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Abstract

Minimum Spanning Tree (MST) is one of the most studied
combinatorial problems with practical applications in VLSI
layout, wireless communication, and distributed networks,
recent problems in biology and medicine such as cancer de-
tection, medical imaging, and proteomics, and national se-
curity and bioterrorism such as detecting the spread of tox-
ins through populations in the case of biological/chemical
warfare. Most of the previous attempts for improving the
speed of MST using parallel computing are too complicated
to implement or perform well only on special graphs with
regular structure. In this paper we design and implement
four parallel MST algorithms (three variations of Borůvka
plus our new approach) for arbitrary sparse graphs that for
the first time give speedup when compared with the best
sequential algorithm. In fact, our algorithms also solve
the minimum spanning forest problem. We provide an ex-
perimental study of our algorithms on symmetric multipro-
cessors such as IBM’s p690/Regatta and Sun’s Enterprise
servers. Our new implementation achieves good speedups
over a wide range of input graphs with regular and irreg-
ular structures, including the graphs used by previous par-
allel MST studies. For example, on an arbitrary random
graph with 1M vertices and 20M edges, our new approach
achieves a speedup of 5 using 8 processors. The source
code for these algorithms is freely-available from our web
site hpc.ece.unm.edu.

1. Introduction

Given an undirected connected graph G with n vertices
and m edges, the minimum spanning tree (MST) problem
finds a spanning tree with the minimum sum of edge
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weights. MST is one of the most studied combinatorial
problems with practical applications in VLSI layout, wire-
less communication, and distributed networks [26, 36, 38],
recent problems in biology and medicine such as cancer
detection [5, 21, 22, 25], medical imaging [2], and pro-
teomics [30, 12], and national security and bioterrorism
such as detecting the spread of toxins through populations
in the case of biological/chemical warfare [6], and is often
a key step in other graph problems [28, 24, 35, 37].

While several theoretic results are known for solving
MST in parallel, many are considered impractical be-
cause they are too complicated and have large constant
factors hidden in the asymptotic complexity. Pettie and
Ramachandran [32] designed a randomized, time-work
optimal MST algorithm for the EREW PRAM, and using
EREW to QSM and QSM to BSP emulations from [13],
mapped the performance onto QSM and BSP models. Cole
et. al. [9, 10] and Poon and Ramachandran [33] earlier had
randomized linear-work algorithms on CRCW and EREW
PRAM. Chong, Han and Lam [7] gave a deterministic
EREW PRAM algorithm that runs in logarithmic time
with a linear number of processors. On the BSP model,
Adler et. al. [1] presented a communication-optimal MST
algorithm. Katriel et. al. [20] have recently developed a
new pipelined algorithm that uses the cycle property and
provide an experimental evaluation on the special-purpose
NEC SX-5 vector computer. In this paper we present our
implementations of MST algorithms on shared-memory
multiprocessors that achieve for the first time in practice
reasonable speedups over a wide range of input graphs,
including arbitrary sparse graphs, a challenging problem.
In fact, if G is not connected, our algorithms find the MST
of each connected component; hence, solving the minimum
spanning forest problem.

We start with the design and implementation of a
parallel Borůvka’s algorithm. Borůvka’s algorithm is
one of the earliest MST approaches, and the Borůvka
iteration (or its variants) serves as a basis for several of
the more complicated parallel MST algorithms, hence its
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efficient implementation is critical for parallel MST. Three
steps characterize a Borůvka iteration: find-min, connect-
components, and compact-graph. Find-min and connect-
components are simple and straightforward to implement,
and the compact-graph step performs bookkeeping that
is often left as a trivial exercise to the reader. JáJá [18]
describes a compact-graph algorithm for dense inputs. For
sparse graphs, though, the compact-graph step often is the
most expensive step in the Borůvka iteration. Section 2
explores different ways to implement the compact-graph
step, then proposes a new data structure for representing
sparse graphs that can dramatically reduce the running time
of the compact-graph step with a small cost to the find-min
step. The analysis of these approaches is given in Section 3.

In Section 4 we present a new parallel MST algorithm
for symmetric multiprocessors (SMPs) that marries the
Prim and Borůvka approaches. In fact, the algorithm when
run on one processor behaves as Prim’s, and on n proces-
sors becomes Borůvka’s, and runs as a hybrid combination
for 1 < p < n, where p is the number of processors.

Our target architecture is symmetric multiprocessors
(SMPs). Most of the new high-performance computers are
clusters of SMPs having from 2 to over 100 processors per
node. In SMPs, processors operate in a true, hardware-
based, shared-memory environment. SMP computers bring
us much closer to PRAM, yet it is by no means the PRAM
used in theoretical work—synchronization cannot be taken
for granted, memory bandwidth is limited, and good
performance requires a high degree of locality. Designing
and implementing parallel algorithms for SMPs requires
special considerations that are crucial to a fast and efficient
implementation. For example, memory bandwidth often
limits the scalability and locality must be exploited to make
good use of cache. This paper presents the first results of
actual parallel speedup for finding an MST of irregular,
arbitrary sparse graphs when compared to the best known
sequential algorithm. In Section 5 we detail the experi-
mental evaluation, describe the input data sets and testing
environment, and present the empirical results. Finally,
Section 6 provides our conclusions and future work.

1.1. Related Experimental Studies

Although several fast PRAM MST algorithms exist, to
our knowledge there is no parallel implementation of MST
that achieves significant speedup on sparse, irregular graphs
when compared against the best sequential implementation.
Chung and Condon [8] implement parallel Borůvka’s
algorithm on the TMC CM-5. On a 16-processor machine,
for geometric, structured graphs with 32,000 vertices and
average degree 9 and graphs with fewer vertices but higher
average degree, their code achieves a relative parallel
speedup of about 4, on 16-processors, over the sequential

Borůvka’s algorithm, which was already 2–3 times slower
than their sequential Kruskal algorithm. Dehne and Götz
[11] studied practical parallel algorithms for MST using
the BSP model. They implement a dense Borůvka parallel
algorithm, on a 16-processor Parsytec CC-48, that works
well for sufficiently dense input graphs. Using a fixed-sized
input graph with 1,000 vertices and 400,000 edges, their
code achieves a maximum speedup of 6.1 using 16 pro-
cessors for a random dense graph. Their algorithm is not
suitable for the more challenging sparse graphs.

2. Designing Data Structures for Parallel
Borůvka’s Algorithms on SMPs

Borůvka’s minimum spanning tree algorithm lends itself
more naturally to parallelization, since other approaches
like Prim’s and Kruskal’s are inherently sequential, with
Prim’s growing a single MST one branch at a time, while
Kruskal’s approach scans the graph’s edges in a linear
fashion. Three steps comprise each iteration of parallel
Borůvka’s algorithm:

1. find-min: for each vertex v label the incident edge with
the smallest weight to be in the MST.

2. connect-components: identify connected components
of the induced graph with edges found in Step 1.

3. compact-graph: compact each connected component
into a single supervertex, remove self-loops and multi-
ple edges; and re-label the vertices for consistency.

Steps 1 and 2 (find-min and connect-components) are
relatively simple and straightforward; in [8], Chung and
Condon discuss an efficient approach using pointer-jumping
on distributed memory machines, and load balancing
among the processors as the algorithm progresses. Simple
schemes for load-balancing suffice to distribute the work
roughly evenly to each processor. For pointer-jumping,
although the approaches proposed in [8] can be applied to
shared-memory machines, experimental results show that
this step only takes a small fraction of the total running time.

Step 3 (compact-graph) shrinks the connected compo-
nents and relabels the vertices. For dense graphs that can
be represented by an adjacency matrix, JáJá [18] describes
a simple and efficient implementation for this step. For
sparse graphs this step often consumes the most time yet
no detailed discussion appears in the literature. In the
following subsections we describe our design of three
Borůvka approaches that use different data structures, and
compare the performance of each implementation.

2.1. Bor-EL: Edge List Representation

In this implementation of Borůvka’s algorithm (des-
ignated Bor-EL), we use the edge list representation of
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graphs, with each edge (u,v) appearing twice in the list for
both directions (u,v) and (v,u). An elegant implementation
of the compact-graph step sorts the edge list (using an
efficient parallel sample sort [16]) with the supervertex of
the first endpoint as the primary key, the supervertex of the
second endpoint as the secondary key, and the edge weight
as the tertiary key. When sorting completes, all of the self-
loops and multiple edges between two supervertices appear
in consecutive locations, and can be merged efficiently
using parallel prefix-sums.

2.2. Bor-AL: Adjacency List Representation

With the adjacency list representation (but using the
more cache-friendly adjacency arrays [31]) each entry of
an index array of vertices points to a list of its incident
edges. The compact-graph step first sorts the vertex array
according to the supervertex label, then concurrently sorts
each vertex’s adjacency list using the supervertex of the
other endpoint of the edge as the key. After sorting, the set
of vertices with the same supervertex label are contiguous
in the array, and can be merged efficiently. We call this
approach Bor-AL.

Both Bor-EL and Bor-AL achieve the same goal that
self-loops and multiple edges are moved to consecutive
locations to be merged. Bor-EL uses one call to sample
sort while Bor-AL calls a smaller parallel sort and then
a number of concurrent sequential sorts. We make the
following algorithm engineering choices for the sequential
sorts used in this approach. The O

(
n2

)
insertion sort is

generally considered a bad choice for sequential sort, yet
for small inputs, it outperforms O(n logn) sorts. Profiling
shows that there could be many short lists to be sorted
for very sparse graphs. For example, for one of our input
random graphs with 1M vertices, 6M edges, 80% of all
311,535 lists to be sorted have between 1 to 100 elements.
We use insertion sort for these short lists. For longer lists
we use a non-recursive O(n logn) merge sort.

Bor-ALM is an alternative adjacency list implementa-
tion of Borůvka’s approach for Sun Solaris 9 that uses our
own memory management routines for dynamic memory
allocation rather than using the system heap. While the
algorithm and data structures in Bor-ALM are identical to
that of Bor-AL, we allocate private data structures using
a separate memory segment for each thread to reduce
contention to kernel data structures, rather than using
the system malloc() that manages the heap in a single
segment and causes contention for a shared kernel lock.

2.3. Bor-FAL: Flexible Adjacency List Rep.

For the previous two approaches, conceivably the
compact-graph step could be the most expensive step

for a parallel Borůvka’s algorithm. Next we propose an
alternative approach with a new graph representation data
structure (that we call flexible adjacency list) that signifi-
cantly reduces the cost for compacting the graph. Similar to
Johnson and Metaxas’s [19] “edge-plugging” method, ours
is simple to implement and we do not need to shrink the
adjacency list during the grafting steps. However, our new
approach differs significantly from edge-plugging in that
we create a data structure with more spatial locality, and
hence a better cache hit ratio leading to higher performance.

The flexible adjacency list augments the traditional ad-
jacency list representation by allowing each vertex to hold
multiple adjacency lists instead of just a single one; in fact it
is a linked list of adjacency lists (and similar to Bor-AL, we
use the more cache-friendly adjacency array for each list).
During initialization, each vertex points to only one adja-
cency list. After the connect-components step, each vertex
appends its adjacency list to its supervertex’s adjacency list
by sorting together the vertices that are labeled with the
same supervertex. We simplify the compact-graph step,
allowing each supervertex to have self-loops and multiple
edges inside its adjacency list. Thus, the compact-graph
step now uses a smaller parallel sort plus several pointer
operations instead of costly sortings and memory copies,
while the find-min step gets the added responsibility of
filtering out the self-loops and multiple edges. Note that
for this new approach (designated Bor-FAL) there are
potentially fewer memory write operations compared with
the previous two approaches. This is important for an
implementation on SMPs because memory writes typically
generate more cache coherency transactions than do reads.
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Figure 1. Example of Flexible Adjacency List
Representation

In Fig. 1 we illustrate the use of the flexible adjacency
list for a 6-vertex input graph. After one Borůvka iteration,
vertices 1, 2, and 3, form one supervertex and vertices 4,
5, and 6, form a second supervertex. Vertex labels 1 and 4
represent the supervertices and receive the adjacency lists
of vertices 2 and 3, and vertices 5 and 6, respectively. Ver-
tices 1 and 4 are re-labeled as 1 and 2. Note that most of the
original data structure is kept intact so that we might save
memory copies. Instead of re-labeling vertices in the ad-
jacency list, we maintain a separate lookup table that holds
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the supervertex label for each vertex. We easily obtain this
table from the connect-components step. The find-min step
uses this table to filter out self-loops and multiple edges.

3. Analysis

Here we analyze the complexities of the different
Borůvka variants. Helman and JáJá’s SMP complexity
model [16] provides a reasonable framework for the
realistic analysis that favors cache-friendly algorithms by
penalizing non-contiguous memory accesses. Under this
model, there are two parts to an algorithm’s complexity,
ME the memory access complexity and TC the computation
complexity. The ME term is the number of non-contiguous
memory accesses, and the TC term is the running time. The
ME term recognizes the effect that memory accesses have
over an algorithm’s performance. Parameters of the model
includes the problem size n and the number of processors p.

For a sparse graph G with n vertices and m edges, as
the algorithm iterates, the number of vertices decreases
by at least half in each iteration, so there are at most logn
iterations for all of the Borůvka variants.

First we consider the complexity of Bor-EL. The
find-min and connect-component steps are straightforward,
and their aggregate complexity in one iteration (assuming
balanced load among processors) is characterized by

T (n, p) = 〈ME ; TC〉 =
〈

n+n logn
p ; O

(
m+n logn

p

)〉
.

The parallel sample sort that we use in Bor-EL
for compact-graph has the complexity of T (n, p) =

〈ME ; TC〉 =
〈(

4 + 2
c log l

p
logz

)
l
p ; O

(
l
p log l

)〉
with high

probability where l is the length of the list and c and z are
constants related to cache size and sampling ratio [16]. The
cost of the compact-graph step, by aggregating the cost for
sorting and for manipulating the data structure, is T (n, p) =
〈ME ; TC〉 =

〈(
4 + 2 c log(2m/p)

log z

)
2m
p ; O

(
2m
p log2m

)〉
.

The value of m decreases with each successive it-
eration dependent on the topology and edge weight
assignment of the input graph. Because the number
of vertices is reduced by at least half each iteration, m
decreases by at least n

2 edges each iteration. For the
sake of simplifying the analysis, though, we use m un-
changed as the number of edges during each iteration;
clearly an upper bound of the worst case. Hence, the
complexity of Bor-EL is given as T (n, p) = 〈ME ; TC〉 =〈(

8m+n+n logn
p + 4mc log(2m/p)

p logz

)
logn ; O

(
m
p logm logn

)〉
.

We justify the use of the upper bound m as follows. For
random sparse graphs m decreases slowly in the first several
iterations of Bor-EL, and the graph becomes denser (as n
decreases at a faster rate than m) until a certain point, m
decreases drastically. Table 1 illustrates how m changes for
two random sparse graphs. For planar or near-planar graphs

often seen in practical applications, edge density (m/n) is
essentially constant across any number of Borůvka steps.

G1 = 1,000,000 vertices, 600,006 edges

iteration 2m decrease % dec. m/n

1 12000012 N/A N/A 6.0
2 10498332 1501680 12.5% 21.0
3 10052640 445692 4.2% 98.1
4 8332722 1719918 17.2% 472.8
5 1446156 6886566 82.6% 534.8
6 40968 1405188 97.2% 100.9
7 756 40212 98.2% 13.5
8 12 744 98.4% 1.5

G2 = 10,000 vertices, 30,024 edges

iteration 2m decrease % dec. m/n

1 60048 N/A N/A 3.0
2 44782 15266 25.4% 8.9
3 34378 10404 23.2% 33.5
4 6376 28002 80.5% 35.0
5 156 6220 97.6% 6.0
6 2 154 98.7% 0.5

Table 1. Example of the rate of decrease of the
number m of edges for two random sparse
graphs. The 2m column gives the size of
the edge list, the decrease column shows how
much the size of the edge list decreases in
the current iteration, the % dec. column gives
the percentage that the size of the edge list
decreases in the current iteration, and m/n
shows the density of the graph.

In Table 1 for graph G1, 8 iterations are needed for
Borůvka’s algorithm. Until the 4th iteration, m is still more
than half of its initial value. Yet at the next iteration, m
drastically reduces to about 10% of its initial value. Similar
behavior is also observed for G2. As for quite a substantial
number of iterations m decreases slowly, for simplicity it is
reasonable to assume that m remains unchanged (an upper
bound for the actual m).

Table 1 also suggests that instead of growing a spanning
tree for a relatively denser graph, if we can exclude heavy
edges in the early stages of the algorithm and decrease m,
we may have a more efficient parallel implementation for
many input graphs because we may be able to greatly reduce
the size of the edge list. After all, for a graph with m/n ≥ 2,
more than half of the edges are not in the MST. In fact sev-
eral MST algorithms exclude edges from the graph using
the “cycle” property. Cole et al. [10] present a linear-work
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algorithm that first uses random sampling to find a spanning
forest F of graph G, then identifies the heavy edges to
F and excludes them from the final MST. The algorithm
presented in [20], an inherently sequential procedure, also
excludes edges according to the “cycle” property of MST.

Without going into the input-dependent details of
how vertex degrees change as the Borůvka variants
progress, we compare the complexity of the first iteration
of Bor-AL with Bor-EL because in each iteration these
approaches compute similar results in different ways. For
Bor-AL the complexity of the first iteration is T (n, p) =
〈ME ; TC〉 =

〈(
8n+5m+n logn

p + 2nc log(n/p)+2mc log(m/n)
p logz

)
;

O
(

n
p logm+ m

p log(m/n)
)〉

.

While for Bor-EL, the complexity of
the first iteration is T (n, p) = 〈ME ; TC〉 =〈(

8m+n+n logn
p + 4mc log (2m/p)

p logz

)
; O

(
m
p logm

)〉
.

We see that Bor-AL is a faster algorithm than Bor-EL,
as expected, since the input for Bor-AL is “bucketed” into
adjacency lists, versus Bor-EL that is an unordered list
of edges, and sorting each bucket first in Bor-AL saves
unnecessary comparisons between edges that have no
vertices in common. We can consider the complexity of
Bor-EL then to be an upper bound of Bor-AL.

In Bor-FAL n reduces at least by half while m stays
the same. Compact-graph first sorts the n vertices, then
assigns O(n) pointers to append each vertex’s adjacency
list to its supervertex’s. For each processor, sorting takes

O
(

n
p logn

)
time, and assigning pointers takes O(n/p)

time assuming each processor gets to assign roughly the
same amount of pointers. Updating the lookup table costs
each processor O(n/p) time. As n decreases at least by
half, the aggregate running time for compact-graph is

TC(n, p)cg = 1
p ∑logn

i=0
n
2i log n

2i + 2
p ∑logn

i=0
n
2i = O

(
n logn

p

)
,

ME(n, p)cg ≤ 8n
p + 4cn log(n/p)

p logz . With Bor-FAL, to find
the smallest weight edge for the supervertices, all the
m edges will be checked, with each processor cov-
ering O(m/p) edges. The aggregate running time
is TC(n, p) f m = O(m logn/p) and the memory ac-
cess complexity is ME(n, p) f m = m/p. For the find-
ing connected component step, each processor takes

Tcc = O
(

n log n
p

)
time, and ME(n, p)cc ≤ 2n logn.

The complexity for the whole Borůvka’s algorithm
is T (n, p) = T (n, p) f m + T (n, p)cc + T (n, p)cg ≤〈

8n+2n logn+m logn
p + 4cn log(n/p)

p logz ; O
(

m+n
p logn

)〉
.

It would be interesting and important to check how
well our analysis and claim fit with the actual experiments.
Detailed performance results are presented in Section 5.
Here we show that Bor-AL in practice runs faster than
Bor-EL, and Bor-FAL greatly reduces the compact-graph
time. Fig. 2 shows for the three approaches the breakdown

Figure 2. Running times for the find-
min, connect-component, and compact-
graph steps of the Bor-EL, Bor-AL, and Bor-
ALM approaches (the three groups from left
to right, respectively) of the parallel MST im-
plementations using random graphs with n =
1M vertices and m = 4M, 6M, and 10M edges
(the bars from left to right, respectively, in
each group).

of the running time for the three steps.
Immediately we can see that for Bor-EL and Bor-AL

the compact-graph step dominates the running time.
Bor-EL takes much more time than Bor-AL, and only gets
worse when the graphs get denser. In contrast the execution
time of compact-graph step of Bor-FAL is greatly reduced:
in the experimental section with a random graph of 1M
vertices and 10M edges, it is over 50 times faster than
Bor-EL, and over 7 times faster than Bor-AL. Actually
the execution time of the compact-graph step of Bor-FAL
is almost the same for the three input graphs because it
only depends on the number of vertices. As predicted, the
execution time of the find-min step of Bor-FAL increases.
And the connect-components step only takes a small
fraction of the execution time for all approaches.

4. A New Parallel MST Algorithm

In this section we present a new nondeterministic
shared-memory algorithm for finding a minimum spanning
tree/forest that is quite different from Borůvka’s approach
in that it uses multiple, coordinated instances of Prim’s
sequential algorithm running on the graph’s shared data
structure. In fact, the new approach marries Prim’s al-
gorithm (known as an efficient sequential algorithm for
MST) with that of the naturally parallel Borůvka approach.
In our new algorithm essentially we let each processor
simultaneously run Prim’s algorithm from different starting
vertices. We say a tree is growing when there exists a
lightweight edge that connects the tree to a vertex not
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yet in another tree, and mature otherwise. When all of
the vertices have been incorporated into mature subtrees,
we contract each subtree into a supervertex and call the
approach recursively until only one supervertex remains.
When the problem size is small enough, one processor
solves the remaining problem using the best sequential
MST algorithm. If no edges remain between supervertices,
we halt the algorithm and return the minimum spanning
forest. The detailed algorithm is given in Alg. 1.

Input: Graph G = (V,E) represented by adjacency
list A with n = |V |
nb: the base problem size to be solved sequen-
tially.

Output: MSF for graph G
begin

while n > nb do
1. Initialize the color and visited arrays
for v ← i n

p to (i+ 1) n
p −1 do

color[v] = 0,visited[v] = 0
2. Run Alg. 2.
3. for v ← i n

p to (i+ 1) n
p −1 do

if visited[v] = 0 then find the lightest inci-
dent edge e to v, and label e to be in MST

4. With the found MST edges, run connected
components on the induced graph, and shrink
each component into a supervertex
5. Remove each supervertex with degree 0 (a
connected component)
6. Set n← the number of remaining superver-
tices; and m ← the number of edges between
the supervertices

7. Solve the remaining problem on one processor
end

Algorithm 1: Parallel algorithm for new MSF approach,
for processor pi, for (0≤ i≤ p−1). Assume w.l.o.g. that
p divides n evenly.

In Alg. 1, step 1 initializes each vertex as uncolored
and unvisited. A processor colors a vertex if it is the first
processor to insert it into a heap, and labels a vertex as
visited when it is extracted from the heap; i.e., the edge
associated with the vertex has been selected to be in the
MST. In step 2 (Alg. 2) each processor first searches its own
portion of the list for uncolored vertices from which to start
Prim’s algorithm. In each iteration a processor chooses a
unique color (different from other processors’ colors or the
colors it has used before) as its own color. After extracting
the minimum element from the heap, the processor checks
whether the element is colored by itself, and if not, a
collision with another processor occurs (meaning multiple
processors try to color this element in a race), and the

Input: (1) p processors, each with processor ID pi,
(2) a partition of adjacency list for each pro-
cessor (3) array color and visited

Output: A spanning forest that is part of graph G’s
MST

begin
1. for v ← i n

p to (i+ 1) n
p −1 do

1.1 if color[v] �= 0 then v is already colored,
continue
1.2 my color = color[v] = v + 1
1.3 insert v into heap H
1.4 while H is not empty do

w = heap extract min(H)
if (color[w] �= my color) OR (any neigh-
bor u of w has color other than 0 or
my color) then break
if visited[w] = 0 then

visited[w] = 1, and label the corre-
sponding edge e as in MST
for each neighbor u of w do

if color[u] = 0 then color[u] =
my color
if u in heap H then
heap decrease key(u,H)
else heap insert(u,H)

end

Algorithm 2: Parallel algorithm for new MST approach
based on Prim’s that finds parts of MST, for processor
pi, for (0 ≤ i ≤ p−1). Assume w.l.o.g. that p divides n
evenly.

processor stops growing the current sub-MST. Otherwise it
continues. Proof of correctness for Alg. 1 is given in [3].

The algorithm as given may not keep all of the pro-
cessors equally busy, since each may visit a different
number of vertices during an iteration. We balance the load
simply by using the work stealing technique as follows.
When a processor completes its partition of n

p vertices, an
unfinished partition is randomly selected, and processing
begins from a decreasing pointer that marks the end of the
unprocessed list. It is theoretically possible that no edges
are selected for the growing trees, and hence, no progress
made during an iteration of the algorithm (although this
case is highly unlikely in practice). For example, if the
input contains n

p cycles, with cycle i defined as vertices
{i n

p ,(i + 1) n
p , . . . ,(i + p − 1) n

p}, for 0 ≤ i < n
p , and if

the processors are perfectly synchronized, each vertex
would be a singleton in its own mature tree. A practical
solution that guarantees progress with high probability is to
randomly reorder the vertex set, which can be done simply
in parallel and without added asymptotic complexity [34].
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4.1. Analysis

Our new parallel MST algorithm possesses an inter-
esting feature: when run on one processor the algorithm
behaves as Prim’s, and on n processors becomes Borůvka’s,
and runs as a hybrid combination for 1 < p < n, where p
is the number of processors. In addition, our new algorithm
is novel when compared with Borůvka’s approach in the
following ways.

1. Each of p processors in our algorithm finds for its
starting vertex the smallest-weight edge, contracts that
edge, and then finds the smallest-weight edge again
for the contracted supervertex. We do not find all
the smallest-weight edges for all vertices, synchronize,
and then compact as in the parallel Borůvka’s algo-
rithm.

2. Our algorithm adapts for any number p of processors
in a practical way for SMPs, where p is often much
less than n, rather than in parallel implementations of
Borůvka’s approach that appear as PRAM emulations
with p coarse-grained processors that emulate n virtual
processors.

The performance of our new algorithm is dependent on
its granularity n

p , for 1 ≤ p ≤ n. The worst-case is when the
granularity is small, i.e., a granularity of 1 when p = n and
the approach turns to Borůvka. Hence, the worst case com-
plexities are similar to that of the parallel Borůvka variants
analyzed previously. Yet in practice we expect our algo-
rithm to perform better than parallel Borůvka’s algorithm
on sparse graphs because their lower connectivity implies
that our algorithm behaves like p simultaneous copies of
Prim’s algorithm with some synchronization overhead.

5. Experimental Results

This section summarizes the experimental results of our
implementations and compares our results with previous
experimental results. We tested our shared-memory im-
plementation on the Sun E4500, a uniform-memory-access
(UMA) shared memory parallel machine with 14 Ultra-
SPARC II 400MHz processors and 14 GB of memory.
Each processor has 16 Kbytes of direct-mapped data (L1)
cache and 4 Mbytes of external (L2) cache. The algorithms
are implemented using POSIX threads and a library of
parallel primitives developed by our group [4].

5.1. Experimental Data

Next we describe the collection of sparse graph genera-
tors that we use to compare the performance of the parallel
minimum spanning tree graph algorithms. Our genera-
tors include several employed in previous experimental
studies of parallel graph algorithms for related prob-
lems. For instance, we include the 2D60 and 3D40 mesh
topologies used in the connected component studies of
[15, 23, 17, 14], the random graphs used by [15, 8, 17, 14],
and the geometric graphs used by [15, 17, 23, 14, 8].

• Regular and Irregular Meshes Computational sci-
ence applications for physics-based simulations and
computer vision commonly use mesh-based graphs.
All of the edge weights are uniformly random.

– 2D Mesh The vertices of the graph are placed on
a 2D mesh, with each vertex connected to its four
neighbors whenever they exist.

– 2D60 2D mesh with the probability of 60% for
each edge to be present.

– 3D40 3D mesh with the probability of 40% for
each edge to be present.

• Structured Graphs These graphs are used by Chung
and Condon (see [8] for detailed descriptions) to study
the performance of parallel Borůvka’s algorithm. They
have recursive structures that correspond to the iter-
ation of Borůvka’s algorithm and are degenerate (the
input is already a tree).

– str0 At each iteration with n vertices, two ver-
tices form a pair. So with Borůvka’s algorithm,
the number of vertices decrease exactly by a half
in each iteration.

– str1 At each iteration with n vertices,
√

n vertices
form a linear chain.

– str2 At each iteration with n vertices, n/2 ver-
tices form linear chain, and the other n/2 form
pairs.

– str3 At each iteration with n vertices,
√

n vertices
form a complete binary tree.

• Random Graph We create a random graph of n ver-
tices and m edges by randomly adding m unique edges
to the vertex set. Several software packages generate
random graphs this way, including LEDA [27]. The
edge weights are selected uniformly and at random.

• Geometric Graphs In these k-regular graphs, n points
are chosen uniformly and at random in a unit square in
the Cartesian plane, and each vertex is connected to its
k nearest neighbors. Moret and Shapiro [29] use these
in their empirical study of sequential MST algorithms.
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5.2. Performance Results and Analysis

In this section we offer a collection of our performance
results that demonstrate for the first time a parallel mini-
mum spanning tree implementation that exhibits speedup
when compared with the best sequential approach over a
wide range of sparse input graphs. We implemented three
sequential algorithms: Prim’s algorithm with binary heap,
Kruskal’s algorithm with non-recursive merge sort (which
in our experiments has superior performance over qsort,
GNU quicksort, and recursive merge sort for large inputs)
and the m logm Borůvka’s algorithm.

Figure 3. Comparison of three sequential MST
algorithms across several input graphs.

Previous studies such as [8] compare their parallel
implementations with sequential Borůvka (even though
they report that sequential Borůvka is several times slower
than other MST algorithms) and Kruskal’s algorithm.
We observe Prim’s algorithm can be 3 times faster than
Kruskal’s algorithm for some inputs. Density of the
graphs is not the only determining factor of the empirical
performance of the three sequential algorithms. Different
assignment of edge weights is also important. Fig. 3 shows
the performance rankings of the three sequential algorithms
over a range of our input graphs.

In our performance results we specify which sequential
algorithm achieves the best result for the input and use
this algorithm when determining parallel speedup. In our
experimental studies, Bor-EL, Bor-AL, Bor-ALM, and
Bor-FAL, are the parallel Borůvka variants using edge lists,
adjacency lists, adjacency lists and our memory manage-
ment, and flexible adjacency lists, respectively. MST-BC
is our new minimum spanning forest parallel algorithm.

The performance plots in Fig. 4 and 5 are for the random
graphs, the regular and irregular meshes (mesh, 2D60, and
3D40) and a geometric graph with k = 6, and the structured
graphs. In these plots, the thick horizontal line represents
the time taken for the best sequential MST algorithm

Figure 4. Comparison of parallel MST algo-
rithms for random graph with n = 1M vertices
and m = 4M, 6M, 10M, and 20M, edges; for a
regular mesh with n = 1M vertices and for a
geometric graph with fixed degree k = 6.

(named in each legend) to find a solution on the same input
graph using a single processor on the Sun E4500.

For the random, sparse graphs, we find that our Borůvka
variant with flexible adjacency lists often has superior
performance, with a speedup of approximately 5 using 8
processors over the best sequential algorithm (Prim’s in this
case). In the regular and irregular meshes, the adjacency list
representation with our memory management (Bor-ALM)
often is the best performing parallel approach with parallel
speedups near 6 for 8 processors. Finally, for the structured
graphs that are worst-cases for Borůvka algorithms, our new
MST algorithm often is the only approach that runs faster
than the sequential algorithm, although speedups are more
modest with at most 4 for 8 processors in some instances.
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Figure 5. Comparison of parallel MST algo-
rithms for regular and irregular meshes (the
2D60 and 3D40 meshes) and for the structured
graphs str0, str1, str2, and str3.

6. Conclusions and Future Work

In summary, we present optimistic results that for the
first time show that parallel minimum spanning tree algo-
rithms run efficiently on parallel symmetric multiprocessors
for graphs with irregular topologies. We present a new
nondeterministic MST algorithm that uses a load balancing
scheme based upon work stealing that, unlike Borůvka
variants, gives reasonable speedup when compared with
the best sequential algorithms on several structured inputs
that are hard to achieve parallel speedup. Through com-
parison with the best sequential implementation, we see
our implementations exhibiting parallel speedup, which is
remarkable to note since the sequential algorithm has very
low overhead. Further, these results provide optimistic
evidence that complex graph problems that have efficient
PRAM solutions, but often no known efficient parallel
implementations, may scale gracefully on SMPs. Our
future work includes validating these experiments on larger
SMPs, and since the code is portable, on other vendors’

platforms. We plan to apply the techniques discussed in
this paper to other related graph problems, for instance,
maximum flow, connected components, and planarity
testing algorithms, for symmetric multiprocessors.
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