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Abstract 

This paper presents eficient and portable implementa- 
tions of a useful image enhancement process, the Symmet- 
ric Neighborhood Filter (SNF), and an image segmentation 
technique which makes use of the SNF and a variant of 
the conventional connected components algorithm which 
we call &Connected Components. We use efficient tech- 
niques for  distributing and coalescing data as well as effi- 
cient combinations of task and data parallelism. The image 
segmentation algorithm makes use of an efficient connected 
components algorithm based on a novel approach for par- 
allel merging. The algorithms have been coded in SPLIT-C 
and run on a variety of p lagoms,  including the Think- 
ing Machines CM-5, IBM SP-I and SP-2, Cray Research 
T30, Meiko Scienti$c CS-2, Intel Paragon, and workstation 
clusters. Our experimental results are consistent with the 
theoretical analysis (and provide the best known execution 
times for  segmentation, even when compared with machine- 
spec$c implementations.) Our test data include difficult 
images from the Landsat Thematic Mapper (TM) satellite 
data. 

le Problem Overview 

Given an n x n image with IC gray levels on a p processor 
machine (p 5 n2>, we wish to develop efficient and portable 
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parallel algorithms to perform various useful image process- 
ing computations. Image segmentation algorithms cluster 
pixels into homogeneous regions, which, for example, can 
be classified into categories with higher accuracy than could 
be obtained by classifying the individual pixels. Region 
growing is a class of techniques used in image segmentation 
algorithms in which, typically, regions are constructed by an 
agglomeration process that adds (merges) pixels to regions 
when those pixels are both adjacent to the regions and sim- 
ilar in property (most simply intensity) (e.g. [7, 12, 261). 
Each pixel in the image receives a label from the region 
growing process; pixels will have the same label if and only 
if they belong to the same region. Our algorithm makes 
use of an efficient and fast parallel connected components 
algorithm [2 ,3]  based on a novel approach for merging. 

In real images, natural regions have significant variability 
in gray level. Noise, introduced from the scanning of the 
real scene into the digital domain, will cause single pixels 
outliers. Also, lighting changes can cause a gradient of gray 
levels in pixels across the same region. Because of these 
and other similar effects, we preprocess the image with 
a stable filter, the Symmetric Neighborhood Filter (SNF) 
[13], that smooths out the interior pixels of a region to 
a near-homogeneous level. Also, due to relative motion 
of the camera and the scene, as well as aperture effects, 
edges or regions are usually blurred so that the transition 
in gray levels between regions is not a perfect step over 
a single pixel, but ramps from one region to the other over 
several pixels. Our filter is, additionally, an edge-preserving 
filter which detects blurred transitions such as these and 
sharpens them while preserving the true border location as 
best as possible. Most preprocessing filters will smooth 
the interior of regions at the cost of degrading the edges, 
or conversely, detect edges while introducing intrinsic error 
on previously homogeneous regions. However, the SNF 
is an edge-preserving smoothing filter which performs well 
for both edge-sharpening and region smoothing. It is an 

4 14 

mailto:lsd}@umiacs.umd.edu


iterative filter which also can be tuned to retain thin image 
structures corresponding, e.g., to rivers, roads, etc. A variety 
of SNF operators have been studied, and we chose a single 
parameter version which has been shown to perform well 
on remote sensing applications. 

The majority of previous parallel implementations of the 
SNF filter are architecture- or machine-specific and do not 
port well to other platforms (e.g. [lo, 18, 19, 211). For 
example, [22] gives an implementation of a 15 x 15 SNF 
filter on the CMU Warp, a 10-processor linear systolic array, 
which takes4.76 seconds ona512 x 512image. Wepresent 
our SNF filter execution timings in Figure 7. In comparison, 
on a 32-processor TMC CM-5, we take less than 165 mil- 
liseconds per iteration operating on an image of equivalent 
size. 

After the image is enhanced by the SNF, we use a variant 
of the connected components algorithm for gray level im- 
ages, called S-Connected Components, to combine similar 
pixels into homogeneously labeled regions producing the fi- 
nal image segmentation. As with the SNF implementations, 
most previous parallel algorithms for segmentation do not 
port well to other platforms (e.g. [9, 17,20,23, 241). 

2. Block Distributed Memory Model 

We use the Block Distributed Memory (BDM) Model 
([15, 161) as a computation model for developing and an- 
alyzing our parallel algorithms on distributed memory ma- 
chines. Each of our hardware platforms can be viewed as 
a collection of powerful processors connected by a commu- 
nication network that can be modeled as a complete graph 
on which communication is subject to the restrictions im- 
posed by the latency and the bandwidth properties of the 
network. We view a parallel algorithm as a sequence of 
local computations interleaved with communication steps, 
and we allow computation and communication to overlap. 
The complexity of parallel algorithms will be evaluated in 
terms of two measures: the computation time Tcomp(n, p ) ,  
and the communication time T c o m m ( n 1  p) .  

The communication time Tcomm(n, p )  refers to the total 
amount of communications time spent by the overall algo- 
rithm in accessing remote data. The transfer of a block 
consisting of m contiguous words, assuming no congestion, 
takes T + mn time, where T is an upper bound on the latency 
of the network and U is the time per word at which a proces- 
sor can inject or receive data from the network. The algo- 
rithms in this paper utilized two collective communication 
primitives, transpose, bcast, and reduce, where transpose 
is an all-to-all communication of equal sized buffers and 
reduce is a prefix-sum, both modeled by T + U max (m, p ) ,  
and bcast is a one-to-all communication, again with equal 
sized buffers, modeled by 2 (T + U max (m, p ) ) ,  where m 
is the maximum amount of data transmitted or received by 

a processor [15, 16, 2, 3, 4, 51. Using this cost model, we 
can evaluate the communication time Tcomm(n, p )  of an al- 
gorithm as a function of the input size n, the number of 
processors p ,  and the parameters T and (T. 

We define the computation time Tcomp(n, p )  as the max- 
imum time it takes a processor to perform all the lo- 
cal computation steps. In general, the overall perfor- 
mance Tcomp(n, p )  +TComm( n,  p )  involves a tradeoff between 
Tcomm(n,p) and Tcomp(n,p). Our aim is to develop parallel 

algorithms that achieve Tcomp(n, p) = 0 (?) - such that 

Tcomm(n, p )  is minimum, where Tsey is the complexity of the 
best sequential algorithm. Such optimization has worked 
very well for the problems we have looked at, but other 
optimization criteria are possible. The important point to 
notice is that, in addition to scalability, our optimization 
criterion requires that the parallel algorithm be an efficient 
sequential algorithm (i.e., the total number of operations of 
the parallel algorithm is of the same order as Tseq). 

3. Image (Data) Layout and Test Images 

A straightforward data layout is used in these algorithms 
for all platforms. The input image is an n x n matrix of 
integers. We assign tiles of the image as equally as possible 
among the processors. If p is an even power of two, i.e. 
p = 2d, for even d, the processors will be arranged in a 
Js; x & logical grid. For future reference, we will denote 
the number of rows in this logical grid as w and the number 
of columns as tu. For odd d, we assign the number of rows 
of the logical processor grid to be w = 2 , and the number 
of columns to be w = 2[+1. Each processor initially owns 
a tile of size f x 5. For future reference, we assign q = 
and T = 5. We assume that the p processors are labeled 
consecutively from 0 top - 1 and are assigned in row-major 
order to the logical processor grid just described. 

Our test images are shown in [5] and Appendix B. We 
use Eandsat satellite data to represent real images; Figure 8, 
taken from band 4 of a view of New Orleans, is a 256 gray 
level, 5 12 x 5 1 :2 pixel array from Landsat Thematic Mapper 
(TM) satellite data. A 128 x 128 subimage of these scene 
is shown in Figure 9. 

4. Image Segmentation - Overview 

Images are segmented by running several phases of the 
SNF enhancement algorithm, followed by several iterations 
of the 1-Nearest Neighbor filter, and finally, S-Connected 
Components. See Figure 1 for a dataflow diagram of the 
complete segmentation process. 
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Figure 1. Segmentation Process 

4.1. Symmetric Neighborhood Filter 

Due to interior variation as well as noise and blur, regions 
in real images are seldom homogeneous in gray level and 
sharp along their borders. Preprocessing the image with an 
enhancement filter that reduces these effects will yield better 
segmentation results. 

Figure 2. Symmetric Pairs of Pixels 

The SNF filter compares each pixel to its 8-connected 
neighbors. (Note that the I-pixel image boundary is ignored 
in our implementation.) The neighbors are inspected in 
symmetric pairs around the center, i.e. N N S, W N E, 
NW - SE, and NE - SW, see Figure 2 for diagram of 
a 3 x 3 neighborhood centered around a pixel, with the 
symmetric pairs colored the same. Using each pair and the 
center pixel, we select one of the three in each of the four 
comparisons using the following criteria. Assume without 
loss of generality that the pair of pixels are colored A and 
B,  and A > B (see Figure 3). If the center pixel (with value 
x) falls within region RA, that is, 9 < x 5 A + E ,  then 
we select A.  Likewise, if the center pixel falls within region 

Rg, i.e., B - E 5 x < v, then we select B. And if 
x is midway between A and B,  we simply select x which 
is the average. Finally, if x is an outlier with respect to A 
and B,  so that z > A + E or x < B - E ,  we select x to 
leave it fixed. The collection of four selected pixels are then 
averaged together, and finally, the center pixel is replaced 
by the mean of this average and the center pixel’s current 
gray level value. This latter average is similar to that of a 
damped gradient descent which yields a faster convergence. 

I 

Gray 

, - A + E  

- - a  

A + B  Level - - 

B 

B -  E 

- 
- 

Figure 3. Selection of SNF Pixels 

The first phase of segmentation is a combination of three 
iterative SNF filters. The first step runs for a small number 
of iterations (e.g. four) with E = 0 and is used to preserve 
edges. We define to be the median of the standard de- 
viations of all 3 x 3 neighborhoods centered around each 
non-border pixel in the image. See 141 for a parallel median 
algorithm. To flatten the interior of regions, SNF is iterated 
with E = K U ,  where K is typically set to 2.0 for this appli- 
cation. The stopping criteria for this iterative filter occurs 
when the percentage of “fixed” pixels reaches 100.0 %, this 
percentage has not changed for three iterations, or when 
we reach 200 iterations, whichever comes first. Finally, we 
sharpen the borders of regions with SNF using E = 0, again 
stopping the iterative process when the pixels have fixed, as 
defined above. The resulting image has near-homogeneous 
regions with sharp transitions between bordering regions. 

4.2. 1 -Nearest Neighbor Filter 

Single pixel regions rarely can be classified, even under 
the best circumstances. Therefore, we prefer to filter these 
out as our last enhancement stage. A typical 1-Nearest 
Neighbor filter removes single pixel outliers by replacing 
each pixel in the image with the value of one of its adjacent 
pixels which is closest to its own gray level. Note that 
one application of the 1-Nearest Neighbor filter may cause 
small neighborhoods of pixels to oscillate. For example, 
two adjacent pixels with values A and A + A  surrounded by 
a region of more than A levels above or below would never 
stabilize. Therefore, we apply the 1-Nearest Neighbor as an 
iterative filter, stopping when the input and output images 
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are identical. For faster convergence, we use a damped 
approach (similar to the SNF) which assigns an output pixel 
to the mean of its original and nearest neighbor values. 
Typically, we converge in roughly six to eight iterations. 

Since no image enhancement occurs along the pixels 
of image borders, we crop the border so that additional 
segmentation techniques will not use this raw data to merge 
dissimilar regions via paths through the noisy, uncorrected 
pixels. For this application, we crop the border by a width 
of three pixels. 

4.3. S-Connected Components 

The image processing problem of determining the con- 
nected components of images is a fundamental task of imag- 
ing systems (e.g. [l, 6, 11, 141). All pixels with gray level 
(or ‘color’) 0 are assumed to be background, while pixels 
with color > 0 are foreground objects. A connected com- 
ponent in the image is a maximal collection of uniformly 
colored pixels such that a path exists between any pair of 
pixels in the component. Note that we are using the no- 
tion of 8-connectivity, meaning that two pixels are adjacent 
if and only if one pixel lies in any of the eight positions 
surrounding the other pixel. Each pixel in the image will 
receive a label; pixels will have the same label if and only 
if they belong to the same connected component. Also, all 
background pixels will receive a label of 0. 

It is interesting to note that, in the previous paragraph, 
we defined connected components as a maximal collection 
of uniform color pixels such that a path existed between 
any pair of pixels. The conventional algorithm assumes that 
there is a connection between two adjacent pixels if and 
only if their gray level values are identical. We now relax 
this connectivity rule and present it as a more general algo- 
rithm called &Connected Components. In this approach, 
we assume that two adjacent pixels with values 2 and y are 
connected if their absolute difference 12 - yI is no greater 
than the threshold 6. Note that setting the parameter 6 to 
0 reduces the algorithm to the classic connected compo- 
nents approach. This algorithm is identical in analysis and 
complexity to the conventional connected components algo- 
rithm, as we are merely changing the criterion for checking 
the equivalence of two pixels. 

For the final phase in the segmentation process, 6- 
Connected Components is applied to the enhanced image, 
using 6 = KO, where the values of K and o are the same as 
those input to the enhancement filters. The analysis for the 
&Connected Components algorithm is given in Section 6, 
equation (5). Thus, we have an efficient algorithm for image 
segmentation on parallel computers. 

4.4. Test Images 

We use the Landsat Thematic Mapper (TM) raw satellite 
data for our test images. Each test image is a 512 x 512 
pixel subimage from a single TM band. A subimage from 
band 5, an image from South America, is given in [5 ] ,  and 
Figure 8 is taken from band 4 of New Orleans data. These 
images have 256 gray levels and also have post-processing 
enhancement of the brightness for visualization purposes 
in this paper. We have applied SNF enhancement to these 
images, and the results appear below the original images. 
A further segmeintation with 6 = KO using the &Connected 
Components algorithm is given at the bottom of Figures 8 
and 9. 

5. Symmetrilc Neighborhood Filter - Parallel 
Implementation 

A useful data movement needed for the 3 x 3 local SNF 
filter is the fetchiing of tile-based ghost cells ([8,25]) which 
contain shadow copies of neighboring tiles’ pixel borders. 
These ghost cells are used in the selection process when 
recalculating our tile’s border. Suppose each tile of the 
image allocated to a processor is q x T pixels. We have 
four ghost cell arrays, ghostN and ghosts which hold r 
pixels each, and ghostW and ghostE which hold q pixels 
each. In additioin, four single pixel ghost cells for diagonal 
neighboring pixels are ghostNW, ghostNE, ghostSE, and 
ghostSW. An example of these ghost cells is pictured in 
Figure 4. 

The analysis for the prefetching of ghost cells is simple. 
We can divide the prefetching into eight separate data move- 
ments, one for each direction. Since each movement is a 
permutation, i.e. it has a unique source and destination, it 
can be routed with little or no contention. Thus, the entire 
ghost cell prefetching takes 

A second data movement needed for SNF is the reduc- 
tion operation using the reduce collective communication 
primitive. Each processor i has a data value, Zi, and we 
need the value of 20 @ 2 1  @ . . . CB Z&l. where CB is any 
associative operator. The complexity of this can be shown 
to be: [4, 51 

(2) 
K o m m ( n ,  P )  5 + P - 1; 
g‘lcomp(n,P)  = O(P). 

An SPMD algorithm for an iteration of SNF on Processor 
2: 

Algorithm 1 Symmetric Neighborhood Filter 
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Pi-1, j-1 I I Pi-1, j I I Pi- l , j+l  0 ($) . Thus, for p 5 n, the SNF complexities are 
I I 

I I 
I I 

ghostE 

Pi, j + l  

_ _  - -  

I ghosts I I ghostSE 
I 
I 

I 
I 
I 

ghosts 
I 
I 

I 
I 
I 

Pi+l, j- l  I ’ Pi+l , j  I P i+l , j+l  

Figure 4. An example of Ghost Cells 

Block Distributed Memory Model Algorithm. 
Input: 

{ i } is my processor number; 
{ p } is the total number of processors, labeled from 0 to 
p -  1; 
{ A 1 is the n x n input image. 
{ E } is input parameter. 

8. Processor 2. gets an 
denoted A, .  

I .  Prefeteh Ghost Cells. 
2. For each local pixel Ai,<x,y> that has not 

begin 
x E- tile of image A, f i f i  

fixed yet, using E ,  compute Bz,<x,y>, the updated 
pixel value. Decide if local pixel position < 2, y > 
is now fixed. 

have remained fixed. 

that is, f = fi. 

3. Set fi equal to the number of local pixels that 

4. f = reduce(fi, +), 

5. output 5 x 100%. 
end 

For each iteration of the SNF operator on a p-processor 
machine, the theoretical analysis is as follows. The com- 
plexities for Step 1 and Step 4 are shown in (1) and (2), 
respectively. Steps 2 and 3 are completely local and take 

Figure 7 in Appendix A shows the convergence of the 
SNF enhancement during the second phase ofthe smoothing 
filter. As can be seen, there is a fast convergence of the pixels 
asymptotically close to 100% fixed. Because fixed pixels are 
not recalculated, the time per iteration quickly ramps down 
from approximately 165 msliteration to 26 msliteration on 
a 512 x 512 TM image. 

The complexity of an iteration of the 1-Nearest Neigh- 
bor filter is simple, namely, a fetch of ghost cells and one 
pass through the image tile on each processor. The ghost 
cell analysis is given in (I), and the update of pixels t&es 
0 - . Therefore, the 1-Nearest Neighbor algorithm has 
complexities 
(3 

6. &Connected Components of Grayscale Im- 
ages 

The high-level strategy of our connected components 
algorithm uses the well-known divide and conquer tech- 
nique. Divide and conquer algorithms typically use a re- 
cursive strategy to split problems into smaller subproblems 
and, given the solutions to these subproblems, merge the 
results into the final solution. It is common to have either an 
easy splitting algorithm and a more complicated merging, 
or vice versa, a hard splitting, following by easy merging. 
In our parallel connected components algorithm, the split- 
ting phase is trivial and implicit, while the merging process 
requires more work. 

Each processor holds a unique tile of the image, and 
hence can find the initial connected components of its tile 
by using a standard sequential algorithm. Next, the algo- 
rithm iterates logp times’, alternating between combining 
the tiles in horizontal merges of vertical borders and verti- 
cal merges of horizontal borders. Our algorithm uses novel 
techniques to perform the merges and to update the labels. 
We will attempt to give an overview of this algorithm; for a 
complete description, see [2,3, 51. 

We merge the p subimages into larger and larger image 
sections with consistent labelings. There will be logp iter- 
ations since we cut the number of uncombined subimages 

‘Note that throughout this paper “logs” will always be the logarithm 
of s to the base b = 2, i.e. log, 5. 
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in half during each iteration. Unlike previous connected 
components algorithms, we use a technique which identifies 
processors as group managers or clients during each phase. 
The group managers have the task of organizing the retrieval 
of boundary data, performing the merge, and creating the list 
of label changes. Once the group managers broadcast these 
changes to their respective clients, all processors must use 
the information to update their tile hooks, data structures 
which point to connected components on local tile borders. 
See Figure 5 for an illustration of the tile hook data structure 
in which three tile hooks contain the information needed to 
update the border pixels. The clients assist the group man- 
agers by participating in the coalescing of data during each 
merge phase. Finally, the complete relabeling is performed 
at the very end using information from the tile hooks. 

During each merge, a subset of the processors will act 
as group managers. These designated processors will 
prefetch the necessary border information along the column 
(or row) that they are located upon in the logical proces- 
sor grid, setting up an equivalent graph problem, running 
a sequential connected components algorithm on the graph 
(with the modification that two adjacent nodes are connected 
if they differ in color by no more than S), noting any changes 
in the labels, and storing these changes ((ai, pi) pairs) in a 
shared structure. The clients decide who their current group 
manager is and wait until the list of label changes is ready. 
They retrieve the list, and all processors make the necessary 
updates to a proper subset of their labels. 

Hook #1 1 Hook #2 

H 

t 
Border Pixels on a Tile 

Figure 5. An example of Tile Hooks 

At the conclusion of each of the logp merging steps, only 
the labels of pixels on the border of each tile are updated. 
There is no need to relabel interior pixels since they are not 
used in the merging stage. Only boundary pixels need their 
labels updated. Taking advantage of this, we do not need to 
propagate boundary labels inward to recolor a tile's interior 
pixels after each iteration of the merge. This is one of 
the attractive highlights of our newly proposed algorithm; 
namely, the drastically limited updates needed during the 

merging phase. Finally, after the last step of merging, each 
processor updates its interior pixel labels. 

6.1. Parallel Complexity for S-Connected Compo- 
nents 

Thus, for p 2; n, the total complexities for the parallel 
S-Connected Components algorithm are [2, 3, 51 

~ c o m m ( n ,  P )  5 (4 l o g p b  + P n  + 2 P )  

= (4logp)r + O ( $ ) ;  ( 5 )  

Clearly, the computational complexity is the best possi- 
ble asymptotically. As for the communication complexity, 
intuitively a latency factor r has to be incurred during each 
merge operation, and hence the factor (1ogp)r. 

6.2. Experimental Results 

Table 1. Implementation Results of Segmen- 
tation Algorithm on Image 3 from [7Iy seven 
gray circles (128 x 128 pixels) 

Table I I .  implementation Results of Segmen- 
tation Algoirithm on Image 6 from [7], a binary 
tool (256 x :256 pixels) 

Our implementation performs better compared with other 
recent parallel region growing codes ( [7]) .  Note that this 

*data parallel algorithm 
t message passing code, communication scheme 1 
t message passin,g code, communication scheme 2 
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implementation uses data parallel Fortran on the TMC CM- 
2 and CM-5 machines, and lower-level implementations 
on the CM-5 using Fortran with several message passing 
schemes. Image 3 from [7] is a 256-gray level 128 x 128 
image, containing seven homogeneous circles. Image 6 
from [7] is a binary 256 x 256 image of a tool. Tables I 
and 11 show the comparison of execution times for Images 3 
and 6, respectively. Because these images are noise-free, 
our algorithm skips the image enhancement task. 

Machine 

Sun Smrc 10 - Model 40 

Execution T ime o f  the Segmentation Algonthm 

on a 1024 x 1 0 2 4  Landsat TM Image 

80 

60 

VI -0 

40 
0 U1 

20 

0 
16 32 4 8 16 4 8 16 32 P *-- 
TMC CM-5 18fl SP-2 - TH Cray T3D 

PE's Time (seconds) 
for 107 iterations 

1 1 04 

Figure 6. Scalability of the Segmentation Al- 
gorithm 

Sun Sparc 20 - Model 50 
IBM SP-2-TH 

Figure 6 shows scalability of the segmentation algorithm 
running on a 1024 x 1024 TM band 5 subimage, with var- 
ious machine configurations of the CM-5, SP-2, and T3D. 
For this image, the first, second, and third phases of SNF 
iterate 4,56, and 47 times, respectively. Also, the 1-Nearest 
Neighbor task contains 11 iterations. Table 111 compares the 
best-known sequential code for SNF to that of the parallel 
implementation. This test uses the 1024 x 1024 band 5 
image, and iterates with the counts specified above. The se- 
quential tests are performed on fast workstations dedicated 
to a single user and reflect only the time spent doing the filter 
calculations. These empirical results show our segmentation 
algorithm scaling with machine and problem size, and ex- 
hibiting superior performance on several parallel machines 
when compared with state-of-the-art sequential platforms. 

1 83.6 
1 78.2 
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Please 
see http://www.umiacs.umd.edu/"dbader for 
additional performance information. In addition, 
all the code used in this paper is freely available 
for interested parties from our anonymous ftp site, 
ftp://ftp.umiacs.umd.edu/pub/dbader. We 
encourage other researchers to compare with our results for 
similar inputs. 
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Original Image (New Orleans) 
Original Image (New Orleans) 

After Image Enhancement 

Final Segmentation 

(2270 regions) 

Figure 8. Landsat TM Band 4 Images 
(512 x 512 pixels) 

After Image Enhancement 

Final Segmentation 

Figure 9. Landsat TM Band 4 images 
(128 x 128 pixels) 
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