
The Journal of Supercomputing, 10, 141-168 (1996)
�9 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Parallel Algorithms for Image Enhancement and
Segmentation by Region Growing, with an
Experimental Study

DAVID A. BADER,* JOSEPH J,~JA.*. DAVID HARWOOD. AND LARRY S. DAVIS**

{dbader, joseph, harwood, lsd} @umiacs.umd.edu
Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742

(Received May 1995; final version accepted July 1996.)

Abstract. This paper presents efficient and portable implementations of a powerful image enhancement process,
the Symmetric Neighborhood Filter (SNF), and an image segmentation technique that makes use of the SNF
and a variant of the conventional connected components algorithm which we call 6-Connected Components. We
use efficient techniques for distributing and coalescing data as well as efficient combinations of task and data
parallelism. The image segmentation algorithm makes use of an efficient connected components algorithm based
on a novel approach for parallel merging. The algorithms have been coded in SPLIT-C and run on a variety of
platforms, including the Thinking Machines CM-5, IBM SP- 1 and SP-2, Cray Research T3D, Meiko Scientific CS-
2, Intel Paragon, and workstation clusters. Our experimental results are consistent with the theoretical analysis
(and provide the best known execution times for segmentation, even when compared with machine-specific
implementations). Our test data include difficult images from the Landsat Thematic Mapper (TM) satellite data.

Keywords: Parallel algorithms, image processing, region growing, image enhancement, image segmentation,
Symmetric Neighborhood Filter, connected components, parallel performance.

1. Problem Overview

Given an n x n image with k gray levels on a p processor machine (p <_ n2), we wish to de-

velop efficient and portable parallel algori thms to perform various useful image-process ing

computat ions. Eff iciency is a per formance measure used to evaluate parallel algori thms.

This measure provides an indication of the effect ive uti l ization of the p processors relat ive

to the given parallel algori thm. For example, an algori thm with an eff iciency near one runs

approximate ly p t imes faster on p processors than the same algor i thm on a single processor.

Portabili ty refers to code that is writ ten independently o f low-level pr imit ives reflect ing

machine architecture or size. Our goal is to develop portable a lgor i thms that are scalable

in terms of both image size and number of processors when run on d is t r ibuted-memory

mult iprocessors .

Image-process ing applicat ions are wel l -sui ted to h igh-per formance comput ing techniques

because of their regular input organization (typically mul t id imens iona l arrays of discrete

values) and spatial local i ty properties; for example, pixels near each other tend to be o f

similar color. Images used for analysis are produced f rom a variety of applications, for

* Also affiliated with the Department of Electrical Engineering.
** Also affiliated with the Department of Computer Science and the Center for Automation Research.

142 D.A. BADER: J. j,g,j~.~ D. HARWOOD, AND L.S. DAVIS

example, remote sensing of the Earth, detection of surface defects in industrial manufac-
turing, and military target recognition. Some of the processing is low-level, such as image
calibration or enhancement, while other analyses are intermediate- or high-level, such as
segmenting an image into objects or regions and classifying each. We now introduce our
work on image enhancement and segmentation.

Image segmentation algorithms cluster pixels into homogeneous regions, which, for ex-
ample, can be classified into categories with higher accuracy than could be obtained by
classifying the individual pixels. Region growing is a class of techniques used in image
segmentation algorithms in which, typically, regions are constructed by an agglomeration
process that adds (merges) pixels to regions when those pixels are both adjacent to the
regions and similar in property (most simply intensity) (e.g., [18, 22, 35, 61, 66]). Each
pixel in the image receives a label from the region-growing process; pixels will have the
same label if and only if they belong to the same region. Our segmentation algorithm makes
use of an efficient and fast parallel connected components algorithm based on a novel ap-
proach for merging (a detailed theoretical and experimental analysis of this algorithm can
be found in previous work [8]). Typically in region-growing algorithms a region's border is
susceptible to erroneous merging at its weakest point, which can be aggravated by several
factors, including noise, blur, and lighting. Thus it becomes extremely important to enhance
an image before the region-growing process. We next describe a new image enhancement
filter that preserves edges as well as smoothes the interior of regions.

In real images, natural regions have significant variability in gray level. Noise, introduced
from the scanning of the real scene into the digital domain, will cause single-pixel outliers.
Also, lighting changes can cause a gradient of gray levels in pixels across the same region.
Because of these and other similar effects, we preprocess the image with a stable filter, the
Symmetric Neighborhood Filter (SNF) [36], that smooths out the interior pixels of a region
to a near-homogeneous level. Also, due to the relative motion of the camera and the scene,
as well as aperture effects, edges of regions are usually blurred so that the transition in gray
levels between regions is not a perfect step over a single pixel, but ramps from one region to
the other over several pixels. Our filter is, additionally, an edge-preserving filter that detects
blurred transitions such as these and sharpens them while preserving the true border location
as best as possible. Most preprocessing filters will smooth the interior of regions at the
cost of degrading the edges or, conversely, detect edges while introducing intrinsic error on
previously homogeneous regions. However, the SNF is an edge-preserving smoothing filter
that performs well for simultaneously sharpening edges and smoothing regions. In addition,
it is an iterative filter that also can be tuned to retain thin-image structures corresponding,
for example, to rivers and roads. A variety of SNF operators have been studied, and we
chose a single-parameter version that has been shown to perform well on remote sensing
applications.

The majority of previous parallel implementations of the SNF filter are architecture- or
machine-specific and do not port well to other platforms (e.g., [31, 46, 47, 48, 56]). For
example, Webb [57] gives an implementation of a 15 • 15 SNF filter on the CMU Warp,
a 10-processor linear systolic array, which takes 4.76 seconds on a 512 • 512 image. We
present our SNF filter execution timings in Section 5. In comparison, on a 32-processor

IMAGE ENHANCEMENT AND SEGMENTATION BY REGION GROWING 143

TMC CM-5, we take less than 165 milliseconds per iteration operating on an image of
equivalent size.

After the image is enhanced by the SNF, we use a variant of the connected components
algorithm for gray-level images, called 5-Connected Components, to combine similar pixels
into homogeneously labeled regions producing the final image segmentation. As with the
SNF implementations, most previous parallel algorithms for segmentation do not port well
to other platforms (e.g., [27, 42, 43, 54, 61, 62, 63]).

There is a vast literature on the implementations of parallel segmentation algorithms
based upon connected components. Some of these algorithms only operate on binary
images [33, 65, 50, 29, 2, 15, 42, 19, 30, 45, 44, 3, 53] and thus are not useful for a
large class of image analysis problems from multigray-level images. Most of the previous
connected components algorithms for gray-level images [32, 22, 21, 13, 20, 60, 41] are
machine-dependent and thus are not efficient on current parallel platforms. In addition,
both binary and gray-level connected components algorithms strictly label regions based
upon pixel color and locality. Thus interior variation in regions as well as noise and blur
cause the standard algorithms to fail when useful segmentation of real imagery is required.
Several parallel algorithms have been developed that attempt to overcome these difficulties
by adding additional conditions. For example, Dehne and Hambrusch [26] present mesh
and hypercube algorithms for binary images with the notion of k-width connectivity, such
that two 1-pixels (a and b) belong to the same k-width component if and only if there exists
a path of width k such that pixel a is one of the k start pixels and b is one of the k end
pixels of this path. Also, Hambrusch et al. [32] describe a mesh algorithm for gray-level
images that accepts two input parameters for range (e) and adjacency (5) such that in any
labeled component, the maximum difference between any two pixels is c and the maximum
difference between any two adjacent pixels is 5.

Our approach is the first high-level parallel algorithm and implementation for gray-level
images that is both (1) simple, using a single relaxation parameter, 5, such that in any labeled
components the maximum difference between any two adjacent pixels is no greater than 5
and (2) efficient, using drastically limited merging steps in which image tile boundaries are
first labeled consistently, and then a final label update is propagated inward. In addition,
our algorithm does not belong to any of the four parallelized versions of standard sequential
connected component methods [42], including the Nearest-Neighbor Propagation, Shrink-
Expand, Boundary Following, and Union-Find approaches.

The experimental data obtained reflect the execution times from implementations on the
TMC CM-5, IBM SP-1 and SP-2, Meiko CS-2, Cray Research T3D, and the Intel Paragon,
with the number of parallel processing nodes ranging from 16 to 128 for each machine
when possible. The parallel algorithms are written in SPLIT-C [23], a parallel extension
of the C programming language that follows the SPMD model on these parallel machines,
and the source code is available for distribution to interested parties.

The organization of this paper is as follows. In Section 2 we address the algorithmic
model and various primitive operations that are used to analyze the algorithms. Section 3 is
a discussion of the test images and data layout on the parallel machines. Our segmentation
process overview, which includes a discussion of SNF and 1-Nearest Neighbor filters and
the 5-Connected Components algorithm, is given in Section 4. Finally, in Sections 5 and 6

144 D.A. BADER, J. J.A.JA., D. HARWOOD, AND L.S. DAVIS

we describe the parallel implementations of the Symmetric Neighborhood Filter algorithm
and 5-Connected Components, respectively, and present algorithmic analyses and empirical
results.

2. The Model for Parallel Computation

In this section we describe the simple model that we use for analyzing the performance of
parallel algorithms. Our model is based on the fact that current hardware platforms can be
viewed as a collection of powerful processors connected by a communication network that
can be modeled as a complete graph on which communication is subject to the restrictions
imposed by the latency and the bandwidth properties of the network. A parallel algorithm
consists of a sequence of local computations interleaved with communication steps, where
we allow computation and communication to overlap. We account for communication costs
as follows.

The transfer of a block consisting of rn contiguous words between two processors, as-
suming no congestion, takes ~- + a m time, where ~- is a bound on the latency of the network
and a is the time per word at which a processor can inject or receive data from the network.
Note that the bandwidth per processor is inversely proportional to a. We assume that the
bisection bandwidth is sufficiently high to support block permutation routing among the p

1 processors at the rate of ~ per processor. In particular, for any subset of q processors, a
block permutation among the q processors takes r + am, where m is the size of the largest
block. Similar to MPI and other message-passing standards, we assume that communica-
tion and computation can be overlapped. This cost model can be justified by our earlier
work [39, 40, 9, 10, 11, 7].

Using this cost model, we can evaluate the communication time Tcomm(n, p) of an algo-
rithm as a function of the input size n, the number of processors p, and the parameters T
and a. The coefficient of ~- gives the total number of times collective communication is
used, and the coefficient of a gives the maximum total amount of data exchanged between
a processor and the remaining processors.

This communication model is close to a number of similar models (e.g., the BSP [55],
LogP [25], and LogGP [1] models) that have recently appeared in the literature, but sig-
nificant differences exist. Our model is extended to include a collection of communication
primitives that makes our model considerably easier to use than the BSP or the LogP models
[7].

We define the computation time Tcomp(n, p)-as the maximum time any processor takes to
perform all the local computation steps. In general, the overall performance Tcomp (n, p) +
Tcomm (n, p) involves a tradeoff between Tcomm (n, p) and T~omp (n, p). Our aim is to develop
parallel algorithms that achieve

 co (o :

such that Tcomm(n,p) is minimum, where Yse q is the complexity of the best sequential
algorithm. Such optimization has worked very well for the problems we have looked at, but

IMAGE ENHANCEMENT AND SEGMENTATION BY REGION GROWING 145

other optimization criteria are possible. The important point to notice is that, in addition
to scalability, our optimization criterion requires that the parallel algorithm be an efficient
sequential algorithm (i.e., the total number of operations of the parallel algorithm is of the
same order as Tseq).

The complete set of collective communication primitives is discussed fully in earlier work
[7]. Next, we present three of these useful primitives, transpose, broadcast, and reduce,
which are needed by the algorithms presented in this paper.

2.1. Transpose Communication Primitive

Given a q x p array on a p processor machine, where p divides q, the transpose consists of
rearranging the data such that the first i rows of elements are moved to the first processor,

the second ip rows to the second processor, and so on, with the last ~p rows of the array
moved to the last processor. An efficient transpose algorithm consists o fp iterations such
that, during iteration/, (1 < i < p - 1), each processor Pt gets the appropriate block of _ _ p
elements from processor P(t+i)modp. The parallel algorithm and analysis for the transpose
data movement are given in earlier work [8, 9, 7] and are similar to that of the LogP model
[25]. The transpose primitive has the following complexity:

{ Tcomm(n~p) ~ "1- -]-(q- ~p)(7;
Tcomp(n,p) = O(q).

(1)

2.2. Broadcasting Communication Primitive

Another useful data movement primitive is to broadcast a block of data from a single
processor to the remaining processors. An efficient algorithm [8, 9, 7, 39] takes q elements
on a single processor and broadcasts them to the other (p - 1) processors using just two
transpose primitives. We start by discussing the case when there are more than p elements
to be broadcast.

An efficient algorithm to broadcast the q elements is based on the transpose primitive,
where q is assumed to be larger than p. Processor r holds the q elements to be broadcast
in the first column of array A. We compute the transpose(A) primitive, thus giving every
processor q elements. Each processor then locally rearranges the data so that an additional
transpose will result in each processor holding a copy of all the q elements in its column
of A [39].

The analysis of this broadcast primitive is simple. Since this algorithm just performs
two transposes, the complexity of the broadcasting algorithm is

{ Tcomm(n,p) ~ 2 ('7" --1-- (q - q) o ') ;

Tcomp(n~p) = O(q) . (2)

Performance analysis given in earlier work [8, 7] reflects the execution times from im-
plementations on the CM-5, SP-2, and CS-2, each with p = 32 parallel processing nodes.

146 D.A. BADER, J. JAJA. D. HARWOOD, AND L.S. DAVIS

SPLIT-C can express the capabilities of the parallel model and provides constructs to ex-
press data layout and spl i t -phase assignments. The spl i t -phase assignment operator, :=,
prefetches data from the specified remote address into a local memory. Computation can
be overlapped with the remote request, and the sync0 function allows each processor to
stall until all data prefetching is complete. The SPLIT-C language also supplies a bar r ie r ()
function for the global synchronization of the processors.

2.3. Reduce Communication Primitive

The reduce communication primitive takes a parallel input array A and an associative
p - - 1 operator, | and returns the value of Y'~i=o A[i], where ~ uses the associative operation

@. Parallel computers can handle this efficiently [14], and SPLIT-C implements this as a
primitive library function. A simple algorithm consists of p - 1 rounds that can be pipelined
[39]. Each processor Pi initializes a local sum to A[i]. During round r, each processor then
reads A[(i +r) m o d p], for I < r < p - 1, and adds this value to the local sum. Since these
rounds can be realized with p - 1 nonblocking read operations, the resulting complexity is

Tcomm(n,P) <_ "r + (p - 1)or;
Tcomp(n,p) = O(p). (3)

3. Image (Data) Layout and Test Images

A straightforward data layout is used in these algorithms for all platforms. The input image
is an n x n matrix of integers. We assign tiles of the image as equally as possible among
the processors. If p is an even power of two (i.e., p = 2 a, for even d), the processors will
be arranged in a v/~ x x/~ logical grid. For future reference we will denote the number of
rows in this logical grid as v and the number of columns as w. For odd d we assign the

number of rows of the logical processor grid to be v = 2 L ~ J and the number of columns to
n n be w = 2[~-]. Each processor initially owns a tile of size ~ x - . For future reference we

assign q = ~ and r = -~ . We assume that the p processors are labeled consecutively from
0 to p - 1 and are assigned in row-major order to the logical processor grid just described.

Our test images shown in Appendixes A and B are divided into two categories, artificial
and real, respectively. The artificial images given in Figures A. 1 and A.2 range in size from
128 x 128 to 512 x 512 pixels. We use Landsat satellite data to represent real images;
Figure B.1 is from band 5 of a South American scene, and Figure B.2 is band 4 taken from
a view of New Orleans. Both of these images are 256 gray-level, 512 x 512 pixel arrays
from single bands of the Landsat Thematic Mapper (TM) satellite data.

4. Image Segmentation--Overview

Images are segmented by running several phases of the SNF enhancement algorithm,
followed by several iterations of the 1-Nearest Neighbor (1-NN) filter and finally the 6-
Connected Components. See Figure 1 for a dataflow diagram of the complete segmentation

IMAGE ENHANCEMENT AND SEGMENTATION BY REGION GROWING 147

process. The following subsections describe these image-processing algorithms, beginning
with the SNF algorithm.

Raw Image

1
Calculate

SNIP n= , E ~ Deblur
1

o* ~ SNF 10(, E �9 Flatten Interiors

1-~ Remove shagularittes

Crop Border Pixels]

r

> ~ Segmentation

Segmented Image

Figure 1. Segmentation process.

4.1. Symmetric Neighborhood Filter

Due to interior variation as well as noise and blur, regions in real images are seldom
homogeneous in gray level and sharp along their borders. Preprocessing the image with an
enhancement filter that reduces these effects will yield better segmentation results.

The SNF enhancement is a stable filter that is applied either for a fixed number of iterations
or until stopping criteria (defined below) are reached, and takes the single parameter e, as
follows. The SNF filter compares each pixel to its 8-connected neighbors. (Note that the
1-pixel image boundary is ignored in our implementation.) The neighbors are inspected in
symmetric pairs around the center, that is, N ~ S, W ,~ E, NW ~ SE, and NE ~ SW; see
Figure 2 for a diagram of a 3 x 3 neighborhood centered around a pixel, with the symmetric
pairs colored the same. Using each pair and the center pixel, one of the three in each of the

148 D.A. BADER, J. JAJ/~, D. HARWOOD, AND L.S. DAVIS

four comparisons is selected using the following criteria. Assume without loss of generality
that the pair of pixels are colored A and B and that A > B (see Figure 3). I f the center
pixel (with value z) falls within region RA, that is, A+B - ' - 7 < Z < A + e, then we select A.

Likewise, if the center pixel falls within region RB, that is, B - e < z < .4_.~_, then we
select B. And if z is midway between A and/3, we simply select z, which is the average.
Finally, if z is an outlier with respect to A and B so that z > A + e or z < /3 - e, we
leave z fixed. The four selected pixels are then averaged together, and finally the center
pixel is replaced by the mean of this average and the center pixel's current gray-level value.
This latter average is similar to that of a damped gradient descent, which yields a faster
convergence.

Figure 2. Symmetric pairs of pixels.

Gray Level

- - A + E

--A

A+B
2

- - B

- - B - E

I R A

I"
Figure 3. Selection of SNF pixels.

The first phase of segmentation is a combination of three iterative SNF filters. The first
step runs for a small number of iterations (e.g., four) with e = 0 and is used to preserve edges.
We define ~r* to be the median of the standard deviations of all 3 • 3 neighborhoods centered
around each nonborder pixel in the image. See our previous work [10, 11] for a parallel
median algorithm. To flatten the interior of regions, SNF iterates with e = t~7*, where t~ is
typically set to 2.0 for this application. The stopping criteria for this iterative filter occurs
when the percentage of "fixed" pixels reaches 100.0 %, this percentage has not changed for
three iterations, or when we reach 200 iterations, whichever comes first. Finally, we sharpen
the borders of regions with SNF using e = 0, again stopping the iterative process when the
pixels have fixed, as defined above. The resulting image has near-homogeneous regions with
sharp transitions between bordering regions. While the SNF enhancement filter performs

IMAGE ENHANCEMENT AND SEGMENTATION BY REGION GROWING 149

qualitatively well for flattening region interiors and sharpening their borders, single-pixel
outliers (perhaps due to noise) are not touched. Next, we describe our method for handling
such pixels.

4.2. 1-Nearest Neighbor Filter

Single-pixel regions rarely can be classified, even under the best circumstances. Therefore,
we prefer to filter these out as our last enhancement stage. A typical 1-Nearest Neighbor
filter removes single-pixel outliers by replacing each pixel in the image with the value of
one of its adjacent pixels that is closest to its own gray level. Note that one application
of the 1-Nearest Neighbor filter may cause small neighborhoods of pixels to oscillate. For
example, two adjacent pixels with values A and A + A surrounded by a region of more
than A levels above or below would never stabilize. Therefore, we apply the 1-Nearest
Neighbor as an iterative filter, stopping when the input and output images are identical. For
faster convergence we use a damped approach (similar to the SNF) that assigns an output
pixel to the mean of its original and nearest-neighbor values. Typically, we converge in
roughly six to eight iterations.

Since no image enhancement occurs along the pixels of image borders, we crop the border
so that additional segmentation techniques will not use this raw data to merge dissimilar
regions via paths through the noisy, uncorrected pixels. For this application we crop the
border by a width of three pixels. With the enhanced image we are now ready to present a
new segmentation algorithm that combines the pixels into regions.

4.3. &Connected Components

The image-processing problem of determining the connected components of images is a
fundamental task of imaging systems (e.g., [2, 21,22, 28, 34, 37, 38]). The task of connected
component labeling is cited as a fundamental computer vision problem in the DARPA Image
Understanding benchmarks [49, 58, 60], and also can be applied to several computational
physics problems such as percolation [16, 52] and various cluster Monte Carlo algorithms
for computing the spin models of magnets such as the two-dimensional Ising spin model
[5, 12, 51]. All pixels with gray level (or "color") 0 are assumed to be background, while
pixels with color > 0 are foreground objects. A connected component in the image is a
maximal collection of uniformly colored pixels such that a path exists between any pair of
pixels in the component. Note that we are using the notion of 8-connectivity, meaning that
two pixels are adjacent if and only if one pixel lies in any of the eight positions surrounding
the other pixel. Each pixel in the image will receive a label; pixels will have the same label
if and only if they belong to the same connected component. Also, all background pixels
will receive a label of 0.

It is interesting to note that, in the previous paragraph, we defined connected components
as a maximal collection of uniform color pixels such that a path existed between any pair of
pixels. The conventional algorithm assumes that there is a connection between two adjacent
pixels if and only if their gray-level values are identical. We now relax this connectivity

150 D.A. BADER, J. JAJ./~, D. HARWOOD, AND L.S. DAVIS

rule and present it as a more general algorithm called 5-Connected Components. In this
approach we assume that two adjacent pixels with values x and y are connected if their
absolute difference Ix - Yl is no greater than the threshold/~. Note that setting the parameter
5 to 0 reduces the algorithm to the classic connected components approach. This algorithm
is identical in analysis and complexity to the conventional connected components algorithm,
as we are merely changing the criterion for checking the equivalence of two pixels.

For the final phase in the segmentation process, 5-Connected Components is applied to the
enhanced image, using ~ = ~cr*, where the values of ~ and or* are the same as those input to
the enhancement filters. The analysis for the 5-Connected Components algorithm is given
in Section 6, equation (7). Thus we have an efficient algorithm for image segmentation on
parallel computers. The results of the segmentation process on our test images are described
next.

4.4. Test Images

We use the Landsat Thematic Mapper (TM) raw satellite data for our test images. Each
test image is a 512 x 512 pixel subimage from a single TM band. Figure B.1 shows a
subimage from band 5, an image from South America, and Figure B.2 is taken from band
4 of New Orleans data. These images have 256 gray levels and also have postprocessing
enhancement of the brightness for visualization purposes in this paper. We have applied
SNF enhancement to these images, and the results appear below the original images. For
the band 5 data, Figure B. 1 shows the results of the enhancement, with both the full image,
and an enlargement of a structure in the river of this image. A further segmentation with
5 = t~cr* using the 6-Connected Components algorithm is given at the bottom of Figures B. 1
and B.2.

5. Symmetric Neighborhood Filter--Parallel Implementation

Most common enhancement filters will smooth the interior of regions at the cost of degrading
the edges or find edges while introducing intrinsic error on previously homogeneous regions.
However, the Symmetric Neighborhood Filter (SNF) is an edge-preserving smoothing filter,
meaning that it performs well for both sharpening edges and flattening regions. The SNF
is a convergent filter that can be run for a predetermined number of iterations or until a
percentage of the image pixels are fixed in gray level. A variety of SNF operators have
been studied, and we chose a single-parameter version that has been shown to perform well.
Previous parallel implementations of the SNF have been based on special-purpose image-
processing platforms, including data-parallel SIMD machines such as the TMC CM-2 and
the MasPar MP-1 [46, 47], video-rate VLSI implementations [48], pipelined computers
[31], and systolic linear arrays such as the Warp [4, 56, 57].

A useful data movement needed for this 3 x 3 local SNF filter is the fetching of tile-based
ghost cells [24, 64], which contain shadow copies of border pixels from adjacent tiles.
These ghost cells are used in the selection process when recalculating each tile's border.
Suppose each processor is allocated a q x r pixel tile from the image. In total there will be

IMAGE ENHANCEMENT AND SEGMENTATION BY REGION GROWING 151

eight ghost cell arrays as follows. The first two ghost cell arrayS, ghostN and ghostS, each
hold r pixels, and the second two, ghostW and ghostE, hold q pixels each. In addition, four
single pixel ghost cells for diagonal neighboring pixels are ghostNW, ghostNE, ghostSE,
and ghostSW. An example of these ghost cells is pictured in Figure 4.

Pi-l,j-I t
I

I

I

ghostNW,
- _ J

Pi- l , j I
I
I
I ghostN t

P i-l, j+l

ghostNE

ghost LftJ~i!i~ ~:: ghostE

P i, j-.1 _ J H - - P i, j+l

- - I I
ghostSVdl Ii ghostS

i
t 1
I i

Pi+l,j-1 t t Pi+l , j

' ghostSE
t

i
t

! P i+l, j+l

Figure 4. An example of ghost cells.

The analysis for filling the ghost cells is simple. We can divide the operation into eight
separate data movements, one for each direction. Since each movement is a block permuta-
tion, it can be routed efficiently using the parallel model in _< 7- + mcr communication cost,
where m is the block size. Thus the filling of the north and south ghost cell arrays each take
Tcomm (n, p) <~ 7" + t o ' , the eas t a n d w e s t ghost cell arrays e a c h take Tcomm (n~ p) ~ 7" + qcy,
and the diagonal four ghost cells each take Tcomm(n,p) ~ 7" + o. Therefore, the entire
ghost cell fetching operation takes

{ Tcomm(~,p) ~ 87" ~ - (4 # -~-4)r

0(5)
We are now ready to present the parallel algorithm for the Symmetric Neighborhood

Filter.
The following is an SPMD algorithm for an iteration of SNF on processor/:

Algorithm: Symmetric Neighborhood Filter
{ i } is my processor number;
{ p } is the total number of processors, labeled from 0 to p - 1;

152 D.A. BADER, J. JAJ,~: D. HARWOOD: AND L.S. DAVIS

{ A } is the n x n input image.
{ e } is input parameter.
begin

~ tile of image A, denoted Ai. 0. Processor i gets an ~ x - ~

1. Prefetch ghost cells.
2. For each local pixel Ai ,<x ,y> that has not fixed yet, using e, compute Bi,<x,u>, the
updated pixel value. Decide if local pixel position < x, y > is now fixed.
3. Set fi equal to the number of local pixels that have remained fixed.
4. f = r e d u c e (f i , +); that is, f -- Ei:op-1 fi.
5. Output-~ x 100%.
end

For each iteration of the SNF operator on a p-processor machine, the theoretical analysis
is as follows. The complexities for Step 1 and Step 4 are shown in (4) and (3), respectively.

Steps 2 and 3 are completely local and take O (- ~) . Thus for p < n, the SNF complexities
are

Tcomm(n,p ~ 9T ~- (4-~p 2i- 3 @ p) 0";

0 ~ 0 ~2

\ p]

(5)

Figure 5 shows the convergence of the SNF enhancement during the second phase of the
smoothing filter. As can be seen, there is a fast convergence of the pixels asymptotically
close to 100% fixed. Because fixed pixels are not recalculated, the time per iteration quickly
ramps down from approximately 165 ms/iteration to 26 ms/iteration on a 512 • 512 TM
image.

The complexity of an iteration of the 1-Nearest Neighbor filter is simple, namely, a fetch
of ghost cells and one pass through the image tile on each processor. The ghost cell analysis

is given in (4), and the update of pixels takes O (- ~) . Therefore, the 1-Nearest Neighbor
%

algorithm has complexities

{ Tcomm(n,p) ___ 87- + (4~pp + 4)~r;

:

(6)

6. 5-Connected Components of Gray-Scale Images

The high-level strategy of our connected components algorithm uses the well-known divide
and conquer technique. Divide and conquer algorithms typically use a recursive strategy
to split problems into smaller subproblems and, given the solutions to these subproblems,
merge the results into the final solution. It is common to have either an easy splitting
algorithm and a more complicated merging, or vice versa, a hard splitting, followed by easy

IMAGE ENHANCEMENT AND SEGMENTATION BY REGION GROWING 153

i00

to 90

O)
;,<
.,-, 80
El_

7O
)<
.r..~
it

4_ 60
o

50

40

0.20

-o.:8
to

-0.16 ~.2

:o.:4
-o.n iS
:o.:o c

0

: o.08
~ 0 . 0 6 r

10.04 I---q

t_ 0.02

. . . . , , , , 0.00
0 5 :0 t5 2o 25

Iterotion

Figure 5. Convergence and timings of SNF for a 512 • 512 image on a 32-processor CM-5.

merging. In our parallel labeling algorithm the splitting phase is trivial and implicit, while
the merging process requires more work. The algorithm contains three major phases. In
the first phase labelings of each tile are performed concurrently. During the second phase
processors perform a drastically limited merging operation such that at the conclusion, a
mesh of tile borders is labeled consistently (see Figure 6). Finally and concurrently, each
processor recolors its interior pixels using the consistent tile border labelings.

Each processor initially holds a unique tile of the image and hence can label the connected
components of its tile by using a standard sequential algorithm based upon a breadth-first
search. Next, the algorithm iterates logp times, 1 alternating between combining the tiles
in horizontal merges of vertical borders and vertical merges of horizontal borders. Our
algorithm uses novel techniques to perform the merges and to update the labels. We will
attempt to give an overview of this algorithm (a complete description can be found in
previous work [8, 9, 7]).

We merge the p subimages into larger and larger image sections with consistent label-
ings. There will be log p iterations since we cut the number of uncombined subimages in
half during each iteration. Unlike previous connected components algorithms, we use a
technique that identifies processors as group managers or clients during each phase. The
group managers have the task of organizing the retrieval of boundary data, performing the
merge, and creating the list of label changes. Once the group managers broadcast these

154 D.A. B A D E R , J. J~tJA, D. H A R W O O D , AND L.S. DAVIS

t
128

-,~64--~,-

a) Every pixel is updated.

1~ ~. P9 ~ ~ ~ ,~ ~ P15 : :~ ~ ~"

"~64-~

b) Only the border pixels are updated.

Figure 6. Image is 512 • 512 on p = 32 processors. After each merging step, most previous labeling algorithms
update every pixel (a). Our algorithm performs drastically limited merging steps such that only a mesh of tile
borders is relabeled (b).

changes to their respective clients, all processors must use the information to update their
tile hooks, data structures that point to connected components on local tile borders. See
Figure 7 for an illustration of the tile hook data structure in which three tile hooks contain
the information needed to update the border pixels. The clients assist the group managers
by participating in the coalescing of data during each merge phase. Finally, the complete
relabeling is performed at the very end using information from the tile hooks.

Without loss of generality we first perform a horizontal merge along every other vertical
border, then a vertical merge along every other horizontal border, alternating orientation
until we have merged all the tiles into one consistent labeling. We merge vertical borders
exactly log w times, where w is the number of columns in the logical processor grid.
Similarly, we merge horizontal borders exactly log v times, where v is the number of rows
in the logical processor grid.

An example data layout and merge is given in Figure 8. This image of size 512 x 512 is
distributed onto a 4 x 8 logical processor grid, with each tile being 128 x 64 pixels in size.
This example shows the second merge step, a vertical merge, for t = 2.

During each merge a subset of the processors will act as group managers. (The group
managers, along with their respective borders to be merged, are circled in Figure 8.) These
designated processors will prefetch the necessary border information along the column (or
row) that they are located upon in the logical processor grid, setting up an equivalent graph
problem, running a sequential connected components algorithm on the graph, noting any
changes in the labels, and storing these changes ((c~i, fli) pairs) in a shared structure. Each
client decides which processor is its current group manager and waits until the list of label

I M A G E E N H A N C E M E N T A N D S E G M E N T A T I O N B Y R E G I O N G R O W I N G 1 5 5

H o o k #1 H o o k #2

\ /

H o o k #3

t
Border Pixels on a Ti le

Figure 7. An e x a m p l e o f tile hooks .

row 0

row 1

r o w 2

t
row 3 128

col0 c o l l co l2 co l7

P8 P9 i P15

. ~ ~

P31

-.~64-~

Figure 8. D a t a l ayou t o f a 512 • 512 i m a g e on p = 32 p roce s so r s - - vertical merge (t = 2). Circled processors
are group managers. Dotted borders were merged in Phase 1, and circled borders will be merged in Phase 2.

changes is ready. Each retrieves the list, and finally all processors make the necessary
updates to a proper subset of their labels.

The merging problem is converted into finding the connected components of a graph
represented by the border pixels. We use an adjacency list representation for the graph
and add vertices to the graph representing colored pixels. Two types of edges are added to
the graph. First, pixels are scanned down the left (or upper) border, and edges are strung

156 D.A. BADER, J. JAJA, D. HARWOOD, AND L.S. DAVIS

linearly down the list between pixels containing the same connected component label. The
same is done for pixels on the right (or lower) border. The second step adds edges between
pixels of the left (upper) and right (lower) border that are adjacent to each other and differ
by no greater than 5 in gray level. We scan down the left column (upper row) elements, and
if we are at a colored pixel, we check the pixels in the right column (lower row) adjacent to
it. In order to add the first type of edges, the pixels are sorted according to their label for
both the left (upper) and right (lower) border by using radix sort3 A secondary processor
is used to prefetch and sort the border elements on the opposite side of the border from the
group manager, and the results are then sent to the group manager.

At the conclusion of each of the log p merging steps, only the labels of pixels on the
border of each tile are updated. There is no need to relabel interior pixels since they are
not used in the merging stage. Only boundary pixels need their labels updated. Taking
advantage of this, we do not need to propagate boundary labels inward to recolor a tile's
interior pixels after each iteration of the merge. This is one of the attractive highlights of
our newly proposed algorithm, namely, the drastically limited updates needed during the
merging phase.

At the end of the last merging step, each processor must update its interior pixel labels.
Each hook described above is compared to the current label at the hook's offset position
index. If the hook's label label[i] is different from the current label at position i, the processor
will run a breadth-first search relabeling technique beginning at pixel i, relabeling all the
connected pixels' labels to the new label.

6.1. Parallel Complexity for &Connected Components

Thus for p _< n the total complexities for the parallel &Connected Components algorithm
are [8]

Tcomm(n,p) <_ (41ogp)r + (24n + 2p) (7 = (41ogp)r + O(n--~:']cr;

Tcom (n,p) = p j \ P]
(7)

Clearly, the computational complexity is the best possible asymptotically. As for the
communication complexity, intuitively a latency factor r has to be incurred during each
merge operation and hence the factor (log p)r .

The majority of previous connected components parallel algorithms are architecture- or
machine-specific, and do not port easily to other platforms. Table 1 shows some previous
running times for parallel implementations of connected components on the DARPA II
image given in Figure A. 1. The second to last column corresponds to a normalized measure
of the amount of work per pixel, where the total work is defined to be the product of the
execution time and the number of processors. In order to normalize the results between
fine- and coarse-grained machines, we divide the number of processors in the fine-grained
machines by 32 to compute the work per pixel site.

Our implementation also performs better compared with other recent parallel region-
growing codes [22]. Note that this implementation uses data-parallel Fortran on the TMC

I M A G E E N H A N C E M E N T A N D S E G M E N T A T I O N B Y R E G I O N G R O W I N G 157

Year Researcher(s) Machine PEs Time (s) Work/Pix Notes

1989 Kanade and Webb [41] Warp 10 4.34 166 kts Shrink/expand

1989 Weems et al. [59] Alliant FX-80 8 7.225 220 ,~s
Sequent Symmetry 81 8 15.12 461/~s
Warp 10 3.98 152/as
TMC CM-2 32768 0.140 547/~s

1992 Choudhary and Thakur [20] Intel iPSC/2 32 1.914 234/as Multidim. divide & conquer
(partitioned input)

1.649 201/as Multidim. divide & conquer
(complete image/PE)

2,290 280 p,s Multidim. divide & conquer
(cmplt. + collect, commune)

Intel iPSC/860 32 1.351 165/as Mulfidim. divide & conquer
(partitioned input)

1.031 126/~s Multidim. divide & conquer
(complete image/PE)

0.947 116 #s Multidim. divide & conquer
(cmplt. 4 collect, eomman.)

Encore Multimax 16 0.521 31.8/zs Multidim. divide & conquer
(partitioned input)

1994 Choudhary and Thakur [21] TMC CM-5 32 0.456 55.7 ,us Multidim. divide & conquer
(partitioned input)

0.398 48.6/as Multidim. divide & conquer
(complete image/PE)

0.452 55,2 ,r Multidim. divide & conquer
(cmplt. + collect, comman.)

1994 Bader and J,'iJ~i [8] TMC CM-5 32 0.368 44.9/~s
IBM SP-I 4 0.370 5.65/as
IBM SP-2-WD 4 0.243 3.71/as
Meiko CS-2 2 0.809 6.17/as

32 0.301 36.7 ,us

1995 Bader et al.
(this paper)

IBM SP-2-TH 4 0,260 3.97/as
8 0.257 7.84/~s

16 0.285 17.4/~s
IBM SP-2-WD 4 0.245 3.74 #s

8 0.238 7.26/~s
16 0.262 16.0 p,s

TMC CM-5 16 0,474 28.9/~s
Meiko CS-2 4 0.627 9.57/~s

8 0.393 12.0/as
16 0.351 21.4/~s
32 0.317 38.7 #s

CRAY T3D 2 0.472 3.60/~s
4 0.470 7.17/~s
8 0.479 14.6 #s

Table 1. I m p l e m e n t a t i o n results o f paral lel connec ted componen t s o f the D A R P A II i m a g e (53_2 x 512) .

] 5 8 D.A. BADER: J. J,~Jfi,, D. HARWOOD, AND L.S. DAVIS

CM-2 and CM-5 machines , and lower- level implementa t ions on the CM-5 using Fortran

with several message-pass ing schemes. For example, F igure A.2 shows two of the more

difficult images f rom the study by Copty et al. [22] that are segmented by region growing.

Image 3 is a 256-gray level 128 x 128 image, containing six homogeneous circles. Image

6 is a binary 256 x 256 image of a tool. Tables 2 and 3 show the compar ison of execut ion

t imes for Images 3 and 6, respectively. Because these images are noise-free, our a lgor i thm

skips the image enhancement task. No t i ce that our algori thms are faster by several orders

of magni tude than those o f Copty et al. [22] on the CM-5 with 32 processors.

Table 2. Implementation results of segmentation algorithm on image 3 from Copty et al. [22], six gray circles
(128 • 128 pixels).

Year Researcher(s) Machine PEs Time (s) Work/Pix Notes

1994 Copty et al. [22] TMC CM-2 8192 13.911 217 ms Data parallel
16384 9.650 302 ms Data parallel

TMC CM-5 32 42.931 83.9 ms Data parallel
9.567 18.5 ms Message passing, comml
5.537 10.8 ms Message passing, comm2

1995 Bader et al. TMC CM-5 16 0.0816 79.7/~s
(this paper) 32 0.0720 141/zs

IBM SP-2-WD 4 0.0629 15.4/zs
Meiko CS-2 4 0.0996 24.3/~s

8 0.0909 44.4]zs

Table 3. Implementation results of segmentation algorithm on image 6 from Copty et al. [22], a binary tool
(256 x 256 pixels).

Year Researcher(s) Machine PEs Time (s) Work/Pix Notes

1994 Copty et al. [22] TMC CM-2 8192 20.538 80.2 ms Data parallel
16384 13.955 109 ms Data parallel

TMC CM-5 32 77.648 37.9 ms Data parallel
12.290 6.00 ms Message passing, comml
7.334 3.58 ms Message passing, comm2

1995 Bader et al. TMC CM-5 16 0.223 54.4 #s
(this paper) 32 0.175 85.5/zs

IBM SP-2-TH 4 0.202 12.3/zs
8 0.187 22.8/zs

16 0.177 43.2/zs
IBM SP-2-WD 4 0.194 11.8/zs

8 0.176 21.5/zs
Meiko CS-2 4 0.414 25.3/zs

8 0.274 33.5/~s
16 0.204 49.8 #s

CRAY T3D 4 0.396 24.2/zs

The scalabili ty of the segmenta t ion a lgor i thm running on the 512 x 512 Landsat T M band

5 subimage, shown in Figure B.1, is g iven in F igure 9 for various machine configurat ions

IMAGE E N H A N C E M E N T AND SEGMENTATION BY REGION GROWING 159

of the CM-5, CS-2, SP-2, and T3D. For this image the first, second, and third phases of
SNF iterate 4, 26, and 34 times, respectively. Also, the I-Nearest Neighbor task contains 8
iterations.

20

15 �84

o
I0

o
16 32 4 8 16 32 4 13 16 4 13 16 32 P

I I I I I I I I
TMC CM-5 Meik0 CS-2 IBM SP-2-TH CRAY T3D

Figure 9. Scalability of the segmentation algorithm for the 522 x 512 Landsat TM band 5 image.

Results are given in Table 4 for a larger 1024 x 1024 subimage of the same view. Note
that the SNF and 1-Nearest Neighbor filters are iterative and data-dependent, with timings
that ramp down after the initial iteration; thus only the slowest timing for a single iteration
is reported. Figure 10 shows the scalability of the segmentation algorithm running on the
1024 x 1024 subimage, with various machine configurations of the CM-5, SP-2, and T3D.
For this image the first, second, and third phases of SNF iterate 4, 56, and 47 times, respec-
tively. Also, the 1-Nearest Neighbor task contains 11 iterations. For both the 512 • 512 and
1024 • 1024 images and on each machine, the total execution time for the segmentation
process scales with respect to the number of processors.

Table 5 compares the best-known sequential code for SNF to that of the parallel implemen-
tation. Again, this test uses the 1024 • 1024 image and performs a total of 4-4-56 + 47 = 107
iterations. The sequential tests are performed on fast workstations dedicated to a single user
and reflect only the time spent doing the filter calculations. These empirical results show

160 D.A. BADER, J. J ,~JA, D. HARWOOD, AND L.S. DAVIS

Tab& 4. Segment~ion execufiont ime(inms) fo r the1024 • 1024 Landsm TMband 5image.

Machine PEs Decide Noisy Calc. a* Max. SNF Iter. Max. 1-NN Iter. Crop 6-CC

TMC CM-5 16 576 2347 1300 1275 124 3218
32 292 1232 657 641 62.4 1963

IBM SP-2-TH 4 963 1875 1185 1288 66.8 1828
8 563 1142 679 72.9 34.0 1320

16 287 675 349 377 17.7 885

IBM SP-2-WD 4 958 1795 1130 1272 64.3 1734
8 554 1063 645 713 32.8 1113

16 283 628 339 365 17.0 839
32 169 596 202 212 9.71 721

CRAY T3D 4 918 3880 1460 1209 48.9 3083
8 324 1021 586 472 24.5 1788

16 162 1075 298 236 12.4 1287
32 81.3 712 147 118 6.19 1083
64 40.6 506 73.7 59.4 3.10 1019

o u r s e g m e n t a t i o n a l g o r i t h m s c a l i n g w i t h m a c h i n e a n d p r o b l e m s i ze a n d e x h i b i t i n g s u p e r i o r

p e r f o r m a n c e o n s e v e r a l p a r a l l e l m a c h i n e s w h e n c o m p a r e d w i t h s t a t e - o f - t h e - a r t s e q u e n t i a l

p l a t f o r m s .

Table 5. Total SNF execution time (in seconds) for the 1024 •
1024 Landsat TM band 5 image.

Machine PEs Time (s) for 107 Iter.

Sun Sparc 10 - Model 40 1 104
Sun Sparc 20 - Model 50 1 83.6
IBM SP-2-TH 1 78.2
DEC AlphaServer 2100 4/275 1 48.1

TMC CM-5 16 35.2
32 18.5

IBM SP-2-TH 4 30.9
8 24.4

16 12.5

CRAY T3D 4 45.3
8 20.9

16 10.6
32 5.35

IMAGE ENHANCEMENT AND SEGMENTATION BY REGION GROWING 161

80

~176
[] 5- Connected Components
�9 1-Nearest Neighbor Filter
[] Symmetric Neighborhood Filter
�9 Calculate Image Statistics

e -

o 40, &l
Ol
U3

20

16 32 4 8 16 4 8 18 32 P

I I I I I I
TMC CM-5 IBM SP-2 - TH CRAY T3D

Figure 10. Scalability of the segmentation algorithm for the 1024 x 1024 Landsat TM band 5 image.

7. Implementation Notes

Note that the performance results for the CM-5 are for SPLIT~C (version 1.2) programs
linked with the CM-5 CMMD Message Passing Libraries (version 3.2), and IBM SP-2
results use MPL for message passing. The Meiko CS-2 port of SPLIT-C uses the Elan
communications libraries. For the CRAY T3D, SPLIT-C is built on top of AC (version 2.6)
[17] and SHMEM from Cray Research.

Acknowledgments

D.A. Bader gratefully acknowledges the support by NASA Graduate Student Researcher
Fellowship No. NGT-50951. We acknowledge support of J. Jgd~ in part by NSF grant
No. CCR-9103135, and of JSJfi, D. Harwood, and L.S. Davis by NSF HPCC/GCAG grant
No. BIR-9318183.

162 D.A. BADER, J. JAJ-~, D. HARWOOD, AND L.S. DAVIS

We would like to thank the CASTLE/SPLIT-C group at UC Berkeley, especially for the
help and encouragement from David Culler, Arvind Krishnamurthy, Lok Tin Liu, Steve
Luna, and Rich Martin. Computational support on UC Berkeley's 64-processor TMC
CM-5 and 8-processor Intel Paragon was provided by NSF Infrastructure Grant number
CDA-8722788. We also thank the Numerical Aerodynamic Simulation Systems Division
of NASA's Ames Research Center for use of their 128-processor CM-5 and 160-node IBM
SP-2-WD.

We recognize Charles Weems at the University of Massachusetts for providing the DARPA
test image suite, and Nawal Copty at Syracuse University for providing additional test
images.

Also, Klaus Schauser, Oscar Ibarra, and David Probert of the University of California,
Santa Barbara, provided access to the 64-node UCSB Meiko CS-2. The Meiko CS-2
Computing Facility was acquired through NSF CISE Infrastructure Grant number CDA-
9218202, with support from the College of Engineering and the UCSB Office of Research,
for research in parallel computing.

Additional thanks goes to Argonne National Labs for allowing the use of their 128-node
IBM SP- 1 and to the Maui High Performance Computing Center for the use of their 400-node
IBM SP-2 machine. William Gropp, from the Mathematics and Computer Science Division
of Argonne National Labs, provided significant help with the IBM SP-1 message-passing
interface.

Arvind Krishnamurthy provided additional help with his port of SPLIT-C to the Cray
Research T3D [6]. The Jet Propulsion Lab/Caltech 256-node CRAY T3D Supercomputer
used in this investigation was provided by funding from the NASA Offices of Mission
to Planet Earth, Aeronautics, and Space Science. We also acknowledge William Carlson
and Jesse Draper from the Center for Computing Science (formerly the Supercomputing
Research Center) for writing the parallel compiler AC (version 2.6) [17] on which the T3D
port of SPLIT-C has been based.

Please see h t t p : //www. umiacs , umd. edu/ research /EXPAR for additional perfor-
mance information. In addition, all the code used in this paper is freely available for inter-
ested parties from our anonymous ftp site, f t p : / / f t p . umiacs , umd. edu/pub/EXPAR.
We encourage other researchers to compare their findings with our results for similar inputs.

IMAGE E N H A N C E M E N T AND SEGMENTATION BY REGION GROWING 163

Appendix A

Test Images of Artificial Scenes

Figure A.1. DARPA II Image Understanding Benchmark test image (512 • 512).

Image 3 (128 x 128) Image 6 (256 x 256)

Figure A.2. Test images from Copty et al. [22].

164 D . A . B A D E R ! J . J ~ , J A , D . H A R W O O D , A N D L.S . D A V I S

Appendix B

Test Images of Real Scenes

5 1 2 • 512 I m a g e

~"~'~'~'~iiiiiiiiiiii!i~i~:~,~:~ i~!iii!~!i~ii!iiiii~iiiiiiii~iiii~i~!ii!ii~i~iiiiiii~iii~!i~iiii~i!~ii!i!i~iiiii~iiiiii~iii~ii~i!~

: ::ii ii!i:~i i ii::i~:i ~:~i!~ ~;:? ~i:,:, i~ i::i '.i!ii!i ill::,:: :!i:!::ii~iii i:::i:i!::iiii?i i i :;:::i::!:?: :
~i~y:~:~:i~::i~:::~i;i~ i:~::~i~i;~ii;i~?

!~i~: ;~..:~iii:iiii ::iiii~r?i iiiii::iii::ii~ :~ ~ : "%i ~ii ::

=== : : : ~ ' ~ ' : ~ i : : : ======================= ":::;::::'::::

::;: ii::! !ii~ ?:.~ ::. ;~! i :~?i!i::ii.%~<i:;: :,i i ~i

?!ii~iiiiiil i i i ~ i ~ i:,i
~? ~??~:i :i: :i g!~:.ii~?: !!i::!i!! ::?:i?.! ::~}!i:-: i~i}~N;~{~:~!i

~i!r :.i:ii-~i~:: ! i :::: :: iii:: ::~ ::i::~i:i::i~iii::i~iii:::.i!i: :.::i::i::i::i::iii~i::iii:::::ii iiii::iii :iii:: ?.~i;~.:!~!~

::i?iii::i~ii :I!!~N:."~

;{i~iiii!iiiiii:! ::~
.:.: .:

:: ~i)~

! ili i ii iiii i i iUiii
::::::::::::::~ ~ . : ~ : ~ : . : : ~ : ~ : : ~ : ~ : ~ : ~ : ~ : : ~ : : ~ : ~ : ~ . ~ ; ~

!!'~:@~,iiiiil;,iii~,,?,iii',',i:,',',:,ii{i::'~,i'~':i

:::::::::::::::::::::::::::::::: ~:: ii:: ~iii:.:.~ ~i i :.~ii~ iiii~i ~i! ~:i~i!~:?:i::i: ::~ ~ ~ i ~i::

~:~:~:~:~:::~::~::~:~:~::~::::::::::::::::::::::~:~:~:~:~:~:~:~:~:~:~: ~:::::::::::;:::::::::~

ii:: ::::i%ii!i:i~i~ :::

883 r e g i o n s

6 4 x 64 S u b i m a g e

~i!i::

O r i g i n a l I m a g e (S o u t h A m e r i c a)

::::.:

A f t e r I m a g e E n h a n c e m e n t

F i n a l S e g m e n t a t i o n

Figure B.1. L a n d s a t T M b a n d 5 i m a g e s .

I M A G E E N H A N C E M E N T A N D S E G M E N T A T I O N B Y R E G I O N G R O W I N G 1 6 5

512 x 512 Image 128 x 128 Subimage

Original Image (New Orleans)

:::::::::::::::::::::::::: =============================

:i~i~;ii~iii:.:: :ili~;~::::ii::::::ii::::iii::iii::[iii~: :,::.:. ";ii~!::::i!::::~i~

~z :. ~:::::~ ... ,::~:::::~:~;i~;i!~;.iiiiii~ : . :.::.::::

~: ~i~!i i~:~::~ i! ~::: :::~::~ ~ ;

~ ~:i~:~i?:i~ ;~:i:~'~ :: ~:~!~i~i~i~ii~r :.:: :~!:~: *I:~:!:~!::*!:: :~ ~' :~;::~::-~:: :~ ~:~::~

After Image Enhancement
:ii~:i~:?: === "~: '~; : :" : : ' ' : : : " ~
~ ~.:.:: -~:~:.i~: i!~ i!i~i~!i:.::ii~iii~::ili::~i!ii~ i!!~i~i~i::i ~ ~ii::!ii~i~ii

~:::. ::i:.i ii~i :. ii:i:ii~:.i:.:: i: ':: i~i il: i ~i i ?::i:: ii:.i:i!::::i: :.i ~ ~ :! :: ::.i:::~'~i~ii) ~:.i

~::~ .::.r i ;~/,... $~i:~k:: ~ii~Tii:::!?.:

~ : . . . ~ : . : :

2270 regions Final Segmentation

Figure B.2. L a n d s a t T M b a n d 4 i m a g e s .

N o t e s

N o t e t ha t t h r o u g h o u t this p a p e r l o g x wil l a l w a y s b e the l o g a r i t h m o f x to the b a s e b = 2, n a m e l y , l o g 2 x .

No te tha t w h e n e v e r r a d i x so r t is m e n t i o n e d in th is paper , the ac tua l c o d i n g u se s t he s t a n d a r d U N I X qu i cke r - so r t
f u n c t i o n for s m a l l e r so r t s a n d r a d i x sor t fo r l a rge r sor ts , d e p e n d i n g on w h i c h s o r t i n g m e t h o d is fas tes t fo r the
g iven inpu t size.

166 D.A. BADER, J. J,~J,~, D. HARWOOD, AND L.S. DAVIS

References

1. A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman. LogGP: Incorporating long messages into the
LogP model - - One step closer towards a realistic model for parallel computation. In 7th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 95-105, Santa Barbara, Calif., July 1995.

2. H. Alnuweiri and V. Prasanna. Parallel architectures and algorithms for image component labeling. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14:1014-1034, 1992.

3. H.M. Alnnweiri and V.K. Prasanna Kumar. Efficient image computations on VLSI architectares with reduced
hardware. In Proceedings of the 1987 Workshop on Computer Architecture for Pattern Analysis and Machine
Intelligence, pages 192-199, Seattle, October 1987.

4. M. Annaratone, E. Arnould, T. Gross, H.T. Kung, M. Lam, O. Menzilcioglu, and J.A. Webb. The Warp
computer: Architecture, implementation, and performance. IEEE Transactions on Computers, C-36:1523-
1538, 1987.

5. J. Apostolakis, P. Coddington, and E. Marinari. New SIMD algorithms for cluster labeling on parallel
computers. International Journal of Modern Physics C, 4:749, 1993.

6. R.H. Arpaci, D.E. Culler, A. Krishnamurthy, S.G. Steinberg, and K. Yelick. Empirical evaluation of the
CRAY-T3D: A compiler perspective. In Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 320-331, Santa Margherita Ligure, Italy, June 1995.

7. D.A. Bader. On the design and analysis of practical parallel algorithms for combinatorial problems with ap-
plications to image processing. Ph.D. thesis, Department of Electrical Engineering, University of Maryland,
College Park, April 1996.

8. D.A. Bader and J. JSJ~i. Parallel algorithms for image histogramming and connected components with an
experimental study. Technical Report CS-TR-3384 and UMIACS-TR-94-133, UMIACS and Electrical En-
gineering, University of Maryland, College Park, Md., December 1994. Journal of Parallel and Distributed
Computing, 35(2): 173-190, 1996.

9. D.A. Bader and J. J~fi. Parallel algorithms for image histogramming and connected components with an
experimental study. In Fifih ACM SIGPLAN Symposium of Principles and Practice of ParalleI Programming,
pages 123-133, Santa Barbara, Calif., July 1995.

10. D.A. Bader and J. J~fi. Practical parallel algorithms for dynamic data redistribution, median finding, and
selection. Technical Report CS-TR-3494 and UMIACS-TR-95-74, UMIACS and Electrical Engineering,
University of Maryland, College Park, Md., July 1995.

11. D.A. Bader and J. J~fi. Practical parallel algorithms for dynamic data redistribution, median finding,
and selection. In Proceedings of the lOth International Parallel Processing Symposium, pages 292-301,
Honolulu, April 1996.

12. C.F. Baillie and P.D. Coddington. Cluster identification algorithms for spin models - - Sequential and
parallel. Concurrency: Practice and Experience, 3(2): 129-144, 1991.

13. P.K. Biswas, J. Mukherjee, and B.N. Chatterji. Component labeling in pyramid architecture. Pattern
Recognition, 26(7): 1099-1115, 1993.

14. G.E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190, School of Computer
Science, Carnegie Mellon University, November 1990.

15. S.H. Bokhari and H. Berryman. Complete exchange on a circuit switched mesh. In Proceedings of Scalable
High Performance Computing Conference, pages 300-306, Williamsburg, Va., April 1992.

16. R.C. Brower, P. Tarnayo, and B. York. A parallel multigrid algorithm for percolation clusters. Journal of
Statistical Physics, 63:73, 1991.

17. W.W. Carlson and J.M. Draper. AC for the T3D. Technical Report SRC-TR-95-141, Center for Computing
Sciences, Bowie, Md., February 1995.

18. Y.-L. Chang and X. Li. Adaptive image reg1~n-gr~wing. ~EEE Transacti~ns ~n ~mage Pr~cessing~ 3(6): 868-
872, 1994.

19. V. Chaudhary and J.K. Aggarwal. On the complexity of parallel image component labeling. In Proceedings
of the 1991 International Conference on Parallel Processing, pages 183-187, August 1991.

20. A. Choudhary and R. Thakur. Evaluation of connected component labeling algorithms on shared and
distributed memory multiprocessors. In Proceedings of the 6th International Parallel Processing Symposium,
pages 362-365, March 1992.

21. A. Choudhary and R. Thakur. Connected component labeling on coarse grain parallel computers: An
experimental study. Journal of Parallel and Distributed Computing, 20(1):78-83, January 1994.

IMAGE ENHANCEMENT AND SEGMENTATION BY REGION GROWING 167

22. N. Copty, S. Ranka, G. Fox, and R.V. Shankar. A data parallel algorithm for solving the region growing
problem on the Connection Machine. Journal of Parallel and Distributed Computing, 21(1): 160-168, April
1994.

23. D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S. Lumetta, S. Luna, T. von Eicken, and
K. Yelick. Introduction to Split-C. Computer Science Division - - EECS, University of California, Berkeley,
version 1.0 edition, March 6, 1994.

24. D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and K. Yelick.
Parallel programming in Split-C. In Proceedings of Supercomputing '93, pages 262-273, Portland, Ore.,
November 1993.

25. D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E. Santos, R. Subramonian, and T. von
Eicken. LogP: Towards a realistic model of parallel computation. In Fourth ACM S1GPLAN Symposium on
Principles and Practice of Parallel Programming, May 1993.

26. E Dehne and S.E. Hambrusch. Parallel algorithms for determining k-width connectivity in binary images.
Journal of Parallel and Distributed Computing, 12:12-23, 1991.

27. H. Derin and C.-S. Won. A parallel image segmentation algorithm using relaxation with varying neighbor-
hoods and its mapping to array processors. Computer Vision, Graphics, and Image Processing, 40:54-78,
1987.

28. M.B. Dillencourt, H. Samet, and M. Tamminen. Connected component labeling of binary images. Technical
Report CS-TR-2303, Computer Science Department, University of Maryland, College Park, Md., August
1989.

29. H. Embrechts, D. Roose, and E Wambacq, Component labelling on a MIMD multiprocessor. CVGIP:
Image Understanding, 57(2):155-165, March 1993.

30. B. Falsafi and R. Miller. Component labeling algorithms on an Intel iPSC/2 hypercube. In Proceedings of
the Fifth Distributed Memory Computing Conference, pages 159-164, Charleston, S.C., April 1990.

31. R. Goldenberg, W.C. Lau, A. She, and A.M. Waxman. Progress on the prototype PIPE. In Proceedings of
the 1987 Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence, pages 67-74,
Seattle, October 1987.

32. S. Hambrusch, X. He, and R. Miller. Parallel algorithms for gray-scale digitized picture component labeling
on mesh-connected computer. Journal of Parallel and Distributed Computing, 20:56-68, 1994.

33. E Hameed, S.E. Hambrusch, A.A. Khokhar, and J.N. Patel. Contour ranking on coarse grained machines:
A case study for low-level vision computations. Technical report, Purdue University, West Lafayette, Ind.,
November 1994.

34. Y. Hart and R.A. Wagner. An efficient and fast parallel-connected component algorithm. Journal of the
ACM, 37(3):626-642, 1990.

35. R.M. Haralick and L.G. Shapiro. Image segmentation techniques. Computer Vision, Graphics, and Image
Processing, 29:100-132, 1985.

36. D. Harwood, M. Subbarao, H. Hakalahti, and L.S. Davis. A new class of edge-preserving smoothing filters.
Pattern Recognition Letters, 6:155-162, 1987.

37. D.S. Hirschberg, A.K. Chandra, and D.V. Sarwate. Computing connected components on parallel computers.
Communications of the ACM, 22(8):461-464, 1979.

38. J. J ~ . An Introduction to ParalleIAlgorithms. Addison-Wesley, New York, 1992.
39. J. J~i.l~i and K.W. Ryu. The Block Distributed Memory model. Technical Report CS-TR-3207, Computer

Science Department, University of Maryland, College Park, January 1994. To appear in IEEE Transactions
on Parallel and Distributed Systems.

40. J.E J ~ and K.W. Ryu. The Block Distributed Memory model for shared memory multiprocessors. In
Proceedings of the 8th International Parallel Processing Symposium, pages 752-756, Cancfin, Mexico,
April 1994. (Extended abstract)

41. T. Kanade and J.A. Webb. Parallel vision algorithm design and implementation 1988 end of year report.
Technical Report CMU-RI-TR-89-23, The Robotics Institute, Carnegie Mellon University, August 1989.

42. J.J. Kistler and J.A, Webb. Connected components with split and merge. In Proceedings of the 5th Interna-
tional Parallel Processing Symposium, pages 194-201, Anaheim, Calif., April 1991.

43. H.T. Kung and J.A. Webb. Mapping image processing operations onto a linear systolic machine. Distributed
Computing, 1:246-257, 1986.

44. J.J. Little, G. BleUoch, and T. Cass. Parallel algorithms for computer vision on the Connection Machine. In
Image Understanding Workshop, pages 628-638, Los Angeles, February 1987.

168 D.A. BADER, J. JAJ./~, D. HARWOOD, AND L.S. DAVIS

45. M. Manohar and H.K. Ramapriyan. Connected component labeling of binary images on a mesh connected
massively parallel processor. Computer Vision, Graphics, and Image Processing, 45(2): 133-149, 1989.

46. EJ. Narayanan. Effective use of SIMD machines for image analysis. Ph.D. thesis, Department of Computer
Science, University of Maryland, College Park, Md., 1992.

47. EJ. Narayanan and L.S. Davis. Replicated data algorithms in image processing. Technical Report CAR-TR-
536/CS-TR-2614, Center for Automation Research, University of Maryland, College Park, Md., February
1991.

48. M. Pietikiiinen, T. Sepp~inen, and E Alapnranen. A hybrid computer architecture for machine vision. In
Proceedings of the l Oth International Conference on Pattern Recognition, Volume 2, pages 426-431, Atlantic
City, N.J., June 1990.

49. A. Rosenfeld. A report on the DARPA Image Understanding Architectures Workshop. In Proceedings of
the 1987Image Understanding Workshop, pages 298-302, 1987.

50. H. Shi and G.X. Ritter. A fast algorithm for image component labeling with local operators on mesh
connected computers. Journal of Parallel and Distributed Computing, 23:455-461, 1994.

51. A.D. Sokal. New numerical algorithms for critical phenomena (Multi-grid methods and all that). In
Proceedings of the International Conference on Lattice Field Theory, Tallahassee, Fla., October 1990.
(Nucl. Phys. B (Proc. Suppl.), 20:55, 1991.).

52. D. Stauffer. Introduction to Percolation Theory. Taylor and Francis, Philadelphia, 1985.
53. M.H. Sunwoo, B.S. Baroody, and J.K. Aggarwal. A parallel algorithm for region labeling. In Proceedings of

the 1987 Workshop on Computer Architecture for Pattern Analysis and Machine Intelligence, pages 27-34,
Seattle, October 1987.

54. J.C. Tilton and S.C. Cox. Segmentation of remotely sensed data using parallel region growing. In Ninth
International Symposium on Machine Processing of Remotely Sensed Data, pages 130-137, West Lafayette,
Ind., June 1983.

55. L.G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103-111,
1990.

56. R.S. Wallace, J.A. Webb, and I.-C. Wn. Machine-independent image processing: Performance of Apply on
diverse architectures. Computer Vision, Graphics, and lmage Processing, 48:265-276, 1989.

57. J.A. Webb. Architecture-independent global image processing. In Proceedings of the lOth International
Conference on Pattern Recognition, Volume 2, pages 623-628, Atlantic City, N.J., June 1990.

58. C. Weems, E. Riseman, A. Hanson, and A. Rosenfeld. An Integrated Image Understanding Benchmark:
Recognition of a 2�89 D "mobile." In Image Understanding Workshop, pages 111-126, Cambridge, Mass.,
April 1988.

59. C. Weems, E. Riseman, A. Hanson, and A. Rosenfeld. A report on the results of the DARPA Integrated
Image Understanding Benchmark exercise. In Image Understanding Workshop, pages 165-192, May 1989.

60. C. Weems, E. Riseman, A. Hanson, and A. Rosenfeld. The DARPA Image Understanding Benchmark for
parallel computers. Journal of Parallel and Distributed Computing, 11:1-24, 1991.

61. T. Westman, D. Harwood, T. Laitinen, and M. Pietikfiinen. Color segmentation by hierarchical connected
components analysis with image enhancement by Symmetric Neighborhood Filters. In Proceedings of the
lOth International Conference on Pattern Recognition, pages 796-802, Atlantic City, N.J., June 1990.

62. M. Willebeek-LeMalr and A.E Reeves. Region growing on a highly parallel mesh-connected SIMD com-
puter. In The 2nd Symposium on the Frontiers of Massively Parallel Computations, pages 93-100, Fairfax,
Va., October 1988.

63. M. Willebeek-LeMair and A.E Reeves. Solving nonuniform problems on SIMD computers: Case study on
region growing. Journal of Parallel and Distributed Computing, 8:135-149, 1990.

64. R. Williams. Parallel load balancing for parallel applications. Technical Report CCSF-50, Concurrent
Snpercomputing Facilities, California Institute of Technology, November 1994.

65. W. Yong and M.L. Brady. Efficient component labeling on SIMD mesh processors. In Proceedings of the
International Conference on Parallel Processing, pages III-31 - - III-34, August 1994.

66. S.W. Zucker. Region growing: Childhood and adolescence. Computer Graphics and Image Processing,
5:382-399, 1976.

