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Abstract. Phylogeny reconstruction from molecular data poses com-
plex optimization problems: almost all optimization models are NP-hard
and thus computationally intractable. Yet approximations must be of
very high quality in order to avoid outright biological nonsense. Thus
many biologists have been willing to run farms of processors for many
months in order to analyze just one dataset. High-performance algorithm
engineering offers a battery of tools that can reduce, sometimes spectac-
ularly, the running time of existing phylogenetic algorithms. We present
an overview of algorithm engineering techniques, illustrating them with
an application to the “breakpoint analysis” method of Sankoff et al.,
which resulted in the GRAPPA software suite. GRAPPA demonstrated
a million-fold speedup in running time (on a variety of real and simu-
lated datasets) over the original implementation. We show how algorith-
mic engineering techniques are directly applicable to a large variety of
challenging combinatorial problems in computational biology.

1 Background

Algorithm Engineering. The term “algorithm engineering” was first used
with specificity in 1997, with the organization of the first Workshop on Algo-
rithm Engineering (WAE 97). Since then, this workshop has taken place every
summer in Europe and a parallel one started in the US in 1999, the Workshop on
Algorithm Engineering and Experiments (ALENEX99), which has taken place
every winter, colocated with the ACM/SIAM Symposium on Discrete Algorithms
(SODA). Algorithm engineering refers to the process required to transform a
pencil-and-paper algorithm into a robust, efficient, well tested, and easily usable
implementation. Thus it encompasses a number of topics, from modelling cache
behavior to the principles of good software engineering; its main focus, however,
is experimentation. In that sense, it may be viewed as a recent outgrowth of
Experimental Algorithmics, which is specifically devoted to the development of
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methods, tools, and practices for assessing and refining algorithms through ex-
perimentation. The online ACM Journal of Experimental Algorithmics (JEA), at
URL www.jea.acm.org, is devoted to this area and also publishes selected best
papers from the WAE and ALENEX workshops. Notable efforts in algorithm
engineering include the development of LEDA [19], attempts at characterizing
the effects of caching on the behavior of implementations [1,11,16,17,18,27,29],
ever more efficient implementation of network flow algorithms [7,8,13], and the
characterization of the behavior of everyday algorithms and data structures such
as priority queues [15,32], shortest paths [6], minimum spanning trees [22], and
sorting [21]. More references can be found in [20] as well as by going to the web
site for the ACM Journal of Experimental Algorithmics at www.jea.acm.org.

High-Performance Algorithm Engineering. High-Performance Algorithm
Engineering focuses on one of the many facets of algorithm engineering. The
high-performance aspect does not immediately imply parallelism; in fact, in any
highly parallel task, most of the impact of high-performance algorithm engi-
neering tends to come from refining the serial part of the code. For instance, in
the example we will use throughout this paper, the million-fold speed-up was
achieved through a combination of a 512-fold speedup due to parallelism (one
that will scale to any number of processors) and a 2,000-fold speedup in the
serial execution of the code.

All of the tools and techniques developed over the last five years for algorithm
engineering are applicable to high-performance algorithm engineering. However,
many of these tools will need further refinement. For example, cache-aware pro-
gramming is a key to performance (particularly with high-performance machines,
which have deep memory hierarchies), yet it is not yet well understood, in part
through lack of suitable tools (few processor chips have built-in hardware to
gather statistics on the behavior of caching, while simulators leave much to be
desired) and in part because of complex machine-dependent issues (recent efforts
at cache-independent algorithm design [5,12] may offer some new solutions). As
another example, profiling a running program offers serious challenges in a serial
environment (any profiling tool affects the behavior of what is being observed),
but these challenges pale in comparison with those arising in a parallel or dis-
tributed environment (for instance, measuring communication bottlenecks may
require hardware assistance from the network switches or at least reprogramming
them, which is sure to affect their behavior).

Phylogenies. A phylogeny is a reconstruction of the evolutionary history of
a collection of organisms; it usually takes the form of an evolutionary tree, in
which modern organisms are placed at the leaves and ancestral organisms occupy
internal nodes, with the edges of the tree denoting evolutionary relationships.
Figure 1 shows two proposed phylogenies, one for several species of the Campan-
ulaceae (bluebell flower) family and the other for Herpes viruses that are known
to affect humans. Reconstructing phylogenies is a major component of modern
research programs in many areas of biology and medicine (as well as linguistics).
Scientists are of course interested in phylogenies for the usual reasons of scien-
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Fig. 1. Two phylogenies: some plants of the Campanulaceae family (left) and some
Herpes viruses affecting humans (right)

tific curiosity. An understanding of evolutionary mechanisms and relationships
is at the heart of modern pharmaceutical research for drug discovery, is helping
researchers understand (and defend against) rapidly mutating viruses such as
HIV, is the basis for the design of genetically enhanced organisms, etc. In devel-
oping such an understanding, the reconstruction of phylogenies is a crucial tool,
as it allows one to test new models of evolution.

Computational Phylogenetics. Phylogenies have been reconstructed “by
hand” for over a century by taxonomists, using morphological characters and
basic principles of genetic inheritance. With the advent of molecular data, how-
ever, it has become necessary to develop algorithms to reconstruct phylogenies
from the large amount of data made available through DNA sequencing, amino-
acid and protein characterization, gene expression data, and whole-genome de-
scriptions. Until recently, most of the research focused on the development of
methods for phylogeny reconstruction from DNA sequences (which can be re-
garded as strings on a 4-character alphabet), using a model of evolution based
mostly on nucleotide substitution. Because amino-acids, the building blocks of
life, are coded by substrings of four nucleotides known as codons, the same meth-
ods were naturally extended to sequences of codons (which can be regarded as
strings on an alphabet of 22 characters—in spite of the 64 possible codes, only
22 amino-acids are encoded, with many codes representing the same amino-
acid). Proteins, which are built from amino-acids, are the natural next level,
but are proving difficult to characterize in evolutionary terms. Recently, another
type of data has been made available through the characterization of entire
genomes: gene content and gene order data. For some organisms, such as hu-
man, mouse, fruit fly, and several plants and lower-order organisms, as well as
for a large collection of organelles (mitochondria, the animal cells’ “energy fac-
tories”, and chloroplasts, the plant cells’ “photosynthesis factories”), we have a
fairly complete description of the entire genome, gene by gene. Because plausible
mechanisms of evolution include gene rearrangement, duplication, and loss, and
because evolution at this level (the “genome level”) is much slower than evolu-
tion driven by mutations in the nucleotide base pairs (the “gene level”) and so
may enable us to recover deep evolutionary relationships, there has been con-
siderable interest in the phylogeny community in the development of algorithms
for reconstructing phylogenies based on gene-order or gene content data. Appro-
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priate tools for analyzing such data may help resolve some difficult phylogenetic
reconstruction problems; indeed, this new source of data has been embraced by
many biologists in their phylogenetic work.[24,25,28] There is no doubt that, as
our understanding of evolution improves, new types of data will be collected and
well need to be analyzed in phylogeny reconstruction.

Optimization Criteria. To date, almost every model of evolution proposed for
modelling phylogenies gives rise to NP-hard optimization problems. Three main
lines of work have evolved: more or less ad hoc heuristics (a natural consequence
of the NP-hardness of the problems) that run quickly, but offer no quality guaran-
tees and may not even have a well defined optimization criterion, such as the pop-
ular neighbor-joining heuristic [31]; optimization problems based on a parsimony
criterion, which seeks the phylogeny with the least total amount of change needed
to explain modern data (a modern version of Occam’s razor); and optimization
problems based on a maximum likelihood criterion, which seeks the phylogeny
that is the most likely (under some suitable statistical model) to have given rise
to the modern data. Ad hoc heuristics are fast and often rival the optimization
methods in terms of accuracy; parsimony-based methods may take exponential
time, but, at least for DNA data, can often be run to completion on datasets of
moderate size; while methods based on maximum-likelihood are very slow (the
point estimation problem alone appears intractable) and so restricted to very
small instances, but appear capable of outperforming the others in terms of the
quality of solutions. In the case of gene-order data, however, only parsimony cri-
teria have been proposed so far: we do not yet have detailed enough models (or
ways to estimate their parameters) for using a maximum-likelihood approach.

2 Our Running Example: Breakpoint Phylogeny

Some organisms have a single chromosome or contain single-chromosome or-
ganelles (mitochondria or chloroplasts), the evolution of which is mostly inde-
pendent of the evolution of the nuclear genome. Given a particular strand from a
single chromosome (whether linear or circular), we can infer the ordering of the
genes along with the directionality of the genes, thus representing each chromo-
some by an ordering of oriented genes. The evolutionary process that operates
on the chromosome may include inversions and transpositions, which change the
order in which genes occur in the genome as well as their orientation. Other
events, such as insertions, deletions, or duplications, change the number of times
and the positions in which a gene occurs.

A natural optimization problem for phylogeny reconstruction from this type
of data is to reconstruct the most parsimonious tree, the evolutionary tree with
the minimum number of permitted evolutionary events. For any choice of permit-
ted events, such a problem is computationally very intensive (known or conjec-
tured to be NP-hard); worse, to date, no automated tools exist for solving such
problems. Another approach is first to estimate leaf-to-leaf distances (based upon
some metric) between all genomes, and then to use a standard distance-based
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heuristic such as neighbor-joining [31] to construct the tree. Such approaches
are quite fast and may prove valuable in reconstructing the underlying tree, but
cannot recover the ancestral gene orders.

Blanchette et al. [4] developed an approach, which they called breakpoint phy-
logeny, for the special case in which the genomes all have the same set of genes,
and each gene appears once. This special case is of interest to biologists, who hy-
pothesize that inversions (which can only affect gene order, but not gene content)
are the main evolutionary mechanism for a range of genomes or chromosomes
(chloroplast, mitochondria, human X chromosome, etc.) Simulation studies we
conducted suggested that this approach works well for certain datasets (i.e., it
obtains trees that are close to the model tree), but that the implementation
developed by Sankoff and Blanchette, the BPAnalysis software [30], is too slow
to be used on anything other than small datasets with a few genes [9,10].

3 Breakpoint Analysis: Details

When each genome has the same set of genes and each gene appears exactly
once, a genome can be described by an ordering (circular or linear) of these
genes, each gene given with an orientation that is either positive (gi) or negative
(−gi). Given two genomes G and G′ on the same set of genes, a breakpoint in
G is defined as an ordered pair of genes, (gi, gj), such that gi and gj appear
consecutively in that order in G, but neither (gi, gj) nor (−gj ,−gi) appears con-
secutively in that order in G′. The breakpoint distance between two genomes is
the number of breakpoints between that pair of genomes. The breakpoint score
of a tree in which each node is labelled by a signed ordering of genes is then the
sum of the breakpoint distances along the edges of the tree.

Given three genomes, we define their median to be a fourth genome that min-
imizes the sum of the breakpoint distances between it and the other three. The
Median Problem for Breakpoints (MPB) is to construct such a median and is NP-
hard [26]. Sankoff and Blanchette developed a reduction from MPB to the Trav-
elling Salesman Problem (TSP), perhaps the most studied of all optimization
problems [14]. Their reduction produces an undirected instance of the TSP from
the directed instance of MPB by the standard technique of representing each gene
by a pair of cities connected by an edge that must be included in any solution.

BPAnalysis (see Fig. 2) is the method developed by Blanchette and Sankoff

Initially label all internal nodes with gene orders
Repeat

For each internal node v, with neighbors A, B, and C, do
Solve the MPB on A, B, C to yield label m
If relabelling v with m improves the score of T , then do it

until no internal node can be relabelled

Fig. 2. BPAnalysis
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to solve the breakpoint phylogeny. Within a framework that enumerates all trees,
it uses an iterative heuristic to label the internal nodes with signed gene orders.
This procedure is computationally very intensive. The outer loop enumerates
all (2n − 5)!! leaf-labelled trees on n leaves, an exponentially large value.1 The
inner loop runs an unknown number of iterations (until convergence), with each
iteration solving an instance of the TSP (with a number of cities equal to twice
the number of genes) at each internal node. The computational complexity of
the entire algorithm is thus exponential in each of the number of genomes and
the number of genes, with significant coefficients. The procedure nevertheless
remains a heuristic: even though all trees are examined and each MPB problem
solved exactly, the tree-labeling phase does not ensure optimality unless the tree
has only three leaves.

4 Re-engineering BPAnalysis for Speed

Profiling. Algorithmic engineering suggests a refinement cycle in which the
behavior of the current implementation is studied in order to identify problem
areas which can include excessive resource consumption or poor results. We used
extensive profiling and testing throughout our development cycle, which allowed
us to identify and eliminate a number of such problems. For instance, converting
the MPB into a TSP instance dominates the running time whenever the TSP
instances are not too hard to solve. Thus we lavished much attention on that
routine, down to the level of hand-unrolling loops to avoid modulo computations
and allowing reuse of intermediate expressions; we cut the running time of that
routine down by a factor of at least six—and thereby nearly tripled the speed of
the overall code. We lavished equal attention on distance computations and on
the computation of the lower bound, with similar results. Constant profiling is
the key to such an approach, because the identity of the principal “culprits” in
time consumption changes after each improvement, so that attention must shift
to different parts of the code during the process—including revisiting already
improved code for further improvements. These steps provided a speed-up by
one order of magnitude on the Campanulaceae dataset.

Cache Awareness. The original BPAnalysis is written in C++ and uses a
space-intensive full distance matrix, as well as many other data structures. It has
a significant memory footprint (over 60MB when running on the Campanulaceae
dataset) and poor locality (a working set size of about 12MB). Our implemen-
tation has a tiny memory footprint (1.8MB on the Campanulaceae dataset) and
good locality (all of our storage is in arrays preallocated in the main routine and
retained and reused throughout the computation), which enables it to run al-
most completely in cache (the working set size is 600KB). Cache locality can be
improved by returning to a FORTRAN-style of programming, in which storage
is static, in which records (structures/classes) are avoided in favor of separate
1 The double factorial is a factorial with a step of 2, so we have (2n − 5)!! = (2n − 5) ·

(2n − 7) · . . . · 3
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arrays, in which simple iterative loops that traverse an array linearly are pre-
ferred over pointer dereferencing, in which code is replicated to process each
array separately, etc. While we cannot measure exactly how much we gain from
this approach, studies of cache-aware algorithms [1,11,16,17,18,33] indicate that
the gain is likely to be substantial—factors of anywhere from 2 to 40 have been
reported. New memory hierarchies show differences in speed between cache and
main memory that exceed two orders of magnitude.

Low-Level Algorithmic Changes. Unless the original implementation is poor
(which was not the case with BPAnalysis), profiling and cache-aware program-
ming will rarely provide more than two orders of magnitude in speed-up. Further
gains can often be obtained by low-level improvement in the algorithmic details.
In our phylogenetic software, we made two such improvements. The basic algo-
rithm scores every single tree, which is clearly very wasteful; we used a simple
lower bound, computable in linear time, to enable us to eliminate a tree without
scoring it. On the Campanulaceae dataset, this bounding eliminates over 95% of
the trees without scoring them, resulting in a five-fold speed-up. The TSP solver
we wrote is at heart the same basic include/exclude search as in BPAnalysis,
but we took advantage of the nature of the instances created by the reduction
to make the solver much more efficient, resulting in a speed-up by a factor of
5–10. These improvements all spring from a careful examination of exactly what
information is readily available or easily computable at each stage and from a
deliberate effort to make use of all such information.

5 A High-Performance Implementation

Our resulting implementation, GRAPPA,2 incorporates all of the refinements
mentioned above, plus others specifically made to enable the code to run effi-
ciently in parallel (see [23] for details). Because the basic algorithm enumerates
and independently scores every tree, it presents obvious parallelism: we can have
each processor handle a subset of the trees. In order to do so efficiently, we need
to impose a linear ordering on the set of all possible trees and devise a generator
that can start at an arbitrary point along this ordering. Because the number
of trees is so large, an arbitrary tree index would require unbounded-precision
integers, considerably slowing down tree generation. Our solution was to de-
sign a tree generator that starts with tree index k and generates trees with
indices {k + cn | n ∈ N}, where k and c are regular integers, all without us-
ing unbounded-precision arithmetic. Such a generator allows us to sample tree
space (a very useful feature in research) and, more importantly, allows us to use
a cluster of c processors, where processor i, 0 ≤ i ≤ c − 1, generates and scores
trees with indices {i + cn | n ∈ N}. We ran GRAPPA on the 512-processor
Alliance cluster Los Lobos at the University of New Mexico and obtained a 512-
fold speed-up. When combined with the 2000-fold speedup obtained through
2 Genome Rearrangement Analysis through Parsimony and other Phylogenetic Algo-

rithms
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algorithm engineering, our run on the Campanulaceae dataset demonstrated a
million-fold speed-up over the original implementation [2].

In addition, we made sure that gains held across a wide variety of platforms
and compilers: we tested our code under Linux, FreeBSD, Solaris, and Windows,
using compilers from GNU, the Portland group, Intel (beta release), Microsoft,
and Sun, and running the resulting code on Pentium- and Sparc-based machines.
While the gcc compiler produced marginally faster code than the others, the per-
formance we measured was completely consistent from one platform to the other.

6 Impact in Computational Biology

Computational biology presents numerous complex optimization problems, such
as multiple sequence alignment, phylogeny reconstruction, characterization of
gene expression, structure prediction, etc. In addition, the very large databases
used in computational biology give rise to serious algorithmic engineering prob-
lems when designing query algorithms on these databases. While several pro-
grams in use in the area (such as BLAST, see www.ncbi.nlm.nih.gov/BLAST/)
have already been engineered for performance, most such efforts have been more
or less ad hoc. The emergence of a discipline of algorithm engineering [20] is
bringing us a collection of tools and practices that can be applied to almost
any existing algorithm or software package to speed up its execution, often by
very significant factors. While we illustrated the approach and its potential re-
sults with a specific program in phylogeny reconstruction based on gene order
data, we are now in the process of applying the same to a collection of funda-
mental methods (such as branch-and-bound parsimony or maximum-likelihood
estimation) as well as new algorithms.

Of course, even large speed-ups have only limited benefits in theoretical terms
when applied to NP-hard optimization problems: even our million-fold speed-up
with GRAPPA only enables us to move from about 10 taxa to about 13 taxa. Yet
the very process of algorithm engineering often uncovers salient characteristics
of the algorithm that were overlooked in a less careful analysis and may thus
enable us to develop much better algorithms. In our case, while we were imple-
menting the rather complex algorithm of Berman and Hannenhalli for computing
the inversion distance between two signed permutations, an algorithm that had
not been implemented before, we came to realize that the algorithm could be
simplified as well as accelerated, deriving in the process the first true linear-time
algorithm for computing these distances [3]. We would not have been tempted
to implement this algorithm in the context of the original program, which was
already much too slow when using the simpler breakpoint distance. Thus faster
experimental tools, even when they prove incapable of scaling to “industrial-
sized” problems, nevertheless provide crucial opportunities for exploring and
understanding the problem and its solutions.

Thus we see two potential major impacts in computational biology. First,
the much faster implementations, when mature enough, can alter the practice of
research in biology and medicine. For instance pharmaceutical companies spend
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large budgets on computing equipment and research personnel to reconstruct
phylogenies as a vital tool in drug discovery, yet may still have to wait a year
or more for the results of certain computations; reducing the running time of
such analyses from 2–3 years down to a day or less would make an enormous
difference in the cost of drug discovery and development. Secondly, biologists in
research laboratories around the world use software for data analysis, much of
it rife with undocumented heuristics for speeding up the code at the expense
of optimality, yet still slow for their purposes. Software that runs 3 to 4 orders
of magnitude faster, even when it remains impractical for real-world problems,
would nevertheless enable these researchers to test simpler scenarios, compare
models, develop intuition on small instances, and perhaps even form serious
conjectures about biological mechanisms.
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