Pacific Symposium on Biocomputing 6:583-594 (2001)

A New Implementation and Detailed Study of Breakpoint Analysis

Bernard M.E. Moret Stacia Wyman
Dept. of Computer Science Dept. of Computer Science
University of New Mexico University of Texas
Albuquerque, NM 87131 Austin, TX 78712
David A. Bader Tandy Warnow
Dept. of Electrical & Computer Engineering Dept. of Computer Science
University of New Mexico University of Texas
Albuquerque, NM 87131 Austin, TX 78712
Mi Yan

Dept. of Electrical & Computer Engineering
University of New Mexico
Albuquerque, NM 87131

Phylogenies derived from gene order data may prove crucial in answering some fundamental open
guestions in biomolecular evolution. Yet very few techniques are available for such phyloge-
netic reconstructions. One methodbiseakpoint analysisdeveloped by Blanchette and Sankoff

2 for solving the “breakpoint phylogeny.” Our earlier studie$ confirmed the usefulness of

this approach, but also found thBPAnalysis , the implementation developed by Sankoff and
Blanchette, was too slow to use on all but very small datasets. We report here on a reimplementa-
tion of BPAnalysis using the principles of algorithmic engineering. Our faster (by 2 to 3 orders

of magnitude) and flexible implementation allowed us to conduct studies on the characteristics of
breakpoint analysis, in terms of running time, quality, and robustness, as well as to analyze datasets
that had so far been considered out of reach. We report on these findings and also discuss future
directions for our new implementation.

1 Introduction

Some organisms have a single chromosome or contain single-chromosome organelles
(mitochondria or chloroplasts), the evolution of which is mostly independent of the
evolution of the nuclear genome. Given a particular strand from a single chromo-
some (whether linear or circular), we can infer the ordering of the genes along with
the directionality of the genes, thus representing each chromosome by an ordering
of oriented genes. The evolutionary process that operates on the chromosome may
include inversions and transpositions, which change the order in which genes occur
in the genome as well as their orientation. Other events, such as insertions, deletions,
or duplications, change the number of times and the positions in which a gene occurs.
Gene order, orientation, and number represent a new source of data for phylogeny
reconstruction. Appropriate tools for analyzing such data may help resolve some dif-
ficult phylogenetic reconstruction problems; indeed, this new source of data has been
embraced by many biologists in their phylogenetic wdrk.17

A natural optimization problem for phylogeny reconstruction from this type of
data explicitly attempts to reconstruct an evolutionary scenario with a minimum num-

Pacific Symposium on Biocomputing 6:583-594 (2001)

ber of permitted evolutionary events (e.g., duplications, insertions, deletions, inver-
sions, and transpositions) on the tree. Such approaches are computationally very
intensive (all are known or conjectured to be NP-hard); worse, to date, no automated
tools exist for solving such problems. Another approach is first to estimate leaf-to-leaf
distances (based upon some metric) between all genomes, and then to use a standard
distance-based method suchrasghbor-joining'® to construct the tree. Such ap-
proaches are quite fast and may prove valuable in reconstructing the underlying tree,
but cannot recover the ancestral gene orders.

Blanchette and Sankoff developed a technique, breakpoint phylogeny, for the
special case in which the genomes all have the same set of genes, and each gene ap-
pears once. Our earlier simulation study suggests that the approach works well for
certain datasets (i.e., it obtains trees that are close to the model tree), but that the im-
plementation, th&PAnalysis software, is too slow to be used on anything other
than small datasets with a few geneb this paper we describe our reimplementation
of BPAnalysis and how we have obtained speedups of 2 to 3 orders of magnitude.

2 Definitions

When each genome has the same set of genes and each gene appears exactly once,
a genome can be described by an ordering (circular or linear) of these genes, each
gene given with an orientation that is either positiyg 6r negative { ¢;). Given two
genomes; andG’ on the same set of genedyreakpoinin G is defined as an ordered
pair of genes(g;, g;), such thay; andg; appear consecutively in that orderGh but
neither(g;, g;) nor (—g;, —g;) appears consecutively in that orderGf. The break-
point distance between two genomes is the number of breakpoints between that pair of
genomes. The breakpoint score of a tree in which each node is labelled by a signed or-
dering of genes is then the sum of the breakpoint distances along the edges of the tree.
Given three genomes, we define theiedianto be a fourth genome that mini-
mizes the sum of the breakpoint distances between it and the other thradetilan
Problem for Breakpoint§MPB) is to construct such a median and is NP-hérd
Sankoff and Blanchette developed a reduction from MPB to the Travelling Salesman
Problem (TSP), perhaps the most studied of all optimization proBlefiwir reduc-
tion produces an undirected instance of the TSP from the directed instance of MPB
by the standard technique of representing each gene by a pair of cities connected by
an edge that must be included in any solution.

3 BPAnalysis

BPAnalysis (see Figure 1) is the method developed by Blanchette and Sankoff
to solve the breakpoint phylogeny. Within a framework that enumerates all trees, it
an iterative heuristic to label the internal nodes with signed gene orders. This pro-
cedure is computationally very intensive. The outer loop enumeratézralt 5)!!

Pacific Symposium on Biocomputing 6:583-594 (2001)

Initially label all internal nodes with gene orders
Repeat
For each internal node v, with neighbors A, B, and C, do

Solve the MPB on A, B, C' to yield label m
If relabelling v with m improves the score of T', then do it

until no internal node can be relabelled

Figure 1: BPAnalysis

leaf-labelled trees on leaves, an exponentially large valu&he inner loop runs an
unknown number of iterations (until convergence), with each iteration solving an in-
stance of the TSP (with a number of cities equal to twice the number of genes) at each
internal node. The computational complexity of the entire algorithm is thus expo-
nential ineachof the number of genomes and the number of genes, with significant
coefficients. The procedure nevertheless remains a heuristic: even though all trees
are examined and each MPB problem solved exactly, the tree-labeling phase does not
ensure optimality unless the tree has only three leaves.

4 Study Objectives

Our earlier experiments with various techniques for reconstructing phylogenies from
gene order data suggested that Sankoff and Blanchette’s implementeBiBAoél-

ysis is much too slow. On a collection of Campanulaceaéth 13 genomes of 105

gene segments, we estimated that Sankoff and BlanchBR&salysis would take

well over 200 years to complete—an estimate based on the average number of trees
processed by the code per unit time and extended to the 13,749,310,575 tree topolo-
gies on 13 leaves. Although an exhaustive search of tree topologies is clearly impossi-
ble for more than 15 genomes (there @uz 10'° trees oril 6 genomes), even selective
exploration of tree space requires very fast labeling of the internal nodes of a tree.

Our objective was therefore to develop a much faster implementati@Pof
Analysis , prior to modifying the method used for searching tree space. Our three
major goals were flexibility (e.g., the ability to change TSP solvers or to change
distance measures between genomes), the introduction of approximate TSP solvers
(which are required for large number of genes), and overall speed. To achieve the
last goal, we used a process that we helped pioneer and tatg@ihmic engineer-
ing112—a combination of low-level algorithmic changes, data structures changes,
and coding strategies that combine to eliminate bottlenecks in the code, balance its
computational tasks, and make it cache-sensitive.

2The double factorial is a factorial with a step of 2, so we hare—5)!! = (2n —5)-(2n—7)-...-3

Pacific Symposium on Biocomputing 6:583-594 (2001)

5 Algorithmic Aspects of our Implementation

Tree generation Exploring tree space, whether exhaustively or selectively, requires
the efficient generation of tree topologies. We need a generating mechanism that is
interruptible and restartable at any point. We chose to generate a preorder encoding of
the tree, then to produce the topology from the encoding. Generating the next tree in
the ordering takes amortized constant time. This enables us to produce only trees that
are refinements of a given constraint tree, as well as to generate onlykgivémye for

a given stepping valuk. The stepping value is a crucial feature for sampling-based
exploration. By generating evekfh tree, we investigate a wide range of tree topolo-
gies for large datasets. Without the step, we are limited to a fraction of very similar
tree topologies. Detailed profiling shows that the time taken by tree generation does
not rise above the noise level in our time measurements.

Tree labeling Labeling the internal nodes of a tree is the most challenging part of the
problem—indeed, no algorithm is known that would produce an optimal solution for
more than three leaves. Although the problem is NP-hard even for a three-leaf tree, it
is possible to produce an optimal solution for many realistic problems on three leaves
by using the TSP reduction. The approach used by Sankoff and Blanchette to label
an entire tree is to do a postorder traversal of the tree; at each internal node, use the
labels of its three neighbors to define an instance of the MPB, solve that problem, and
assign the new label to the node if the number of breakpoints is thereby lowered; and
repeat the entire process until no change occurs. This process is rather wasteful—an
NP-hard problem must be solved at each internal tree node, over and over, with most
solutions discarded because they do not bring about any improvement.

Our implementation only generates an MPB problem for nodes that saw at least
one of their three neighbors relabeled over the last pass. We also score the tree in-
crementally in constant time after each relabeling (wheBRanalysis calls a
tree-scoring routine that requires linear time to run) and do so only if the label has
changed—a relatively rare occurrence. These changes brought about a speed-up on
the Campanulaceae on the order of 1.5.

Condensation Sets of closely related genomes often share a number of adjacen-
cies; even when not closely related, three genomes will often share some as well. In
those cases when all genomes in a set contain shared adjacenc@s)dease¢he

shared adjacencies: we redefine gene fragments to consist of the longest shared sub-
sequences and replace the original instance by one given in terms of the new gene
fragments. Such condensation does not affect labeling or any of the rearrangement-
based distance measures (breakpoint, inversion, transposition). Condensation can be
implemented (and reversed) efficiently and may save large amounts of time by pro-
ducing significantly smaller numbers of genes in the genomes—and hence smaller
TSP instances. We use both an initial condensing of the entire dataset and a dynamic

Pacific Symposium on Biocomputing 6:583-594 (2001)

condensing of each triple of genomes when computing the median. In our Campan-
ulaceae dataset, the 13 genomes have sufficient runs in common that they can be ini-
tially condensed from 105 down to just 36 gene segments. When only three genomes
are considered at a time (as in the TSP instances), condensing can have an even greater
impact. Combining initial and dynamic condensation on the Campanulaceae dataset
results in a speed-up by a factor of 6.

Approximate TSP solvers Each MPB problem is solved through reduction to a TSP
instance. The number of such instances solved in the analysis of a dataset is very
large—and, of course, the TSP problem is itself NP-hard. We use@dheordeli-

brary* for two of our approximate solvers—the chained and the simple versions of the
famous Lin-Kernighan heuristic These heuristics typically come within a few per-
cent of optimal for the simple version and even closer for the slower chained version,
at least for the geometric TSP instances used in most testbétisfortunately, the

LK solvers are quite slow—even the simple LK solver takes cubic time and suffers
from significant coefficients.

We also implemented the standard greedy algorithm for TSP (also known as “co-
alesced simple path¥®): this algorithm successively adds the next available edge of
least cost, subject to not creating a short cycle nor a vertex of degree three. For our
instances of the TSP, this method can be implemented to run in very fast linear time,
but tends to yield significantly poorer solutions than the LK solvers.

Our exact TSP solver We implemented a standard include-exclude backtracking
search with pruning—the most basic technique for exhaustive search of a state space—
along the lines of th&PAnalysis code. This approach orders the edges by cost,
then recursively attempts first to include, then to exclude each edge in turn, the in-
clusions subject again to not creating a short cycle nor a vertex of degree three. (In
effect, the greedy method described earlier is simply the first probe sequence of this
search method.) The recursion stops when a solution is obtained, when it runs out of
edges (non-trivial edges only, for which see below), or when a lower bound computa-
tion indicates that no tree can be found to improve upon the current upper bound (the
value of the current best solution).

In comparison withBPAnalysis , we used more streamlined data structures,
better bounding, and some features tailored to the special nature of the instances gen-
erated in the reduction. Of ti&(n?) edges of an instance produced by the reduction
to TSP, at mos8n are nontrivial—those that correspond to adjacent genes segments
in the three genomes. Our exact TSP solver considers only nontrivial edges, treating
the others as an undifferentiated pool—a refinement that allows each step in the search
to runin linear rather than quadratic time. Our lower bound is computed with as much
information as can easily be maintained in linear time—excluded from the computa-
tion are not just edges that have already been considered B34inalysis), but
also any edges that would create a short cycle or a vertex of degree three. Finally,

Pacific Symposium on Biocomputing 6:583-594 (2001)

we provide the solver with what often proves a very tight upper bound by determin-
ing which of the current label and its three neighbors would provide the best median,
and initializing the solver with this solution. Our lower and upper bounds prove tight

enough that over two thirds of the calls to our TSP solver are pruned immediately,
without a single attempt to include or exclude an edge. This combination of algorith-
mic changes accounted for a speed-up factor of 10 on the Campanulaceae dataset.

Initial labeling Since the labeling procedure is iterative, assigning initial labels can
make a big difference in performance. Sankoff and Blanchette proposed several ini-
tializations. We implemented all but one of them (their last heuristic, based ad an
hocsolution method for a set of linear equations to define the parameters of each TSP
instance, is extremely slow), along with several of our own devising. The choice of an
initialization procedure is crucial, because little to no relabeling is done after a good
initialization. All but one of the methods run in linear time (one of the two methods
described by Sankoff and Blanchette as “onerous” takes quadratic time), with the ex-
ception of the cost of the calls to the exact TSP solver. Some of the methods make
no such call, some make one, while the more demanding methods make one such call
at each internal node. After much experimentation with these methods, we settled on
one of those proposed by Sankoff and Blanchette as the best compromise of accuracy
and speed—but our code provides another 6 methods. The chosen method sets up
a TSP instance for each internal node by using the closest already labeled neighbor
along each of the three directions out of that internal node; the computed median is
assigned to the internal node, which is then considered to be labeled.

6 Coding Aspects of our Implementation

Algorithmic engineering suggests a refinement cycle in which the behavior of the cur-
rent implementation is studied in order to identify problem areas which can include
excessive resource consumption or poor results. We used extensive profiling and test-
ing throughout our development cycle, which allowed us to identify and eliminate a
number of such problems. For instance, converting the MPB into a TSP instance dom-
inates the running time whenever the TSP instances are not too hard to solve. Thus
we lavished much attention on that routine, down to the level of hand-unrolling loops
to avoid modulo computations and allowing reuse rather than recomputation of inter-
mediate expressions; we cut the running time of that routine down by a factor of at
least six—and thereby nearly tripled the speed of the overall code. We lavished equal
attention on distance computations and on the computation of the lower bound, with
similar results. Constant profiling is the key to such an approach, because the identity
of the principal “culprits” in time consumption changes after each improvement, so
that attention must shift to different parts of the code during the process—including
revisiting already improved code for further improvements. These steps provided a
speed-up by a factor of 6—8 on the Campanulaceae dataset.

Pacific Symposium on Biocomputing 6:583-594 (2001)

The originalBPAnalysis is written in C++ and uses a space-intensive full
distance matrix, as well as many other data structures. It has a significant memory
footprint (over 60MB when running on the Campanulaceae dataset) and poor locality
(a working set size of about 12MB). Our implementation has a tiny memory foot-
print (1.8MB on the Campanulaceae dataset) and mostly good locality (nearly all
of our storage is in arrays preallocated in the main routine), which enables it to run
almost completely in cache (the working set size is 600KB). Cache locality can be im-
proved by returning to a FORTRAN-style of programming, in which records (struc-
tures/classes) are avoided in favor of separate arrays, in which simple iterative loops
that traverse an array linearly are preferred over pointer dereferencing, in which code
is replicated to process each array separately, etc. While we cannot measure exactly
how much we gain from this approach, studies of cache-aware algofifinmslicate
that the gain is likely to be substantial—factors of anywhere from 2 to 40 have been
reported. Many new memory hierarchies show differences in speed between cache
and main memory that exceed two orders of magnitude.

Low-level coding details also affect the quality of the solution. For instance,
the exact method used in creating the MPB subproblems makes a significant, if not
consistent, difference: in which order are the internal nodes in need of relabeling han-
dled? are the previous or current values of their neighbors used in creating the TSP
instance? in the initialization phase, are newly labeled nodes assimilated to leaves or
skipped over? We experimented with many such combinations in our code.

We checked correctness throughout the development. Direct comparison with
BPAnalysis is not feasible: the order in which it enumerates trees differs from the
order our code uses and the way in which it breaks ties is dictated by details of its data
structures, which differ completely from ours. We can and did compare the value of
solutions obtained (tree scores) after completion on small datasets and verified that
differences were unbiased—i.e., that the expected difference was zero. We wrote
several independent procedures specifically for verifying parts of the computation—
e.g., through independent scoring of a tree. We also tested our code throughout the
process to ensure that the functional behavior of each successive version remained
consistent with that of earlier versions. All of our tests confirm that our reimple-
mentation produces the same quality of solutioBB#&nalysis when run with the
same parameters.

7 Experimental Procedure

We had two objectives for our experiments. We wanted to compare the raw running
times of our versions and @&PAnalysis and investigate their dependency on the
number of genomes, the number of genes, and the rate of evolution in the model. We
also wanted to study the impact on the quality of solutions of using an approximation
algorithm for TSP.

Pacific Symposium on Biocomputing 6:583-594 (2001)

We used a simulator we developed to create datasets for our experiments. The
datasets are created as follows. First, a random tree topology is generated. Then evo-
lution is simulated on the tree using inversions and transpositions as the evolutionary
events. We examined different parameter settings by varying the expected number of
inversions and transpositions per edge, as well as varying the number of genes and
the number of genomes. We generated datasets with e2ch,afr 8 events per edge
to simulate different rates of evolution. The numbers of genes in each dataset were
10, 20, 40, 80, 160, and320.

In order to obtain statistically significant data, we followed the recommendations
of McGeocHh%!! and Moret? and usedunsof trials. Each trial is one dataset, while
a run is composed of a number of independent trials. One then retains only the me-
dian value for the entire run and repeats the process with additional runs, with each
run yielding a single value. These values are then examined for consistency. This
method produces robust results even when, as in our case, the enormous size of the
sample space precludes any fair sampling; using the median also gives a more honest
picture of the situation when large deviations from the mean are expected.

8 Experiments

In order to test our TSP solvers, we ran a number of tests with just three genomes.
These problems have only one tree topology and only one internal node to label, so
that only one call is made to the TSP solver. We used six different numbers of genes
per genome, and up to three rates of evolution. In some casesd was too high

a rate of evolution for the exact solvers—so we do not present data for those cases.
We ran the 3-genome problem under 5 different meth&Analysis itself, our

exact solver, the greedy algorithm, the basic Lin-Kernighan, and the chained Lin-
Kernighan.

In our first experiment, we tested the different solvers under the different rates of
evolution. In our second experiment, we used the same data to compare the relative
running times of the 5 solvers. In our third experiment, we computed the percent over
optimal that the approximate solvers obtained. Our fourth experiment explored tree-
processing rates for the various solvers. We used both real and synthetic datasets for
this experiment, including our Campanulaceae dataset. Most datasets did not run to
completion, but we ran them long enough to obtain an accurate count of the number
of trees processed per unit time and thus to be able to predict the running time to
completion (in the case of our code, we also used the sampling option to ensure that
the estimates were not biased towards the small fraction of trees explored in a large
problem).

Our experiments were run on a 233MHz Pentium Il laptop with 128MB of mem-
ory and 512KB of off-chip L2 cache running Linux; we compiled all code (including
BPAnalysis) with the GNUgcc compiler with optionsO3 -mpentiumpro

Pacific Symposium on Biocomputing 6:583-594 (2001)

9 Results and Discussion

Experiments on 3-genome problemsFigure 2 shows the running times of our four
versions and oBPAnalysis on 3-genome problems of increasing sizes and at dif-
ferent rates of evolution. The rates= 2, 4, 8 reflect the expected number of in-

seconds + seconds seconds
3.0 + 3.0 A 3.0 A
25 4 25 4 25 4
+
2.0 1 2.0 1 2.0 1
1.5 1 1.5 1 1.5 1
1.0 1 1.0 1 1.0 q
+
05 « ° * °* 05 + 05
& +
0 B9 02 O o#genes ol—e—e ¢ $ 2 Bfgenes o-l—e—e—+—+—+—s#genes
10 20 40 80 160 320 10 20 40 80 160 320 10 20 40 80 160 320
(a) Chained LK (b) Simple LK (c) Greedy
seconds seconds
3.0 4 2mins 3.0 A
orr =2 2.5 + 2.5
o:r =14 2.0 A 2.0 A
+:r =8 15 A 159 +
1.0 4 1.0 4 s
0.5 A 0.5 A
L)
ol o 4 4 o o s#tgenes ol 4 » 3~ #genes
10 20 40 80 160 320 10 20 40 80 160 320
(d) Exact Search (e) BPANalysis

Figure 2: Speed of the 5 solvers on various 3-genome problems under 3 different rates of evolution

versions on each tree edge. Higher rates of evolution clearly induce much harder
instances of the TSP, so that the two exact solvers suBieAnalysis could not
solve any of the larger instances with= 8 within 20 minutes of computation.

Figure 3 presents the same data, this time per evolutionary rate so as to facilitate
comparisons of running times. The greedy solver is so fast that all of its times fall on
the horizontal axis, as do most of the times of the exact solverfof andr = 4. We
know from algorithm analysis that the greedy solver runs (in our special case) in linear
time, the two LK solvers in roughly cubic time, and the exact solvers in exponential
time. Our figures clearly demonstrate the exponential behaviBPaéfalysis , but
our exact solver stays in a flat part of its exponential curve all the way to 320 genes
forr = 2 andr = 4. The two LK solvers show at least quadratic behavior, while
the greedy solver give us nearly flat values (below noise level) for the entire range.
Because high rates of evolution induce numerous breakpoints, the resulting instances
of the TSP have relatively undifferentiated edges costs: thus most of the edges have

Pacific Symposium on Biocomputing 6:583-594 (2001)

seconds seconds seconds o
3.0 A 3.0 A 3.0 2mins o
2.5 1 2.5 1 2.5 1
8
2.0 1 2.0 1 2.0 1
1.5 A1 1.5 A1 1.5 A1
[]
10 4 U 10 4 o 10 4
]
05 05 o o ©0 © 05 A
[[[} AN
ol & 8 8 8 8 8#genes ol 8 8 8 4 4 Lugenes ol & &4 4 % +#genes
10 20 40 80 160 320 10 20 40 80 160 320 10 20 40 80 160 320
(@)r =2 (byr=4 (©r=38
o: Chained LK A: Simple LK *: Greedy o: Exact search o: BPAnalysis

Figure 3: Relative running times of the five methods on 3-genome problems of various sizes

maximal or near maximal cost, making it difficult to find an optimal solution quickly,
so that the exact solvers suffer—indeed, the problems rapidly become intractable. In
contrast, the Chained LK solver slows down a bit (more phases) and the simple LK
and greedy solvers not at all.

Quiality of approximation of heuristics Figure 4 shows the percentage by which
the solutions returned by the simple LK and fast greedy solvers exceed the optimal.
In contrast, the Chained LK solver returned optimal solutions for all of these test in-

% over opt % over opt
15) 15

orr =2
+
10 o:r =14 10
[] 8 ®
+:
5 o o r 5 o 4+ ¥
[] L] L]
+
ol ¢ ¢ o o 8 o #genes 0l oo+ 3 o #genes
10 20 40 80 160 320 10 20 40 80 160 320
(a) Simple LK (b) Greedy

Figure 4: Percentage excess over optimal for LK and greedy solvers

stances. The error percentage can be artificially larger for smaller evolutionary rates
because, for these lower rates, the number of breakpoints in the optimal solution is
quite small, thus magnifying percentages. Rather surprisingly, the fast and unso-
phisticated greedy algorithm holds its own against the simple LK algorithm—not a
situation encountered on typical TSP benchmarks

Tree-processing rates In order to estimate the raw speed of each method, we ran all
given methods on real and synthetic datasets, letting them process thousands of trees
until a fixed time bound was attained. We then normalized the results and, since the
greedy algorithm was always the fastest, computed ratios of processing rates for the
other four methods against the rate of the greedy method. Table 1 shows the results;

Pacific Symposium on Biocomputing 6:583-594 (2001)

Table 1 Ratios of tree-processing rates of 5 methods to the rate of the greedy method on various datasets.

method 13/105/- | 8/105/- | 10/20/2 | 10/20/4 | 10/20/8 | 10716072 | 60/20/2 | 80/100/2
Greedy baselingl 5 14, | 73400 | 15300 | 15,200 | 13,550 | 5250 | 2,400 975
in trees/s
Simple LK 68 66 31 33 31 20 45 100
Chained LK 280 220 225 310 300 210 250 330
Exact solver 3.5 1.1 3.4 4.3 3.6 1.7 2.6 2.6
BPAnalysis 2,000 | 3,820 | 220 250 225 840 350 500

in the table,n/N/r denotes a problem with genomes)N genes, ana inversions

per model tree edge; the first two data sets are the full Campanulaceae dataset and its
first 8 members, respectively. The figure shown for the greedy method is the actual
processing rate of that method, in trees processed per second. The high processing
rate of our exact solver (we have observed rates from 70 to 5,000 times faster than
BPAnalysis) makes it possible to solve problems with 10-12 genomes on a single
processor. Chained LK is much too slow to be of use, and even simple LK, while of-
ten faster thaBPAnalysis , is far slower than our exact solver. On the other hand,

the greedy algorithm, while much faster than the exact solver, tends to yield worse
solutions than the exact solver and should be reserved for difficult instances (large
numbers of genes and high rates of evolution).

10 Conclusions and Future Work

We have presented a new implementation of breakpoint analysis that improves on
the originalBPAnalysis by 2 to 3 orders of magnitude—an improvement reached
through algorithmic engineering techniques. Our implementation makes it possible
to analyze much larger datasets; it can be combined with massive parallelism, re-
ducing the running time for the Campanulaceae dataset from two centuries down
to a day when run on a 512-processor supercluster. Our code can be obtained from
URL www.cs.unm.edu/ ~moret/GRAPPA-09.tar.gz ;ithas been tested un-

der Linux, FreeBSD, Solaris, and Windows NT, as well as on parallel clusters. Break-
point scores may not be the measure of choice; our latest implementation includes a
fast linear-time computation of inversion distanteallowing us to minimize either
measure and compare their relative use. These and other improvements pale against
the main drawback of the approach: enumerating all tree topologies is impossible for
16 or more genomes. An implicit exploration of tree space is the next step.

Acknowledgments

This work was supported in part by NSF ITR 00-81404 (Moret and Bader), NSF DEB 99-
10123 (Bader), DOE SUNAPP AX-3006 (Bader), NSF 94-57800 (Warnow), and the David
and Lucile Packard Foundation (Warnow).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Pacific Symposium on Biocomputing 6:583-594 (2001)

References

. Bader, D.A., Moret, B.M.E., and Yan, M., “A fast linear-time algorithm for inversion distance

with an experimental comparison,” submitted to RECOMB 01.

. Blanchette, M., Bourque, G., & Sankoff, D., “Breakpoint phylogeniesz@nome Informatics

1997, Miyano, S., and Takagi, T., eds., Univ. Academy Press, Tokyo, 25-34.

. Blanchette, M., Kunisawa, T., & Sankoff, D., “Gene order breakpoint evidence in animal mito-

chondrial phylogeny,J. Mol. Evol.49 (1999), 193-203.

. Applegate, D., Bixby, R., Chatal, V., & Cook, W., “CONCORDE: Combinatorial Optimiza-

tion and Networked Combinatorial Optimization Research and Development Environment,”
available atvww.keck.caam.rice.edu/concorde.html

. Cosner, M.E., Jansen, R.K., Moret, B.M.E., Raubeson, L.A., Wang, L.-S., Warnow, T., &

Wyman, S., “A new fast heuristic for computing the breakpoint phylogeny and experimental
phylogenetic analyses of real and synthetic da®agc. 8th Int'l Conf. on Intelligent Systems
for Molecular Biology ISMB-2000San Diego (2000).

. Cosner, M.E., Jansen, R.K., Moret, B.M.E., Raubeson, L.A., Wang, L.S., Warnow, T., &

Wyman, S., “An empirical comparison of phylogenetic methods on chloroplast gene order data
in CampanulaceaeProc. Gene Order Dynamics, Comparative Maps, and Multigene Families
DCAF-200Q Montreal (2000).

. Johnson, D.S., & McGeoch, L.A., “The traveling salesman problem: a case studytah

Search in Combinatorial Optimizatiofe. Aarts & J.K. Lenstra, eds., John Wiley, New York
(1997), 215-310.

. LaMarca, A., and Ladner, R.E., “The influence of caches on the performance of he@ps,”

J. Exp. Algorithmicd, 4 (1996),www.jea.acm.org/1996/LaMarcalnfluence/

. Lin, S., & Kernighan, B.W., “An effective heuristic algorithm for the traveling salesman prob-

lem,” Operations Re21 (1973), 498-516.

McGeoch, C.C., “Analyzing algorithms by simulation: variance reduction techniques and sim-
ulation speedupsACM Comput. Survey®, 2 (1992), 195-212.

McGeoch, C.C., “Toward an experimental method for algorithm simulatidFORMS J.
Comput.8 (1996), 1-15.

Moret, B.M.E., “Towards a discipline of experimental algorithmi€gc. 5th DIMACS Chal-
lenge available atvww.cs.unm.edu/ ~moret/dimacs.ps

Moret, B.M.E., and Shapiro, H.DAlgorithms from P to NP, Vol. I: Design and Efficiency
Benjamin-Cummings, Menlo Park, CA, 1991.

Olmstead, R.G., & Palmer, J.D., “Chloroplast DNA systematics: a review of methods and data
analysis,”Amer. J. Bot81(1994), 1205-1224.

Palmer, J.D., “Chloroplast and mitochondrial genome evolution in land plant§eglinOr-
ganelles Herrmann, R., ed., Springer Verlag (1992), 99-133.

Pe’er, I., & Shamir, R., “The median problems for breakpoints are NP-comii#¢e,”Colloq.

on Comput. Complexityreport 71, 1998.

Raubeson, L.A., & Jansen, R.K., “Chloroplast DNA evidence on the ancient evolutionary split
in vascular land plantsScience255(1992), 1697-1699.

Sankoff, D., & Blanchette, M., “Multiple genome rearrangement and breakpoint phylogeny,”
J. Computational Biolog$ (1998), 555-570.

Saitou, N., and Nei, M., “The neighbor-joining method: A new method for reconstructing
phylogenetic treesMol. Biol. & Evol. 4 (1987), 406—425.

Xiao, L., Zhang, X., and Kubricht, S.A., “Improving memory performance of sorting algo-
rithms,” to appear iCM J. Exp. Algorithmics

