
amount is now so great that traditional database approaches are no
longer sufficient for rapidly performing life science queries involving
the fusion of data types. Computing systems are now so powerful it is
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possible for researchers to consider modeling the fold-
ing of a protein or even the simulation of an entire
human body. As a result, computer scientists and bio-
medical researchers face the challenge of transforming

data into models and sim-
ulations that will enable
scientists for the first time
to gain a profound under-
standing of the deepest
biological functions.

Traditional uses of
high-performance com-
puting (HPC) systems in
physics, engineering, and
weather forecasting involve
problems that often have
well-defined and regular
structures. In contrast, many problems in biology are
irregular in structure, are significantly more challeng-
ing for software engineers to parallelize, and often
involve integer-based abstract data structures. Solving
biological problems may require HPC due either to
the massive parallel computation required to solve a
particular problem or to algorithmic complexity that
may range from difficult to intractable. 

Many problems involve seemingly well-behaved
polynomial time algorithms (such as all-to-all com-
parisons) but have massive computational require-
ments due to the large data sets that must be
analyzed. For example, the assembly of the human
genome in 2001 from the many short segments of
sequence data produced by sequence robots required

approximately 10,000 CPU hours [12].
Other problems are compute-intensive due to their

inherent algorithmic complexity (such as protein
folding and reconstructing evolutionary histories

from molecular data). Some are known
to be NP-hard (or harder). (An NP-
hard problem is one for which an exact
solution is conjectured by computer sci-
entists to not be solvable in polynomial
time, that is, an NP-hard problem
requires more steps than can be
grounded by a polynomial.) Thus,
while NP-hard problems are thought to
be intractable, HPC may provide suffi-
cient capability for evaluating biomole-
cular hypotheses or solving more
limited but meaningful instances.

Here, I investigate problems requir-
ing massive parallelism due to their
inherent algorithmic complexity (such
as protein folding) or due to being NP-
hard (such as inferring evolutionary his-
tories from genetic information). 

Protein Folding
Proteins are large molecules found in all organisms
built from a chain of amino acids and are responsi-
ble for the structure, function, and regulation of
cells, tissues, and organs. Protein folding is the
process of self-assembly of an amino acid sequence
into the native 3D structure of the functioning
protein. Proper functioning of a protein depends
on its ability to fold into its native structure. Fail-
ure to do so causes a loss of biological function and
often results in illness or fatal disease. Examples are
cystic fibrosis; Parkinson’s; Alzheimer’s; and Prion
diseases (such as Creutzfeldt-Jakob Disease and
Bovine Spongiform Encephalopathy, or mad cow
disease). Hence, a biomedical researcher’s under-
standing of how a protein folds has direct medical
significance. The protein-folding problem is com-
putationally challenging, and many techniques,
ranging from experimental to theoretical, are being
investigated for their accuracy and speed in pre-
dicting 3D structures.

The process of folding a protein takes from
approximately 20 microseconds to as much as one full
second. While some proteins can be studied through
X-ray crystallography, others (such as membrane pro-
teins and molten globules where the side-chain pack-
ing in the interior of the fold is not in a rigid
conformation) can be studied only through simula-
tion [2]. Algorithms for protein folding span a broad
range of sophistication (and computational cost) for

Figure 1. Tree of life, including:
Eukarya, organisms with cells
containing membrane-bound

nuclei (such as animals, plants,
fungi, and protists); Archaea,
single-celled organisms that

inhabit some of the most
extreme environments on 
the planet; and Bacteria, 

single-celled organisms that 
are among the earliest forms 

of life, appearing on Earth 
billions of years ago. The 

tree represents the 
evolutionary relationships

among all forms of life.



biomolecular modeling of the physical processes. At
least three different approaches are being taken to
develop innovative parallel computing systems to run
these algorithms: the massive computational system
called Blue Gene/L being developed by IBM; special-
ized hardware specifically for molecular dynamics
(such as the MD-GRAPE, the Molecular Dynamics
GRAvity Pipe, or PetaFLOPS special-purpose com-
puter system being developed by IBM’s Research
Division and by the Institute of Chemical Research,
or RIKEN, in Japan); and cycle-scavenging
approaches exemplified by the Folding@Home proj-
ect at Stanford University.

IBM’s Blue Gene project (see the article by

Toshikazu Ebisuzaki et al.
in this section) focuses on
building massively parallel
PetaFLOPS-class super-
computers designed to 
perform protein-folding

simulations, as well as model other biomolecular
phenomena. These simulations employ a molecular
dynamics approach to protein folding, starting with
a model of an unfolded amino acid chain and the
solvent molecules surrounding the chain in a cell.
The forces on every atom in the amino acid chain
and the solvent molecules around it are calculated
through an approach called explicit-solvent. The
expected movements of the atoms over each individ-
ual time step are calculated from these forces, a

process that must be repeated many times. 
The IBM Blue Gene project [6] estimates that sim-

ulating 100 microseconds of protein folding takes
1025 machine  instructions.  This  computation would
take three years on a PetaFLOPS system or keep a
3.2GHz microprocessor busy for the next million
centuries.

The MD-GRAPE project (see the article by
Toshikazu Ebisuzaki et al. in this section) also takes a
molecular dynamics approach to simulating protein
folding. Unlike the Blue Gene family, the GRAPE
and MD-GRAPE systems are capable of performing
calculations only for dynamical systems. Efforts are
under way in Japan to create a PetaFLOPS computing
resource comprised of many MD-GRAPE boards to
perform large-scale simulations of protein folding. 

The Folding@Home project (folding.stanford.
edu) takes a different approach, both in terms of
assembling computer power and to the algorithms it
employs. Folding@Home invites volunteer Internet
users to download a screensaver program that receives
parcels of work from the project server whenever the
client computer is idle. When the computer finishes
processing its parcel, it returns the result to the server
and receives a new assignment. In this way, thousands
of processors around the world together contribute to
the process of simulating protein folding.

The Folding@Home project uses an ensemble
dynamics method and does not model the solvent
molecules explicitly. Its algorithm instead models the
ways an amino acid chain may move based on calcu-
lation of free energy barriers that constrain the way
proteins may fold. (Switching from one conformation
to another is not possible due to the amount of energy
required to make the transition and is referred to as
the free energy barrier.) The majority of compute time
is spent exploring the free energy wells and waiting for
thermal fluctuations that bring the system across the
barriers. The Folding@Home system has attracted
thousands of volunteers to donate compute time;
from October 2000 to September 2004, more than a
million CPUs worldwide were contributed to the
project, amounting to tens of thousands of CPU
cycles each year, breaking the 100TFLOPS barrier on
September 9, 2004. This cycle-donation approach is
also used in several other branches of computational
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•  On the 512-processor cluster
   LosLobos at U. New Mexico, we ran
   the full analysis (all 14 billion trees)
   in under 1.5 hours – a 1,000,000-
   fold speedup (and using true
   inversion distance)

• Current release of GRAPPA (v. 1.6)
   now takes minutes to solve the
   same problem on only several
   processors

•  256 IBM Netfinity 4500R nodes of dual
   733MHz Intel Pentium III processors
   interconnected with Myrinet 2000

Using GRAPPA to solve Campanulaceae Phylogeny

Figure 2. Using GRAPPA, or
Genome Rearrangement
Analysis through Parsimony
and other Phylogenetic 
Algorithms, to reconstruct the
phylogeny of Campanulaceae.

Because phylogenies are crucial to answering fundamental open 
questions in biomolecular evolution, biologists have a strong 

interest in algorithms that resolve ancient relationships. 



biology, including FightAids@Home (fightaidsath-
ome.scripps.edu/) in a search for chemical com-
pounds that might interact with the HIV virus to
treat AIDS.

Phylogeny 
Reconstruction
A phylogeny is a representa-
tion of the evolutionary his-
tory of a group of genes, gene
products, or species of organ-
isms (taxa). Phylogenies have
been reconstructed by biolo-

gists and paleontologists (without computing) for
more than a century. The availability of genetic
sequence data now makes it possible to infer phylo-
genetic trees from genetic sequences, or the
sequences of molecules acted on directly by evolu-
tion and thus record evolution’s end effects. 

Phylogenetic analysis uses data from living organ-
isms to attempt to reconstruct the evolutionary his-
tory of genes, gene products, and taxa. (Since the
techniques are largely the same for all, I refer simply
to taxa here). Because phylogenies are crucial to
answering fundamental open questions in biomolec-
ular evolution, biologists have a strong interest in

algorithms that resolve ancient relationships. Much
applied research depends on these algorithms as well.
For example, pharmaceutical companies use phyloge-
netic analysis in drug discovery in, say, discovering
biochemical pathways unique to target organisms.

Health organizations study the phylogenies
of organisms (such as HIV) to understand
their epidemiologies and aid in predicting
the course of disease over time in an indi-
vidual or even in an entire population.
Using an understanding of the phyloge-
netic distribution of variation in wild pop-
ulations, government laboratories
worldwide are working to develop
improved strains of basic foodstuffs (such
as rice, wheat, and potatoes). Finally, the
reconstruction of large phylogenies has also
yielded fundamental new insights into the
process of evolution.

The basic principle of phylogenetic
inference is that comparing genetic
sequences makes it possible to find out
which taxa are more closely related (and
thus more recently separated in evolution-

ary time) and which are less closely related (and thus
separated much further back in evolutionary time).
Existing phylogenetic reconstruction techniques suf-
fer from serious shortcomings of running time and
accuracy, particularly for large data sets. Phylogenetic
inference will benefit from new algorithmic develop-
ments, as well as from HPC systems that reduce the
running time of current algorithms.

Optimization Problems
Almost every model of speciation and genomic evo-
lution used in phylogenetic reconstruction has
given rise to NP-hard optimization problems.
Three major classes of methods are used by com-
puter scientists in designing algorithms to solve
them: heuristics (such as neighbor-joining) [9];
maximum parsimony [3]; and maximum likelihood
[4]. Heuristics (a natural consequence of the NP-
hardness of the problems) run quickly, but may not
offer quality guarantees and even lack a well-
defined optimization criterion. Parsimony-based
methods take exponential time (as a function of the
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Figure 3. Bellflower family
(Campanulaceae) and its
many blooms. The 
evolutionary history 
reconstructed by GRAPPA
depicted here confirms the
conjecture that inversion 
is the principal process of
genome evolution in
cpDNA for this group.
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simulating 100 microseconds of protein folding could 
take 1025 machine instructions, a computation that 

would take three years on even a PetaFLOPS system or 
keep a 3.2GHz microprocessor busy for the next million centuries.



number of taxa), but, at least for DNA and amino
acid, data is often run to completion on data sets of
moderate size. Maximum-likelihood methods come
with a larger set of conditions and assumptions than
parsimony methods, but when these conditions are
met, they seem to be capable of outperforming the
others in terms of the quality of the solutions they
produce. However, maximum-likelihood methods
may take thousands of CPU hours to analyze large
data sets (see the article by Mark Ellisman et al. in
this section). 

Until recently, most phylogenetic algorithms
focused on DNA or protein sequence data using a
model of evolution based mainly on nucleotide sub-
stitution. Another type of data has recently become
available through the characterization of entire
genomes: gene content and gene order data. For a
few animal species (such as human, mouse, and fruit
fly), several plants and microorganisms, and a fair
sampling of cell organelles (mitochondria and
chloroplast), biomedical researchers now have a
thorough catalog of genes and their physical loca-
tions on chromosomes. Several mechanisms of evo-
lution operate at the genome level, including gene
duplication, loss, and reordering. They operate on
time scales much slower than nucleotide mutations;
as a result, they are potentially useful in resolving
ancient evolutionary relationships. This new source
of data has thus been embraced by biologists inter-
ested in the evolution of major divisions of plants,
animals, and microorganisms. 

Exploiting data about gene content and gene order
has proved extremely challenging from a computa-
tional perspective. Tasks readily carried out in linear
time for DNA data might require entirely new theo-
ries (such as computation of inversion distance [1, 5])
or appear to be NP-hard. Thus gene-ordering
approaches have been used most extensively on simple
genomes: bacteria and organelles (chloroplast and
mitochondria). Mitochondria are organelles found in
all eukaryotic cells in plants, animals, and protozoans
and are instrumental in processing energy in cells (see
Figure 1). Chloroplasts are found in photosynthetic
protozoans and plants and are responsible for turning
sunlight into energy-storing compounds. Mitochon-
dria and chloroplasts have their own bacteria-like
DNA. The genetic information of bacteria, mito-
chondria, and chloroplasts consists of a single chro-
mosome and, unlike eukaryotes, all of their genetic
material is expressed, meaning that all of the genomic
coded information is transcribed and converted into
the structures present and operating in the cell. More-
over, the order of genes in prokaryote-like DNA (in
bacteria, mitochondria, and chloroplasts) is especially

important in gene expression and cell function. 
The evolutionary relationships of bacteria may be

studied by examining the order of genes in bacterial
DNA. Since mitochondria and chloroplasts have their
own DNA (independent of the genetic material of the
eukaryotic organisms of which they are a part), the
evolutionary relationships of the eukaryotes can like-
wise be studied by examining the gene order of their
mitochondria or chloroplasts. 

Gene order along a chromosome can be viewed as
an ordering of signed integers, with each integer rep-
resenting a single gene; the sign denotes the relative
orientation of the gene along the DNA. A method
called breakpoint phylogeny [10] infers the structure
of phylogenetic trees based on analysis of changes in
gene order. 

GRAPPA, or Genome Rearrangement Analysis
through Parsimony and other Phylogenetic Algo-
rithms, I developed, along with a group at the Uni-
versity of New Mexico and the University of Texas at
Austin, beginning in 2000, extends and makes more
realistic the underlying evolutionary theory of break-
point analysis and provides a highly optimized paral-
lel program that performs well on a variety of
supercomputer systems (see Figure 2) [7]. We have
used GRAPPA on the University of New Mexico’s
512-processor Linux cluster to analyze the evolution-
ary relationships of the Bellflower family (Campanu-
laceae), a group of small annual plants, many with
attractive blooms (see Figure 3). We demonstrated a
linear speedup with numbers of processors, essentially
perfect parallel scaling [8], and a millionfold speedup
compared to the original implementation of break-
point analysis. The latest version of GRAPPA (version
1.6 released July 2002) includes significantly
improved underlying algorithms for modeling the
evolutionary process and reflects a billionfold speedup
compared to the original 1998 breakpoint phylogeny
algorithm.

GRAPPA is a prime example of the potential of
high-performance algorithm development and HPC
systems in computational biology. Such potential is
likely to benefit researchers working on problems
involving complex optimizations. Our reimplementa-
tion did not require new algorithms or entirely new
techniques yet turned what had been an impractical
approach into an effective one.

HPC and Next-Generation Biology
The HPC community has its roots in solving com-
putational problems in physics (such as fluid flow,
structural analyses, and molecular dynamics). How-
ever, traditional approaches to these problems, and
to ranking HPC systems based on the Linpack
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benchmark, may not be the optimal approach to
HPC architectures in computational biology. Many
researchers are carefully considering the architectural
needs of HPC systems to enable next-generation
biology. New HPC algorithms for biomedical
research will require tight integration of computa-
tion with database operations and queries, along
with the ability to handle new types of queries that
are highly dependent on irregular spatial or tempo-
ral locality. 

Many of the tools currently used in computational
biology were created by biologists dealing with data
sets that were miniscule in comparison to those avail-
able today. As a result, software that was once per-
fectly adequate now performs slowly or is incapable of
successful analysis. As life scientists and biomedical
researchers learn more about the complexities of pro-
tein structure, computational scientists find that the
accurate simulation of a protein folding and changing
its conformation due to biomolecular interactions
may be intractable without PetaFLOPS-class com-
puters. When algorithm engineering tools and prac-
tices are complemented by high-performance
software implementations designed for parallel plat-
forms, enormous gains will be realized in the size of
data sets that may be analyzed and in the speed with
which that analysis is carried out. GRAPPA is but one
example of the benefits of this approach, which is
likely to extend to a large variety of computationally
intensive tasks.

However, even large speedups have only limited
benefits in theoretical terms when applied to NP-hard
optimization problems. The billionfold speedup with
GRAPPA allowed expansion of data sets from 10 taxa
to 18 taxa. Thus, a HPC approach is no substitute for
innovative algorithm design but is rather a natural
complement. Much faster implementations, when
sufficiently mature, might alter the practice of bio-
medical research. Research activities considered
impossible due to computational challenges become
feasible in theoretical biological research and applied
biomedical research. Thus, approaches to scale and
algorithmic design will enable HPC and biomedical
researchers to solve today’s grand challenge problems
in both computing and biology.
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A HPC approach is no substitute for innovative 
algorithm design but is rather a natural complement.
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