
Parallel Algorithms for Image Enhancement and Segmentation by Region Growing
with an Experimental Study

(Extended Abstract)

David A. Bader* Joseph JAJJBt David Harwoodt Larry S. Davis5
Institute for Advanced Computer Studies

University of Maryland, College Park, MD 20742
E-ma ik idbade r , j o s e p h , ha rwood , lsd}@umiacs.umd.edu

Abstract

This paper presents eficient and portable implementa-
tions of a useful image enhancement process, the Symmet-
ric Neighborhood Filter (SNF), and an image segmentation
technique which makes use of the SNF and a variant of
the conventional connected components algorithm which
we call &Connected Components. We use efficient tech-
niques for distributing and coalescing data as well as effi-
cient combinations of task and data parallelism. The image
segmentation algorithm makes use of an efficient connected
components algorithm based on a novel approach for par-
allel merging. The algorithms have been coded in SPLIT-C
and run on a variety of p lagoms, including the Think-
ing Machines CM-5, IBM SP-I and SP-2, Cray Research
T30, Meiko Scienti$c CS-2, Intel Paragon, and workstation
clusters. Our experimental results are consistent with the
theoretical analysis (and provide the best known execution
times for segmentation, even when compared with machine-
spec$c implementations.) Our test data include difficult
images from the Landsat Thematic Mapper (TM) satellite
data.

le Problem Overview

Given an n x n image with IC gray levels on a p processor
machine (p 5 n2>, we wish to develop efficient and portable

*Also affiliated with Department of Electrical Engineering. The support
by NASA Graduate Student Researcher Fellowship No. NGT-50951 is
gratefully acknowledged.

t Also affiliated with Department of Electrical Engineering. Supported
in part by NSF grant No. CCR-9103135 and NSF HPCC/GCAG grant
No. BIR-9318183.

Supported by NSF HPCC/GCAG grant No. BIR-9318183.
§Also affiliated with the Department of Computer Science and the

Center for Automation Research; supported by NSF HPCC/GCAG grant
No. BIR-93 181 83.

1063-7133196 $5.00 0 1996 IEEE
Proceedings of IPPS '96

parallel algorithms to perform various useful image process-
ing computations. Image segmentation algorithms cluster
pixels into homogeneous regions, which, for example, can
be classified into categories with higher accuracy than could
be obtained by classifying the individual pixels. Region
growing is a class of techniques used in image segmentation
algorithms in which, typically, regions are constructed by an
agglomeration process that adds (merges) pixels to regions
when those pixels are both adjacent to the regions and sim-
ilar in property (most simply intensity) (e.g. [7, 12, 261).
Each pixel in the image receives a label from the region
growing process; pixels will have the same label if and only
if they belong to the same region. Our algorithm makes
use of an efficient and fast parallel connected components
algorithm [2 ,3] based on a novel approach for merging.

In real images, natural regions have significant variability
in gray level. Noise, introduced from the scanning of the
real scene into the digital domain, will cause single pixels
outliers. Also, lighting changes can cause a gradient of gray
levels in pixels across the same region. Because of these
and other similar effects, we preprocess the image with
a stable filter, the Symmetric Neighborhood Filter (SNF)
[13], that smooths out the interior pixels of a region to
a near-homogeneous level. Also, due to relative motion
of the camera and the scene, as well as aperture effects,
edges or regions are usually blurred so that the transition
in gray levels between regions is not a perfect step over
a single pixel, but ramps from one region to the other over
several pixels. Our filter is, additionally, an edge-preserving
filter which detects blurred transitions such as these and
sharpens them while preserving the true border location as
best as possible. Most preprocessing filters will smooth
the interior of regions at the cost of degrading the edges,
or conversely, detect edges while introducing intrinsic error
on previously homogeneous regions. However, the SNF
is an edge-preserving smoothing filter which performs well
for both edge-sharpening and region smoothing. It is an

4 14

mailto:lsd}@umiacs.umd.edu

iterative filter which also can be tuned to retain thin image
structures corresponding, e.g., to rivers, roads, etc. A variety
of SNF operators have been studied, and we chose a single
parameter version which has been shown to perform well
on remote sensing applications.

The majority of previous parallel implementations of the
SNF filter are architecture- or machine-specific and do not
port well to other platforms (e.g. [lo, 18, 19, 211). For
example, [22] gives an implementation of a 15 x 15 SNF
filter on the CMU Warp, a 10-processor linear systolic array,
which takes4.76 seconds ona512 x 512image. Wepresent
our SNF filter execution timings in Figure 7. In comparison,
on a 32-processor TMC CM-5, we take less than 165 mil-
liseconds per iteration operating on an image of equivalent
size.

After the image is enhanced by the SNF, we use a variant
of the connected components algorithm for gray level im-
ages, called S-Connected Components, to combine similar
pixels into homogeneously labeled regions producing the fi-
nal image segmentation. As with the SNF implementations,
most previous parallel algorithms for segmentation do not
port well to other platforms (e.g. [9, 17,20,23, 241).

2. Block Distributed Memory Model

We use the Block Distributed Memory (BDM) Model
([15, 161) as a computation model for developing and an-
alyzing our parallel algorithms on distributed memory ma-
chines. Each of our hardware platforms can be viewed as
a collection of powerful processors connected by a commu-
nication network that can be modeled as a complete graph
on which communication is subject to the restrictions im-
posed by the latency and the bandwidth properties of the
network. We view a parallel algorithm as a sequence of
local computations interleaved with communication steps,
and we allow computation and communication to overlap.
The complexity of parallel algorithms will be evaluated in
terms of two measures: the computation time Tcomp(n, p) ,
and the communication time T c o m m (n 1 p) .

The communication time Tcomm(n, p) refers to the total
amount of communications time spent by the overall algo-
rithm in accessing remote data. The transfer of a block
consisting of m contiguous words, assuming no congestion,
takes T + mn time, where T is an upper bound on the latency
of the network and U is the time per word at which a proces-
sor can inject or receive data from the network. The algo-
rithms in this paper utilized two collective communication
primitives, transpose, bcast, and reduce, where transpose
is an all-to-all communication of equal sized buffers and
reduce is a prefix-sum, both modeled by T + U max (m, p) ,
and bcast is a one-to-all communication, again with equal
sized buffers, modeled by 2 (T + U max (m, p)) , where m
is the maximum amount of data transmitted or received by

a processor [15, 16, 2, 3, 4, 51. Using this cost model, we
can evaluate the communication time Tcomm(n, p) of an al-
gorithm as a function of the input size n, the number of
processors p , and the parameters T and (T.

We define the computation time Tcomp(n, p) as the max-
imum time it takes a processor to perform all the lo-
cal computation steps. In general, the overall perfor-
mance Tcomp(n, p) +TComm(n, p) involves a tradeoff between
Tcomm(n,p) and Tcomp(n,p). Our aim is to develop parallel

algorithms that achieve Tcomp(n, p) = 0 (?) - such that

Tcomm(n, p) is minimum, where Tsey is the complexity of the
best sequential algorithm. Such optimization has worked
very well for the problems we have looked at, but other
optimization criteria are possible. The important point to
notice is that, in addition to scalability, our optimization
criterion requires that the parallel algorithm be an efficient
sequential algorithm (i.e., the total number of operations of
the parallel algorithm is of the same order as Tseq).

3. Image (Data) Layout and Test Images

A straightforward data layout is used in these algorithms
for all platforms. The input image is an n x n matrix of
integers. We assign tiles of the image as equally as possible
among the processors. If p is an even power of two, i.e.
p = 2d, for even d, the processors will be arranged in a
Js; x & logical grid. For future reference, we will denote
the number of rows in this logical grid as w and the number
of columns as tu. For odd d, we assign the number of rows
of the logical processor grid to be w = 2 , and the number
of columns to be w = 2[+1. Each processor initially owns
a tile of size f x 5. For future reference, we assign q =
and T = 5. We assume that the p processors are labeled
consecutively from 0 top - 1 and are assigned in row-major
order to the logical processor grid just described.

Our test images are shown in [5] and Appendix B. We
use Eandsat satellite data to represent real images; Figure 8,
taken from band 4 of a view of New Orleans, is a 256 gray
level, 5 12 x 5 1 :2 pixel array from Landsat Thematic Mapper
(TM) satellite data. A 128 x 128 subimage of these scene
is shown in Figure 9.

4. Image Segmentation - Overview

Images are segmented by running several phases of the
SNF enhancement algorithm, followed by several iterations
of the 1-Nearest Neighbor filter, and finally, S-Connected
Components. See Figure 1 for a dataflow diagram of the
complete segmentation process.

415

Raw Image

SNF n . 4 , E = O Deblur

Flatten Interiors

Sharpen Edges

Remove singularities

Segmentation

Figure 1. Segmentation Process

4.1. Symmetric Neighborhood Filter

Due to interior variation as well as noise and blur, regions
in real images are seldom homogeneous in gray level and
sharp along their borders. Preprocessing the image with an
enhancement filter that reduces these effects will yield better
segmentation results.

Figure 2. Symmetric Pairs of Pixels

The SNF filter compares each pixel to its 8-connected
neighbors. (Note that the I-pixel image boundary is ignored
in our implementation.) The neighbors are inspected in
symmetric pairs around the center, i.e. N N S, W N E,
NW - SE, and NE - SW, see Figure 2 for diagram of
a 3 x 3 neighborhood centered around a pixel, with the
symmetric pairs colored the same. Using each pair and the
center pixel, we select one of the three in each of the four
comparisons using the following criteria. Assume without
loss of generality that the pair of pixels are colored A and
B, and A > B (see Figure 3). If the center pixel (with value
x) falls within region RA, that is, 9 < x 5 A + E , then
we select A. Likewise, if the center pixel falls within region

Rg, i.e., B - E 5 x < v, then we select B. And if
x is midway between A and B, we simply select x which
is the average. Finally, if x is an outlier with respect to A
and B, so that z > A + E or x < B - E , we select x to
leave it fixed. The collection of four selected pixels are then
averaged together, and finally, the center pixel is replaced
by the mean of this average and the center pixel’s current
gray level value. This latter average is similar to that of a
damped gradient descent which yields a faster convergence.

I

Gray

, - A + E

- - a

A + B Level - -

B

B - E

-
-

Figure 3. Selection of SNF Pixels

The first phase of segmentation is a combination of three
iterative SNF filters. The first step runs for a small number
of iterations (e.g. four) with E = 0 and is used to preserve
edges. We define to be the median of the standard de-
viations of all 3 x 3 neighborhoods centered around each
non-border pixel in the image. See 141 for a parallel median
algorithm. To flatten the interior of regions, SNF is iterated
with E = K U , where K is typically set to 2.0 for this appli-
cation. The stopping criteria for this iterative filter occurs
when the percentage of “fixed” pixels reaches 100.0 %, this
percentage has not changed for three iterations, or when
we reach 200 iterations, whichever comes first. Finally, we
sharpen the borders of regions with SNF using E = 0, again
stopping the iterative process when the pixels have fixed, as
defined above. The resulting image has near-homogeneous
regions with sharp transitions between bordering regions.

4.2. 1 -Nearest Neighbor Filter

Single pixel regions rarely can be classified, even under
the best circumstances. Therefore, we prefer to filter these
out as our last enhancement stage. A typical 1-Nearest
Neighbor filter removes single pixel outliers by replacing
each pixel in the image with the value of one of its adjacent
pixels which is closest to its own gray level. Note that
one application of the 1-Nearest Neighbor filter may cause
small neighborhoods of pixels to oscillate. For example,
two adjacent pixels with values A and A + A surrounded by
a region of more than A levels above or below would never
stabilize. Therefore, we apply the 1-Nearest Neighbor as an
iterative filter, stopping when the input and output images

416

are identical. For faster convergence, we use a damped
approach (similar to the SNF) which assigns an output pixel
to the mean of its original and nearest neighbor values.
Typically, we converge in roughly six to eight iterations.

Since no image enhancement occurs along the pixels
of image borders, we crop the border so that additional
segmentation techniques will not use this raw data to merge
dissimilar regions via paths through the noisy, uncorrected
pixels. For this application, we crop the border by a width
of three pixels.

4.3. S-Connected Components

The image processing problem of determining the con-
nected components of images is a fundamental task of imag-
ing systems (e.g. [l, 6, 11, 141). All pixels with gray level
(or ‘color’) 0 are assumed to be background, while pixels
with color > 0 are foreground objects. A connected com-
ponent in the image is a maximal collection of uniformly
colored pixels such that a path exists between any pair of
pixels in the component. Note that we are using the no-
tion of 8-connectivity, meaning that two pixels are adjacent
if and only if one pixel lies in any of the eight positions
surrounding the other pixel. Each pixel in the image will
receive a label; pixels will have the same label if and only
if they belong to the same connected component. Also, all
background pixels will receive a label of 0.

It is interesting to note that, in the previous paragraph,
we defined connected components as a maximal collection
of uniform color pixels such that a path existed between
any pair of pixels. The conventional algorithm assumes that
there is a connection between two adjacent pixels if and
only if their gray level values are identical. We now relax
this connectivity rule and present it as a more general algo-
rithm called &Connected Components. In this approach,
we assume that two adjacent pixels with values 2 and y are
connected if their absolute difference 12 - yI is no greater
than the threshold 6. Note that setting the parameter 6 to
0 reduces the algorithm to the classic connected compo-
nents approach. This algorithm is identical in analysis and
complexity to the conventional connected components algo-
rithm, as we are merely changing the criterion for checking
the equivalence of two pixels.

For the final phase in the segmentation process, 6-
Connected Components is applied to the enhanced image,
using 6 = KO, where the values of K and o are the same as
those input to the enhancement filters. The analysis for the
&Connected Components algorithm is given in Section 6,
equation (5). Thus, we have an efficient algorithm for image
segmentation on parallel computers.

4.4. Test Images

We use the Landsat Thematic Mapper (TM) raw satellite
data for our test images. Each test image is a 512 x 512
pixel subimage from a single TM band. A subimage from
band 5, an image from South America, is given in [5] , and
Figure 8 is taken from band 4 of New Orleans data. These
images have 256 gray levels and also have post-processing
enhancement of the brightness for visualization purposes
in this paper. We have applied SNF enhancement to these
images, and the results appear below the original images.
A further segmeintation with 6 = KO using the &Connected
Components algorithm is given at the bottom of Figures 8
and 9.

5. Symmetrilc Neighborhood Filter - Parallel
Implementation

A useful data movement needed for the 3 x 3 local SNF
filter is the fetchiing of tile-based ghost cells ([8,25]) which
contain shadow copies of neighboring tiles’ pixel borders.
These ghost cells are used in the selection process when
recalculating our tile’s border. Suppose each tile of the
image allocated to a processor is q x T pixels. We have
four ghost cell arrays, ghostN and ghosts which hold r
pixels each, and ghostW and ghostE which hold q pixels
each. In additioin, four single pixel ghost cells for diagonal
neighboring pixels are ghostNW, ghostNE, ghostSE, and
ghostSW. An example of these ghost cells is pictured in
Figure 4.

The analysis for the prefetching of ghost cells is simple.
We can divide the prefetching into eight separate data move-
ments, one for each direction. Since each movement is a
permutation, i.e. it has a unique source and destination, it
can be routed with little or no contention. Thus, the entire
ghost cell prefetching takes

A second data movement needed for SNF is the reduc-
tion operation using the reduce collective communication
primitive. Each processor i has a data value, Zi, and we
need the value of 20 @ 2 1 @ . . . CB Z&l. where CB is any
associative operator. The complexity of this can be shown
to be: [4, 51

(2)
K o m m (n , P) 5 + P - 1;
g‘lcomp(n,P) = O(P).

An SPMD algorithm for an iteration of SNF on Processor
2:

Algorithm 1 Symmetric Neighborhood Filter

417

Pi-1, j-1 I I Pi-1, j I I Pi- l , j+l 0 ($) . Thus, for p 5 n, the SNF complexities are
I I

I I
I I

ghostE

Pi, j + l

_ _ - -

I ghosts I I ghostSE
I
I

I
I
I

ghosts
I
I

I
I
I

Pi+l, j- l I ’ Pi+l , j I P i+l , j+l

Figure 4. An example of Ghost Cells

Block Distributed Memory Model Algorithm.
Input:

{ i } is my processor number;
{ p } is the total number of processors, labeled from 0 to
p - 1;
{ A 1 is the n x n input image.
{ E } is input parameter.

8. Processor 2. gets an
denoted A, .

I . Prefeteh Ghost Cells.
2. For each local pixel Ai,<x,y> that has not

begin
x E- tile of image A, f i f i

fixed yet, using E , compute Bz,<x,y>, the updated
pixel value. Decide if local pixel position < 2, y >
is now fixed.

have remained fixed.

that is, f = fi.

3. Set fi equal to the number of local pixels that

4. f = reduce(fi, +),

5. output 5 x 100%.
end

For each iteration of the SNF operator on a p-processor
machine, the theoretical analysis is as follows. The com-
plexities for Step 1 and Step 4 are shown in (1) and (2),
respectively. Steps 2 and 3 are completely local and take

Figure 7 in Appendix A shows the convergence of the
SNF enhancement during the second phase ofthe smoothing
filter. As can be seen, there is a fast convergence of the pixels
asymptotically close to 100% fixed. Because fixed pixels are
not recalculated, the time per iteration quickly ramps down
from approximately 165 msliteration to 26 msliteration on
a 512 x 512 TM image.

The complexity of an iteration of the 1-Nearest Neigh-
bor filter is simple, namely, a fetch of ghost cells and one
pass through the image tile on each processor. The ghost
cell analysis is given in (I), and the update of pixels t&es
0 - . Therefore, the 1-Nearest Neighbor algorithm has
complexities
(3

6. &Connected Components of Grayscale Im-
ages

The high-level strategy of our connected components
algorithm uses the well-known divide and conquer tech-
nique. Divide and conquer algorithms typically use a re-
cursive strategy to split problems into smaller subproblems
and, given the solutions to these subproblems, merge the
results into the final solution. It is common to have either an
easy splitting algorithm and a more complicated merging,
or vice versa, a hard splitting, following by easy merging.
In our parallel connected components algorithm, the split-
ting phase is trivial and implicit, while the merging process
requires more work.

Each processor holds a unique tile of the image, and
hence can find the initial connected components of its tile
by using a standard sequential algorithm. Next, the algo-
rithm iterates logp times’, alternating between combining
the tiles in horizontal merges of vertical borders and verti-
cal merges of horizontal borders. Our algorithm uses novel
techniques to perform the merges and to update the labels.
We will attempt to give an overview of this algorithm; for a
complete description, see [2,3, 51.

We merge the p subimages into larger and larger image
sections with consistent labelings. There will be logp iter-
ations since we cut the number of uncombined subimages

‘Note that throughout this paper “logs” will always be the logarithm
of s to the base b = 2, i.e. log, 5.

418

in half during each iteration. Unlike previous connected
components algorithms, we use a technique which identifies
processors as group managers or clients during each phase.
The group managers have the task of organizing the retrieval
of boundary data, performing the merge, and creating the list
of label changes. Once the group managers broadcast these
changes to their respective clients, all processors must use
the information to update their tile hooks, data structures
which point to connected components on local tile borders.
See Figure 5 for an illustration of the tile hook data structure
in which three tile hooks contain the information needed to
update the border pixels. The clients assist the group man-
agers by participating in the coalescing of data during each
merge phase. Finally, the complete relabeling is performed
at the very end using information from the tile hooks.

During each merge, a subset of the processors will act
as group managers. These designated processors will
prefetch the necessary border information along the column
(or row) that they are located upon in the logical proces-
sor grid, setting up an equivalent graph problem, running
a sequential connected components algorithm on the graph
(with the modification that two adjacent nodes are connected
if they differ in color by no more than S), noting any changes
in the labels, and storing these changes ((ai, pi) pairs) in a
shared structure. The clients decide who their current group
manager is and wait until the list of label changes is ready.
They retrieve the list, and all processors make the necessary
updates to a proper subset of their labels.

Hook #1 1 Hook #2

H

t
Border Pixels on a Tile

Figure 5. An example of Tile Hooks

At the conclusion of each of the logp merging steps, only
the labels of pixels on the border of each tile are updated.
There is no need to relabel interior pixels since they are not
used in the merging stage. Only boundary pixels need their
labels updated. Taking advantage of this, we do not need to
propagate boundary labels inward to recolor a tile's interior
pixels after each iteration of the merge. This is one of
the attractive highlights of our newly proposed algorithm;
namely, the drastically limited updates needed during the

merging phase. Finally, after the last step of merging, each
processor updates its interior pixel labels.

6.1. Parallel Complexity for S-Connected Compo-
nents

Thus, for p 2; n, the total complexities for the parallel
S-Connected Components algorithm are [2, 3, 51

~ c o m m (n , P) 5 (4 l o g p b + P n + 2 P)

= (4logp)r + O ($) ; (5)

Clearly, the computational complexity is the best possi-
ble asymptotically. As for the communication complexity,
intuitively a latency factor r has to be incurred during each
merge operation, and hence the factor (1ogp)r.

6.2. Experimental Results

Table 1. Implementation Results of Segmen-
tation Algorithm on Image 3 from [7Iy seven
gray circles (128 x 128 pixels)

Table I I . implementation Results of Segmen-
tation Algoirithm on Image 6 from [7], a binary
tool (256 x :256 pixels)

Our implementation performs better compared with other
recent parallel region growing codes ([7]) . Note that this

*data parallel algorithm
t message passing code, communication scheme 1
t message passin,g code, communication scheme 2

419

implementation uses data parallel Fortran on the TMC CM-
2 and CM-5 machines, and lower-level implementations
on the CM-5 using Fortran with several message passing
schemes. Image 3 from [7] is a 256-gray level 128 x 128
image, containing seven homogeneous circles. Image 6
from [7] is a binary 256 x 256 image of a tool. Tables I
and 11 show the comparison of execution times for Images 3
and 6, respectively. Because these images are noise-free,
our algorithm skips the image enhancement task.

Machine

Sun Smrc 10 - Model 40

Execution T ime o f the Segmentation Algonthm

on a 1024 x 1 0 2 4 Landsat TM Image

80

60

VI -0

40
0 U1

20

0
16 32 4 8 16 4 8 16 32 P *--
TMC CM-5 18fl SP-2 - TH Cray T3D

PE's Time (seconds)
for 107 iterations

1 1 04

Figure 6. Scalability of the Segmentation Al-
gorithm

Sun Sparc 20 - Model 50
IBM SP-2-TH

Figure 6 shows scalability of the segmentation algorithm
running on a 1024 x 1024 TM band 5 subimage, with var-
ious machine configurations of the CM-5, SP-2, and T3D.
For this image, the first, second, and third phases of SNF
iterate 4,56, and 47 times, respectively. Also, the 1-Nearest
Neighbor task contains 11 iterations. Table 111 compares the
best-known sequential code for SNF to that of the parallel
implementation. This test uses the 1024 x 1024 band 5
image, and iterates with the counts specified above. The se-
quential tests are performed on fast workstations dedicated
to a single user and reflect only the time spent doing the filter
calculations. These empirical results show our segmentation
algorithm scaling with machine and problem size, and ex-
hibiting superior performance on several parallel machines
when compared with state-of-the-art sequential platforms.

1 83.6
1 78.2

7. Acknowledgements

DEC Alphaserver
2100 4/275
TMC CM-5

IBM SP-2-TH

We would like to thank the CASTLE/Split-C group at
UC Berkeley, especially for the help and encouragement

J
1 48.1

16 35.2
32 18.5
4 30.9

Cray T3D
U

4 45.3
8 20.9

I /
R 5.35

Table 111. Total SNF Execution Time (in sec-
onds) for 1024 x 1024 band 5 image

from David Culler, Arvind Krishnamurthy, Lok Tin Liu,
Steve Luna, and Rich Martin. Computational support on UC
Berkeley's 64-processor TMC CM-5 and 8-processor Intel
Paragon was provided by NSF Infrastructure Grant number
CDA-8722788. We also thank the Numerical Aerodynamic
Simulation Systems Division of NASA's Ames Research
Center for use of their 128-processor CM-5 and 128-node

We recognize Charles Weems at the University of Mas-
sachusetts for providing the DARF'A test image suite, and
Nawal Copty at Syracuse University for providing addi-
tional test images.

Also, Klaus Schauser, Oscar Ibarra, and David Probert of
University of California, Santa Barbara, provided access to
the 64-node UCSB Meiko CS-2. The Meiko CS-2 Comput-
ing Facility was acquired through NSF CISE Infrastructure
Grant number CDA-9218202, with support from the Col-
lege of Engineering and the UCSB Office of Research, for
research in parallel computing.

The Jet Propulsion LabKaltech Cray T3D Supercom-
puter used in this investigation was provided by funding
from the NASA Offices of Mission to Planet Earth, Aero-
nautics, and Space Science. We also acknowledge William
Carlson and Jesse Draper from the Supercomputing Re-
search Center for writing the parallel compiler AC on which
the T3D port of Split-C has been based.

We acknowledge the use of the UMIACS 16-node IBM
SP-2-TN2, which was provided by an IBM Shared Uni-
versity Research award and an NSF Academic Research
Infrastructure Grant No. CDA9401151.

IBM SP-2-WD.

420

Please
see http://www.umiacs.umd.edu/"dbader for
additional performance information. In addition,
all the code used in this paper is freely available
for interested parties from our anonymous ftp site,
ftp://ftp.umiacs.umd.edu/pub/dbader. We
encourage other researchers to compare with our results for
similar inputs.

A. Convergence and Execution Time for Band
5 Image

m
W
X

e--

.+ a
U
W
X .+
U

rc

x
0

Convergence and Timings o f SNF

100

90

80
- Fixed P i x e l s

70

60

50

40
o 5 io 15 20 25

I t e r a t ion

Figure 7. SNF Statistics for a 512 x 512 Image
on a 32-processor CM-5

n
m
U

W
E
;r:
c
0

w
0
L
W w
H

B. Test Images

42 1

http://www.umiacs.umd.edu/"dbader
ftp://ftp.umiacs.umd.edu/pub/dbader

Original Image (New Orleans)
Original Image (New Orleans)

After Image Enhancement

Final Segmentation

(2270 regions)

Figure 8. Landsat TM Band 4 Images
(512 x 512 pixels)

After Image Enhancement

Final Segmentation

Figure 9. Landsat TM Band 4 images
(128 x 128 pixels)

422

References [la] D. Harwood, M. Subbarao, H. Wakalahti, and E. Davis. A

H. Alnuweiri and V. Prasanna. Parallel Architectures and
Algorithms for Image Component Labeling. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
14: l014-1034,1992.
D. Bader and J. J B J B . Parallel Algorithms for Image His-
togramming and Connected Components with an Experi-
mental Study. TecRnicalReport CS-TR-3384 and UMIACS-
TR-94-133, UMIACS and Electrical Engineering, Univer-
sity of Maryland, College Park, MD, Dec. 1994. To appear
in Journal of Parallel and Distributed Computing.
D. Bader and J. JUB. Parallel Algorithms for Image His-
togramming and Connected Components with an Experi-
mental Study. In Fifh ACMSIGPOiNSymposium of Princi-
ples and Practice of Parallel Programming, pages 123-1 33,
Santa Barbara, CA, July 1995.
D. Bader and J. J B J & Practical Parallel Algorithms for
Dynamic Data Redistribution, Median Finding, and Se-
lection. Technical Report CS-TR-3494 and UMIACS-TR-
95-74, UMIACS and Electrical Engineering, University of
Maryland, College Park, MD, July 1995. To be presented
at the 10th International Parallel Processing Symposium,
Honolulu, HI, April 15-19, 1996.
D. Bader, 9. JUB, D. Hanvood, and L. Davis. Parallel Algo-
rithms for Image Enhancement and Segmentation by Region
Growing with an Experimental Study. Technical Report CS-
TR-3449 and UMIACS-TR-95-44, Institute for Advanced
Computer Studies (UMIACS), University of Maryland, Col-
lege Park, MD, May 1995. To be presented at the 10th In-
ternational Parallel Processing Symposium, Honolulu, HI,

A. Choudhary and R. Thakur. Connected Component La-
beling on Coarse Grain Parallel Computers: An Experimen-
tal Study. Journal of Parallel and Distributed Computing,
20(1):78-83, January 1994.
N. Copty, S. Ranka, G. Fox, and R. Shankar. A Data Parallel
Algorithm for Solving the Region Growing Problem on the
Connection Machine. Journal of Parallel and Distributed
Computing, 21(1):160-168, April 1994.
D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Parallel Pro-
gramming in Split-C. In Proceedings of Supercomputing
’93, pages 262-273, Portland, OR, November 1993.
H. Derin and C.-S. Won. A Parallel Image Segmentation
Algorithm Using Relaxation with Varying Neighborhoods
and Its Mapping to Array Processors. Computer Vision,
Graphics, and linage Processing, 4054-78, 1987.
R. Goldenberg, W. Lau, A. She, and A. Waxman. Progress
on the Prototype PIPE. In Proceedingsof the 1987 Workshop
on Computerhchitecture for Pattern Analysis and Machine
Intelligence, pages 67-74, Seattle, WA, October 198’7.
Y. Han and R. Wagner. An Efficient and Fast Parallel-
Connected Component Algorithm. JACM, 37(3):626-642,
1.990.
R. Haralick and L. Shapiro. Image Processing Techniques.
Computer Vision, Graphics, and Image Processing, 29: 100-
132,1985.

April 15-19, 1996.

- I

New Class of Edge-Preserving Smoothing Filters. Pattern
Recognition Letters, 6:155-162,1987.

[14] D. Hirschberg, A. Chandra, and D. Sanvate. Computing
Connected Components on Parallel Computers. Communi-
cations ojthe ACM, 22(8):461A64,1979.

11.51 3. 5898 and K. Ryu. The Block Distributed Memory Model.
Technical Report CS-TR-3207, Cornputer Science Depart-
ment, University of Maryland, College Park, January 1994.
To appear in IEEE Transactions on Parallel and Distributed
Systems.

[161 J. JiJLTB and K. Ryu. The Block Distributed Memory Model for
Shared Mlemory Multiprocessors. In Proceedings of the 8th
International Parallel Processing Symposium, pages 752-
756, Canc:lin, Mexico, April 1994. (Extended Abstract).

[I71 9. Kistler and J. Webb. Connected Components With Split
and Merge. In Proceedings of the 5th International Parallel
ProcessingSymposium,pages 194-201 ,Anaheim, CA, April
1991.

[18] P. Narayanan and L. Davis. Replicated Data Algorithms
in Image Processing. Technical Report CAR-TR-536KS-
TR-2614, Center for Automation Research, University of
Maryland, College Park, MD, February 199 1.

[191 M. Pietikiiinen, T. Seppanen, and P. Alapuranen. A Hybrid
Computer Architecture for Machine Vision. In Proceedings
of the 10th International Conference on Pattern Recognition,
Volume 2, pages 426-431, Atlantic City, NJ, June 1990.

[20] J. Tilton and S . Cox. Segmentation of Remotely Sensed Data
Using Parallel Region Growing. In Ninth International Sym-
posium on Machine Processing of Remotely Sensed Data,
pages 130-137, West Lafayette, IN, June 1983.

6211 R. Wallace, J. Webb, and I.-C. Wu. Machine-Independent
Image Processing: Performance of Apply on Diverse Archi-
tectures. Computer Vision, Graphics, and Image Processing,

1221 J. Webb. Architecture-Independent Global Image Process-
ing. In Proceedings of the 10th International Conference
on Pattern Recognition, Volume 2, pages 623-628, Atlantic
City, NJ, June 1990.

1231 T. Westman, D. Hanvood, T. Laitinen, and M. Pietikainen.
Color Segmentation By Hierarchical Connected Compo-
nents Analysis with Image Enhancement by Symmetric
Neighbor:hood Filters. In Proceedings of the 10th Interna-
tional Co,nference on Pattern Recognition, pages 796-802,
Atlantic City, NJ, June 1990.

[24] M. Willebeek-LeMair and A. Reeves. Region Growing on
a Highly I’arallel Mesh-Connected SIMD Computer. In The
2nd Symposium on the Frontiers of Massively Parallel Com-
putations., pages 93-100, Fairfax, VA, October 1988.

[25] R. Williams. Parallel Load Balancing for Parallel Applica-
tions. Technical Report CCSFJO, Concurrent Supercom-
puting Facilities, California Institute of Technology, Nov.
1994.

[26] S. Zucker. Region Growing: Childhood and Adoles-
cence. Ctomputer Graphics and Image Processing, 5:382-
399, 1976.

48:265-276,1989.

423

