
The Journal of Supercomputing, 10, 141-168 (1996) 
�9 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Parallel Algorithms for Image Enhancement and 
Segmentation by Region Growing, with an 
Experimental Study 

DAVID A. BADER,* JOSEPH J,~JA.*. DAVID HARWOOD. AND LARRY S. DAVIS** 

{dbader, joseph, harwood, lsd} @umiacs.umd.edu 
Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742 

(Received May 1995; final version accepted July 1996.) 

Abstract. This paper presents efficient and portable implementations of a powerful image enhancement process, 
the Symmetric Neighborhood Filter (SNF), and an image segmentation technique that makes use of the SNF 
and a variant of the conventional connected components algorithm which we call 6-Connected Components. We 
use efficient techniques for distributing and coalescing data as well as efficient combinations of task and data 
parallelism. The image segmentation algorithm makes use of an efficient connected components algorithm based 
on a novel approach for parallel merging. The algorithms have been coded in SPLIT-C and run on a variety of 
platforms, including the Thinking Machines CM-5, IBM SP- 1 and SP-2, Cray Research T3D, Meiko Scientific CS- 
2, Intel Paragon, and workstation clusters. Our experimental results are consistent with the theoretical analysis 
(and provide the best known execution times for segmentation, even when compared with machine-specific 
implementations). Our test data include difficult images from the Landsat Thematic Mapper (TM) satellite data. 
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1. Problem Overview 

Given an n x n image  with k gray levels on a p  processor  machine  (p <_ n2), we wish to de- 

velop efficient and portable  parallel  algori thms to perform various useful image-process ing  

computat ions.  Eff iciency is a per formance  measure  used to evaluate  parallel  algori thms. 

This  measure  provides  an indication of  the effect ive uti l ization of  the p processors  relat ive 

to the given parallel  algori thm. For  example,  an algori thm with an eff iciency near  one runs 

approximate ly  p t imes faster on p processors  than the same algor i thm on a single processor.  

Portabili ty refers to code  that is writ ten independently o f  low-level  pr imit ives  reflect ing 

machine  architecture or size. Our goal is to develop portable a lgor i thms that are scalable 

in terms of  both image  size and number  of  processors  when run on d is t r ibuted-memory 

mult iprocessors .  

Image-process ing  applicat ions are wel l -sui ted to h igh-per formance  comput ing  techniques 

because of  their regular  input organization (typically mul t id imens iona l  arrays of  discrete 

values) and spatial local i ty properties;  for example,  pixels near  each other  tend to be o f  

similar  color. Images  used for analysis are produced f rom a variety of  applications,  for 
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example, remote sensing of the Earth, detection of surface defects in industrial manufac- 
turing, and military target recognition. Some of the processing is low-level, such as image 
calibration or enhancement, while other analyses are intermediate- or high-level, such as 
segmenting an image into objects or regions and classifying each. We now introduce our 
work on image enhancement and segmentation. 

Image segmentation algorithms cluster pixels into homogeneous regions, which, for ex- 
ample, can be classified into categories with higher accuracy than could be obtained by 
classifying the individual pixels. Region growing is a class of techniques used in image 
segmentation algorithms in which, typically, regions are constructed by an agglomeration 
process that adds (merges) pixels to regions when those pixels are both adjacent to the 
regions and similar in property (most simply intensity) (e.g., [18, 22, 35, 61, 66]). Each 
pixel in the image receives a label from the region-growing process; pixels will have the 
same label if and only if they belong to the same region. Our segmentation algorithm makes 
use of an efficient and fast parallel connected components algorithm based on a novel ap- 
proach for merging (a detailed theoretical and experimental analysis of this algorithm can 
be found in previous work [8]). Typically in region-growing algorithms a region's border is 
susceptible to erroneous merging at its weakest point, which can be aggravated by several 
factors, including noise, blur, and lighting. Thus it becomes extremely important to enhance 
an image before the region-growing process. We next describe a new image enhancement 
filter that preserves edges as well as smoothes the interior of regions. 

In real images, natural regions have significant variability in gray level. Noise, introduced 
from the scanning of the real scene into the digital domain, will cause single-pixel outliers. 
Also, lighting changes can cause a gradient of gray levels in pixels across the same region. 
Because of these and other similar effects, we preprocess the image with a stable filter, the 
Symmetric Neighborhood Filter (SNF) [36], that smooths out the interior pixels of a region 
to a near-homogeneous level. Also, due to the relative motion of the camera and the scene, 
as well as aperture effects, edges of regions are usually blurred so that the transition in gray 
levels between regions is not a perfect step over a single pixel, but ramps from one region to 
the other over several pixels. Our filter is, additionally, an edge-preserving filter that detects 
blurred transitions such as these and sharpens them while preserving the true border location 
as best as possible. Most preprocessing filters will smooth the interior of regions at the 
cost of degrading the edges or, conversely, detect edges while introducing intrinsic error on 
previously homogeneous regions. However, the SNF is an edge-preserving smoothing filter 
that performs well for simultaneously sharpening edges and smoothing regions. In addition, 
it is an iterative filter that also can be tuned to retain thin-image structures corresponding, 
for example, to rivers and roads. A variety of SNF operators have been studied, and we 
chose a single-parameter version that has been shown to perform well on remote sensing 
applications. 

The majority of previous parallel implementations of the SNF filter are architecture- or 
machine-specific and do not port well to other platforms (e.g., [31, 46, 47, 48, 56]). For 
example, Webb [57] gives an implementation of a 15 • 15 SNF filter on the CMU Warp, 
a 10-processor linear systolic array, which takes 4.76 seconds on a 512 • 512 image. We 
present our SNF filter execution timings in Section 5. In comparison, on a 32-processor 
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TMC CM-5, we take less than 165 milliseconds per iteration operating on an image of 
equivalent size. 

After the image is enhanced by the SNF, we use a variant of the connected components 
algorithm for gray-level images, called 5-Connected Components, to combine similar pixels 
into homogeneously labeled regions producing the final image segmentation. As with the 
SNF implementations, most previous parallel algorithms for segmentation do not port well 
to other platforms (e.g., [27, 42, 43, 54, 61, 62, 63]). 

There is a vast literature on the implementations of parallel segmentation algorithms 
based upon connected components. Some of these algorithms only operate on binary 
images [33, 65, 50, 29, 2, 15, 42, 19, 30, 45, 44, 3, 53] and thus are not useful for a 
large class of image analysis problems from multigray-level images. Most of the previous 
connected components algorithms for gray-level images [32, 22, 21, 13, 20, 60, 41] are 
machine-dependent and thus are not efficient on current parallel platforms. In addition, 
both binary and gray-level connected components algorithms strictly label regions based 
upon pixel color and locality. Thus interior variation in regions as well as noise and blur 
cause the standard algorithms to fail when useful segmentation of real imagery is required. 
Several parallel algorithms have been developed that attempt to overcome these difficulties 
by adding additional conditions. For example, Dehne and Hambrusch [26] present mesh 
and hypercube algorithms for binary images with the notion of k-width connectivity, such 
that two 1-pixels (a and b) belong to the same k-width component if and only if there exists 
a path of width k such that pixel a is one of the k start pixels and b is one of the k end 
pixels of this path. Also, Hambrusch et al. [32] describe a mesh algorithm for gray-level 
images that accepts two input parameters for range (e) and adjacency (5) such that in any 
labeled component, the maximum difference between any two pixels is c and the maximum 
difference between any two adjacent pixels is 5. 

Our approach is the first high-level parallel algorithm and implementation for gray-level 
images that is both (1) simple, using a single relaxation parameter, 5, such that in any labeled 
components the maximum difference between any two adjacent pixels is no greater than 5 
and (2) efficient, using drastically limited merging steps in which image tile boundaries are 
first labeled consistently, and then a final label update is propagated inward. In addition, 
our algorithm does not belong to any of the four parallelized versions of standard sequential 
connected component methods [42], including the Nearest-Neighbor Propagation, Shrink- 
Expand, Boundary Following, and Union-Find approaches. 

The experimental data obtained reflect the execution times from implementations on the 
TMC CM-5, IBM SP-1 and SP-2, Meiko CS-2, Cray Research T3D, and the Intel Paragon, 
with the number of parallel processing nodes ranging from 16 to 128 for each machine 
when possible. The parallel algorithms are written in SPLIT-C [23], a parallel extension 
of the C programming language that follows the SPMD model on these parallel machines, 
and the source code is available for distribution to interested parties. 

The organization of this paper is as follows. In Section 2 we address the algorithmic 
model and various primitive operations that are used to analyze the algorithms. Section 3 is 
a discussion of the test images and data layout on the parallel machines. Our segmentation 
process overview, which includes a discussion of SNF and 1-Nearest Neighbor filters and 
the 5-Connected Components algorithm, is given in Section 4. Finally, in Sections 5 and 6 



144 D.A. BADER, J. J.A.JA., D. HARWOOD, AND L.S. DAVIS 

we describe the parallel implementations of the Symmetric Neighborhood Filter algorithm 
and 5-Connected Components, respectively, and present algorithmic analyses and empirical 
results. 

2. The Model for Parallel Computation 

In this section we describe the simple model that we use for analyzing the performance of 
parallel algorithms. Our model is based on the fact that current hardware platforms can be 
viewed as a collection of powerful processors connected by a communication network that 
can be modeled as a complete graph on which communication is subject to the restrictions 
imposed by the latency and the bandwidth properties of the network. A parallel algorithm 
consists of a sequence of local computations interleaved with communication steps, where 
we allow computation and communication to overlap. We account for communication costs 
as follows. 

The transfer of a block consisting of rn contiguous words between two processors, as- 
suming no congestion, takes ~- + a m  time, where ~- is a bound on the latency of the network 
and a is the time per word at which a processor can inject or receive data from the network. 
Note that the bandwidth per processor is inversely proportional to a. We assume that the 
bisection bandwidth is sufficiently high to support block permutation routing among the p 

1 processors at the rate of ~ per processor. In particular, for any subset of q processors, a 
block permutation among the q processors takes r + am, where m is the size of the largest 
block. Similar to MPI and other message-passing standards, we assume that communica- 
tion and computation can be overlapped. This cost model can be justified by our earlier 
work [39, 40, 9, 10, 11, 7]. 

Using this cost model, we can evaluate the communication time Tcomm(n, p) of an algo- 
rithm as a function of the input size n, the number of processors p, and the parameters T 
and a. The coefficient of ~- gives the total number of times collective communication is 
used, and the coefficient of a gives the maximum total amount of data exchanged between 
a processor and the remaining processors. 

This communication model is close to a number of similar models (e.g., the BSP [55], 
LogP [25], and LogGP [1] models) that have recently appeared in the literature, but sig- 
nificant differences exist. Our model is extended to include a collection of communication 
primitives that makes our model considerably easier to use than the BSP or the LogP models 
[7]. 

We define the computation time Tcomp(n, p)-as the maximum time any processor takes to 
perform all the local computation steps. In general, the overall performance Tcomp (n, p) + 
Tcomm (n, p) involves a tradeoff between Tcomm (n, p) and T~omp (n, p). Our aim is to develop 
parallel algorithms that achieve 

 co (o : 

such that Tcomm(n,p) is minimum, where Yse q is the complexity of the best sequential 
algorithm. Such optimization has worked very well for the problems we have looked at, but 
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other optimization criteria are possible. The important point to notice is that, in addition 
to scalability, our optimization criterion requires that the parallel algorithm be an efficient 
sequential algorithm (i.e., the total number of operations of the parallel algorithm is of the 
same order as Tseq). 

The complete set of collective communication primitives is discussed fully in earlier work 
[7]. Next, we present three of these useful primitives, transpose, broadcast,  and reduce, 
which are needed by the algorithms presented in this paper. 

2.1. Transpose Communication Primitive 

Given a q x p array on a p processor machine, where p divides q, the transpose consists of 
rearranging the data such that the first i rows of elements are moved to the first processor, 

the second ip rows to the second processor, and so on, with the last ~p rows of the array 
moved to the last processor. An efficient transpose algorithm consists o fp  iterations such 
that, during iteration/, (1 < i < p - 1), each processor Pt gets the appropriate block of _ _ p 
elements from processor P(t+i)modp. The parallel algorithm and analysis for the transpose 
data movement are given in earlier work [8, 9, 7] and are similar to that of the LogP model 
[25]. The transpose primitive has the following complexity: 

{ Tcomm(n~p ) ~ "1- -]-(q- ~p)(7; 
Tcomp(n,p) = O(q). 

(1) 

2.2. Broadcasting Communication Primitive 

Another useful data movement primitive is to broadcast a block of data from a single 
processor to the remaining processors. An efficient algorithm [8, 9, 7, 39] takes q elements 
on a single processor and broadcasts them to the other (p - 1) processors using just two 
transpose primitives. We start by discussing the case when there are more than p elements 
to be broadcast. 

An efficient algorithm to broadcast  the q elements is based on the transpose primitive, 
where q is assumed to be larger than p. Processor r holds the q elements to be broadcast 
in the first column of array A. We compute the transpose(A) primitive, thus giving every 
processor q elements. Each processor then locally rearranges the data so that an additional 
transpose will result in each processor holding a copy of all the q elements in its column 
of A [39]. 

The analysis of this broadcast  primitive is simple. Since this algorithm just performs 
two transposes, the complexity of the broadcasting algorithm is 

{ Tcomm(n,p ) ~ 2 ('7" --1-- ( q -  q ) o ' )  ; 

Tcomp(n~p) = O(q) .  (2) 

Performance analysis given in earlier work [8, 7] reflects the execution times from im- 
plementations on the CM-5, SP-2, and CS-2, each with p = 32 parallel processing nodes. 
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SPLIT-C can express the capabilities of the parallel model and provides constructs to ex- 
press data layout and spl i t -phase  assignments. The spl i t -phase assignment operator, :=,  
prefetches data from the specified remote address into a local memory. Computation can 
be overlapped with the remote request, and the sync0  function allows each processor to 
stall until all data prefetching is complete. The SPLIT-C language also supplies a bar r ie r ( )  
function for the global synchronization of the processors. 

2.3. Reduce Communication Primitive 

The reduce communication primitive takes a parallel input array A and an associative 
p - - 1  operator, | and returns the value of Y'~i=o A[i], where ~ uses the associative operation 

@. Parallel computers can handle this efficiently [14], and SPLIT-C implements this as a 
primitive library function. A simple algorithm consists of  p -  1 rounds that can be pipelined 
[39]. Each processor Pi initializes a local sum to A[i]. During round r, each processor then 
reads A[(i +r) m o d  p], for I < r < p -  1, and adds this value to the local sum. Since these 
rounds can be realized with p - 1 nonblocking read operations, the resulting complexity is 

Tcomm(n,P) <_ "r + ( p -  1)or; 
Tcomp(n,p) = O(p). (3) 

3. Image (Data) Layout and Test Images 

A straightforward data layout is used in these algorithms for all platforms. The input image 
is an n x n matrix of  integers. We assign tiles of  the image as equally as possible among 
the processors. If  p is an even power of  two (i.e., p = 2 a, for even d), the processors will 
be arranged in a v/~ x x/~ logical grid. For future reference we will denote the number of 
rows in this logical grid as v and the number of  columns as w. For odd d we assign the 

number of  rows of the logical processor grid to be v = 2 L ~ J and the number of  columns to 
n n be w = 2[ ~- ]. Each processor initially owns a tile of size ~ x - .  For future reference we 

assign q = ~ and r = -~ . We assume that the p processors are labeled consecutively from 
0 to p - 1 and are assigned in row-major order to the logical processor grid just described. 

Our test images shown in Appendixes A and B are divided into two categories, artificial 
and real, respectively. The artificial images given in Figures A. 1 and A.2 range in size from 
128 x 128 to 512 x 512 pixels. We use Landsat satellite data to represent real images; 
Figure B.1 is from band 5 of a South American scene, and Figure B.2 is band 4 taken from 
a view of New Orleans. Both of these images are 256 gray-level, 512 x 512 pixel arrays 
from single bands of the Landsat Thematic Mapper (TM) satellite data. 

4. Image Segmentation--Overview 

Images are segmented by running several phases of the SNF enhancement algorithm, 
followed by several iterations of the 1-Nearest Neighbor (1-NN) filter and finally the 6- 
Connected Components. See Figure 1 for a dataflow diagram of the complete segmentation 
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process. The following subsections describe these image-processing algorithms, beginning 
with the SNF algorithm. 

Raw Image 

1 
Calculate 

SNIP n=  , E ~ Deblur 
1 

o* ~ SNF 10( , E �9 Flatten Interiors 

1-~ Remove shagularittes 

Crop Border Pixels ] 

r 

> ~ Segmentation 

Segmented Image 

Figure 1. Segmentation process. 

4.1. Symmetric Neighborhood Filter 

Due to interior variation as well as noise and blur, regions in real images are seldom 
homogeneous in gray level and sharp along their borders. Preprocessing the image with an 
enhancement filter that reduces these effects will yield better segmentation results. 

The SNF enhancement is a stable filter that is applied either for a fixed number of iterations 
or until stopping criteria (defined below) are reached, and takes the single parameter e, as 
follows. The SNF filter compares each pixel to its 8-connected neighbors. (Note that the 
1-pixel image boundary is ignored in our implementation.) The neighbors are inspected in 
symmetric pairs around the center, that is, N ~ S, W ,~ E, NW ~ SE, and NE ~ SW; see 
Figure 2 for a diagram of a 3 x 3 neighborhood centered around a pixel, with the symmetric 
pairs colored the same. Using each pair and the center pixel, one of the three in each of the 



148 D.A. BADER, J. JAJ/~, D. HARWOOD, AND L.S. DAVIS 

four comparisons is selected using the following criteria. Assume without loss of  generality 
that the pair of  pixels are colored A and B and that A > B (see Figure 3). I f  the center 
pixel (with value z)  falls within region RA, that is, A+B - ' - 7  < Z < A + e, then we select A. 

Likewise, if the center pixel falls within region RB,  that is, B - e < z < .4_.~_, then we 
select B. And if z is midway between A and/3,  we simply select z,  which is the average. 
Finally, if z is an outlier with respect to A and B so that z > A + e or z < /3 - e, we 
leave z fixed. The four selected pixels are then averaged together, and finally the center 
pixel is replaced by the mean of this average and the center pixel's current gray-level value. 
This latter average is similar to that of  a damped gradient descent, which yields a faster 
convergence. 

Figure 2. Symmetric pairs of pixels. 

Gray Level 

- -  A + E  

--A 

A+B 
2 

- - B  

- - B - E  

I R A 

I" 
Figure 3. Selection of SNF pixels. 

The first phase of  segmentation is a combination of  three iterative SNF filters. The first 
step runs for a small number of iterations (e.g., four) with e = 0 and is used to preserve edges. 
We define ~r* to be the median of  the standard deviations of  all 3 • 3 neighborhoods centered 
around each nonborder pixel in the image. See our previous work [10, 11] for a parallel 
median algorithm. To flatten the interior of  regions, SNF iterates with e = t~7*, where t~ is 
typically set to 2.0 for this application. The stopping criteria for this iterative filter occurs 
when the percentage of "fixed" pixels reaches 100.0 %, this percentage has not changed for 
three iterations, or when we reach 200 iterations, whichever comes first. Finally, we sharpen 
the borders of  regions with SNF using e = 0, again stopping the iterative process when the 
pixels have fixed, as defined above. The resulting image has near-homogeneous regions with 
sharp transitions between bordering regions. While the SNF enhancement filter performs 
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qualitatively well for flattening region interiors and sharpening their borders, single-pixel 
outliers (perhaps due to noise) are not touched. Next, we describe our method for handling 
such pixels. 

4.2. 1-Nearest Neighbor Filter 

Single-pixel regions rarely can be classified, even under the best circumstances. Therefore, 
we prefer to filter these out as our last enhancement stage. A typical 1-Nearest Neighbor 
filter removes single-pixel outliers by replacing each pixel in the image with the value of 
one of its adjacent pixels that is closest to its own gray level. Note that one application 
of the 1-Nearest Neighbor filter may cause small neighborhoods of pixels to oscillate. For 
example, two adjacent pixels with values A and A + A surrounded by a region of more 
than A levels above or below would never stabilize. Therefore, we apply the 1-Nearest 
Neighbor as an iterative filter, stopping when the input and output images are identical. For 
faster convergence we use a damped approach (similar to the SNF) that assigns an output 
pixel to the mean of its original and nearest-neighbor values. Typically, we converge in 
roughly six to eight iterations. 

Since no image enhancement occurs along the pixels of image borders, we crop the border 
so that additional segmentation techniques will not use this raw data to merge dissimilar 
regions via paths through the noisy, uncorrected pixels. For this application we crop the 
border by a width of three pixels. With the enhanced image we are now ready to present a 
new segmentation algorithm that combines the pixels into regions. 

4.3. &Connected Components 

The image-processing problem of determining the connected components of images is a 
fundamental task of imaging systems (e.g., [2, 21,22, 28, 34, 37, 38]). The task of connected 
component labeling is cited as a fundamental computer vision problem in the DARPA Image 
Understanding benchmarks [49, 58, 60], and also can be applied to several computational 
physics problems such as percolation [16, 52] and various cluster Monte Carlo algorithms 
for computing the spin models of magnets such as the two-dimensional Ising spin model 
[5, 12, 51]. All pixels with gray level (or "color") 0 are assumed to be background, while 
pixels with color > 0 are foreground objects. A connected component in the image is a 
maximal collection of uniformly colored pixels such that a path exists between any pair of 
pixels in the component. Note that we are using the notion of 8-connectivity, meaning that 
two pixels are adjacent if and only if one pixel lies in any of the eight positions surrounding 
the other pixel. Each pixel in the image will receive a label; pixels will have the same label 
if and only if they belong to the same connected component. Also, all background pixels 
will receive a label of 0. 

It is interesting to note that, in the previous paragraph, we defined connected components 
as a maximal collection of uniform color pixels such that a path existed between any pair of 
pixels. The conventional algorithm assumes that there is a connection between two adjacent 
pixels if and only if their gray-level values are identical. We now relax this connectivity 
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rule and present it as a more general algorithm called 5-Connected Components. In this 
approach we assume that two adjacent pixels with values x and y are connected if their 
absolute difference Ix - Yl is no greater than the threshold/~. Note that setting the parameter 
5 to 0 reduces the algorithm to the classic connected components approach. This algorithm 
is identical in analysis and complexity to the conventional connected components algorithm, 
as we are merely changing the criterion for checking the equivalence of two pixels. 

For the final phase in the segmentation process, 5-Connected Components is applied to the 
enhanced image, using ~ = ~cr*, where the values of ~ and or* are the same as those input to 
the enhancement filters. The analysis for the 5-Connected Components algorithm is given 
in Section 6, equation (7). Thus we have an efficient algorithm for image segmentation on 
parallel computers. The results of the segmentation process on our test images are described 
next. 

4.4. Test Images 

We use the Landsat Thematic Mapper (TM) raw satellite data for our test images. Each 
test image is a 512 x 512 pixel subimage from a single TM band. Figure B.1 shows a 
subimage from band 5, an image from South America, and Figure B.2 is taken from band 
4 of New Orleans data. These images have 256 gray levels and also have postprocessing 
enhancement of the brightness for visualization purposes in this paper. We have applied 
SNF enhancement to these images, and the results appear below the original images. For 
the band 5 data, Figure B. 1 shows the results of the enhancement, with both the full image, 
and an enlargement of a structure in the river of this image. A further segmentation with 
5 = t~cr* using the 6-Connected Components algorithm is given at the bottom of Figures B. 1 
and B.2. 

5. Symmetric Neighborhood Filter--Parallel Implementation 

Most common enhancement filters will smooth the interior of regions at the cost of degrading 
the edges or find edges while introducing intrinsic error on previously homogeneous regions. 
However, the Symmetric Neighborhood Filter (SNF) is an edge-preserving smoothing filter, 
meaning that it performs well for both sharpening edges and flattening regions. The SNF 
is a convergent filter that can be run for a predetermined number of iterations or until a 
percentage of the image pixels are fixed in gray level. A variety of SNF operators have 
been studied, and we chose a single-parameter version that has been shown to perform well. 
Previous parallel implementations of the SNF have been based on special-purpose image- 
processing platforms, including data-parallel SIMD machines such as the TMC CM-2 and 
the MasPar MP-1 [46, 47], video-rate VLSI implementations [48], pipelined computers 
[31], and systolic linear arrays such as the Warp [4, 56, 57]. 

A useful data movement needed for this 3 x 3 local SNF filter is the fetching of tile-based 
ghost cells [24, 64], which contain shadow copies of border pixels from adjacent tiles. 
These ghost cells are used in the selection process when recalculating each tile's border. 
Suppose each processor is allocated a q x r pixel tile from the image. In total there will be 
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eight ghost cell arrays as follows. The first two ghost cell arrayS, ghostN and ghostS, each 
hold r pixels, and the second two, ghostW and ghostE, hold q pixels each. In addition, four 
single pixel ghost cells for diagonal neighboring pixels are ghostNW, ghostNE, ghostSE, 
and ghostSW. An example of these ghost cells is pictured in Figure 4. 

Pi-l,j-I t 
I 

I 

I 

ghostNW, 
- _ J  

Pi- l , j  I 
I 
I 
I ghostN t 

P i-l, j+l 

ghostNE 

ghost LftJ~i!i~ ~:: ghostE 

P i, j-.1 _ J  H -  - P i, j+l 

- - I I  
ghostSVdl Ii ghostS 

i 
t 1 
I i 

Pi+l,j-1 t t Pi+l , j  

' ghostSE 
t 

i 
t 

! P i+l, j+l 

Figure 4. An example of ghost cells. 

The analysis for filling the ghost cells is simple. We can divide the operation into eight 
separate data movements, one for each direction. Since each movement is a block permuta- 
tion, it can be routed efficiently using the parallel model in _< 7- + mcr communication cost, 
where m is the block size. Thus the filling of the north and south ghost cell arrays each take 
Tcomm (n, p) <~ 7" + t o ' ,  the eas t  a n d  w e s t  ghost cell arrays e a c h  take  Tcomm (n~ p) ~ 7" + qcy, 
and the diagonal four ghost cells each take Tcomm(n,p) ~ 7" + o. Therefore, the entire 
ghost cell fetching operation takes 

{ Tcomm(~,p ) ~ 87" ~ - ( 4 #  -~-4)r 

0(5 ) 
We are now ready to present the parallel algorithm for the Symmetric Neighborhood 

Filter. 
The following is an SPMD algorithm for an iteration of SNF on processor/: 

Algorithm: Symmetric Neighborhood Filter 
{ i } is my processor number; 
{ p } is the total number of processors, labeled from 0 to p - 1; 



152 D.A. BADER, J. JAJ,~: D. HARWOOD: AND L.S. DAVIS 

{ A } is the n x n input image. 
{ e } is input parameter. 
begin 

~ tile of image A, denoted Ai. 0. Processor i gets an ~ x - ~  

1. Prefetch ghost cells. 
2. For each local pixel Ai ,<x ,y> that has not fixed yet, using e, compute Bi,<x,u>, the 
updated pixel value. Decide if local pixel position < x, y > is now fixed. 
3. Set fi  equal to the number of local pixels that have remained fixed. 
4. f = r e d u c e ( f i ,  +); that is, f -- Ei:op-1 fi. 
5. Output-~ x 100%. 
end 

For each iteration of the SNF operator on a p-processor machine, the theoretical analysis 
is as follows. The complexities for Step 1 and Step 4 are shown in (4) and (3), respectively. 

Steps 2 and 3 are completely local and take O ( - ~ ) .  Thus for p < n, the SNF complexities 
are 

Tcomm(n,p ~ 9T ~- (4-~p 2i- 3 @ p) 0"; 

0 ~ 0 ~2 

\ p ]  

(5) 

Figure 5 shows the convergence of the SNF enhancement during the second phase of the 
smoothing filter. As can be seen, there is a fast convergence of the pixels asymptotically 
close to 100% fixed. Because fixed pixels are not recalculated, the time per iteration quickly 
ramps down from approximately 165 ms/iteration to 26 ms/iteration on a 512 • 512 TM 
image. 

The complexity of an iteration of the 1-Nearest Neighbor filter is simple, namely, a fetch 
of ghost cells and one pass through the image tile on each processor. The ghost cell analysis 

is given in (4), and the update of pixels takes O ( - ~ ) .  Therefore, the 1-Nearest Neighbor 
% 

algorithm has complexities 

{ Tcomm(n,p) ___ 87- + (4~pp + 4)~r; 

: 

(6) 

6. 5-Connected Components of Gray-Scale Images 

The high-level strategy of our connected components algorithm uses the well-known divide 
and conquer technique. Divide and conquer algorithms typically use a recursive strategy 
to split problems into smaller subproblems and, given the solutions to these subproblems, 
merge the results into the final solution. It is common to have either an easy splitting 
algorithm and a more complicated merging, or vice versa, a hard splitting, followed by easy 
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Figure 5. Convergence and timings of SNF for a 512 • 512 image on a 32-processor CM-5. 

merging. In our parallel labeling algorithm the splitting phase is trivial and implicit, while 
the merging process requires more work. The algorithm contains three major phases. In 
the first phase labelings of each tile are performed concurrently. During the second phase 
processors perform a drastically limited merging operation such that at the conclusion, a 
mesh of tile borders is labeled consistently (see Figure 6). Finally and concurrently, each 
processor recolors its interior pixels using the consistent tile border labelings. 

Each processor initially holds a unique tile of the image and hence can label the connected 
components of its tile by using a standard sequential algorithm based upon a breadth-first 
search. Next, the algorithm iterates logp times, 1 alternating between combining the tiles 
in horizontal merges of vertical borders and vertical merges of horizontal borders. Our 
algorithm uses novel techniques to perform the merges and to update the labels. We will 
attempt to give an overview of this algorithm (a complete description can be found in 
previous work [8, 9, 7]). 

We merge the p subimages into larger and larger image sections with consistent label- 
ings. There will be log p iterations since we cut the number of uncombined subimages in 
half during each iteration. Unlike previous connected components algorithms, we use a 
technique that identifies processors as group managers or clients during each phase. The 
group managers have the task of organizing the retrieval of boundary data, performing the 
merge, and creating the list of label changes. Once the group managers broadcast these 
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b) Only the border pixels are updated. 

Figure 6. Image is 512 • 512 on p = 32 processors. After each merging step, most previous labeling algorithms 
update every pixel (a). Our algorithm performs drastically limited merging steps such that only a mesh of tile 
borders is relabeled (b). 

changes to their respective clients, all processors must use the information to update their 
tile hooks, data structures that point to connected components on local tile borders. See 
Figure 7 for an illustration of the tile hook data structure in which three tile hooks contain 
the information needed to update the border pixels. The clients assist the group managers 
by participating in the coalescing of data during each merge phase. Finally, the complete 
relabeling is performed at the very end using information from the tile hooks. 

Without loss of generality we first perform a horizontal merge along every other vertical 
border, then a vertical merge along every other horizontal border, alternating orientation 
until we have merged all the tiles into one consistent labeling. We merge vertical borders 
exactly log w times, where w is the number of columns in the logical processor grid. 
Similarly, we merge horizontal borders exactly log v times, where v is the number of rows 
in the logical processor grid. 

An example data layout and merge is given in Figure 8. This image of size 512 x 512 is 
distributed onto a 4 x 8 logical processor grid, with each tile being 128 x 64 pixels in size. 
This example shows the second merge step, a vertical merge, for t = 2. 

During each merge a subset of the processors will act as group managers. (The group 
managers, along with their respective borders to be merged, are circled in Figure 8.) These 
designated processors will prefetch the necessary border information along the column (or 
row) that they are located upon in the logical processor grid, setting up an equivalent graph 
problem, running a sequential connected components algorithm on the graph, noting any 
changes in the labels, and storing these changes ((c~i, fli) pairs) in a shared structure. Each 
client decides which processor is its current group manager and waits until the list of label 
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Figure 8. D a t a  l ayou t  o f  a 512  • 512  i m a g e  on p = 32  p roce s so r s  - -  vertical merge ( t  = 2). Circled processors 
are group managers. Dotted borders were merged in Phase 1, and circled borders will be merged in Phase 2. 

changes is ready. Each retrieves the list, and finally all processors make the necessary 
updates to a proper subset of their labels. 

The merging problem is converted into finding the connected components of a graph 
represented by the border pixels. We use an adjacency list representation for the graph 
and add vertices to the graph representing colored pixels. Two types of edges are added to 
the graph. First, pixels are scanned down the left (or upper) border, and edges are strung 
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linearly down the list between pixels containing the same connected component label. The 
same is done for pixels on the right (or lower) border. The second step adds edges between 
pixels of the left (upper) and right (lower) border that are adjacent to each other and differ 
by no greater than 5 in gray level. We scan down the left column (upper row) elements, and 
if we are at a colored pixel, we check the pixels in the right column (lower row) adjacent to 
it. In order to add the first type of edges, the pixels are sorted according to their label for 
both the left (upper) and right (lower) border by using radix sort3 A secondary processor 
is used to prefetch and sort the border elements on the opposite side of the border from the 
group manager, and the results are then sent to the group manager. 

At the conclusion of each of the log p merging steps, only the labels of pixels on the 
border of each tile are updated. There is no need to relabel interior pixels since they are 
not used in the merging stage. Only boundary pixels need their labels updated. Taking 
advantage of this, we do not need to propagate boundary labels inward to recolor a tile's 
interior pixels after each iteration of the merge. This is one of the attractive highlights of 
our newly proposed algorithm, namely, the drastically limited updates needed during the 
merging phase. 

At the end of the last merging step, each processor must update its interior pixel labels. 
Each hook described above is compared to the current label at the hook's offset position 
index. If the hook's label label[i] is different from the current label at position i, the processor 
will run a breadth-first search relabeling technique beginning at pixel i, relabeling all the 
connected pixels' labels to the new label. 

6.1. Parallel Complexity for &Connected Components 

Thus for p _< n the total complexities for the parallel &Connected Components algorithm 
are [8] 

Tcomm(n,p) <_ (41ogp)r + (24n + 2p) (7 = (41ogp)r + O(n--~:']cr; 

Tcom (n,p) = p j \ P ]  
(7) 

Clearly, the computational complexity is the best possible asymptotically. As for the 
communication complexity, intuitively a latency factor r has to be incurred during each 
merge operation and hence the factor (log p)r .  

The majority of previous connected components parallel algorithms are architecture- or 
machine-specific, and do not port easily to other platforms. Table 1 shows some previous 
running times for parallel implementations of connected components on the DARPA II 
image given in Figure A. 1. The second to last column corresponds to a normalized measure 
of the amount of work per pixel, where the total work is defined to be the product of the 
execution time and the number of processors. In order to normalize the results between 
fine- and coarse-grained machines, we divide the number of processors in the fine-grained 
machines by 32 to compute the work per pixel site. 

Our implementation also performs better compared with other recent parallel region- 
growing codes [22]. Note that this implementation uses data-parallel Fortran on the TMC 
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Year Researcher(s) Machine PEs Time (s) Work/Pix Notes 

1989 Kanade and Webb [41] Warp 10 4.34 166 kts Shrink/expand 

1989 Weems et al. [59] Alliant FX-80 8 7.225 220 ,~s 
Sequent Symmetry 81 8 15.12 461/~s 
Warp 10 3.98 152/as 
TMC CM-2 32768 0.140 547/~s 

1992 Choudhary and Thakur [20] Intel iPSC/2 32 1.914 234/as Multidim. divide & conquer 
(partitioned input) 

1.649 201/as Multidim. divide & conquer 
(complete image/PE) 

2,290 280 p,s Multidim. divide & conquer 
(cmplt. + collect, commune) 

Intel iPSC/860 32 1.351 165/as Mulfidim. divide & conquer 
(partitioned input) 

1.031 126/~s Multidim. divide & conquer 
(complete image/PE) 

0.947 116 #s Multidim. divide & conquer 
(cmplt. 4 collect, eomman.) 

Encore Multimax 16 0.521 31.8/zs Multidim. divide & conquer 
(partitioned input) 

1994 Choudhary and Thakur [21] TMC CM-5 32 0.456 55.7 ,us Multidim. divide & conquer 
(partitioned input) 

0.398 48.6/as Multidim. divide & conquer 
(complete image/PE) 

0.452 55,2 ,r Multidim. divide & conquer 
(cmplt. + collect, comman.) 

1994 Bader and J,'iJ~i [8] TMC CM-5 32 0.368 44.9/~s 
IBM SP-I 4 0.370 5.65/as 
IBM SP-2-WD 4 0.243 3.71/as 
Meiko CS-2 2 0.809 6.17/as 

32 0.301 36.7 ,us 

1995 Bader et al. 
(this paper) 

IBM SP-2-TH 4 0,260 3.97/as 
8 0.257 7.84/~s 

16 0.285 17.4/~s 
IBM SP-2-WD 4 0.245 3.74 #s 

8 0.238 7.26/~s 
16 0.262 16.0 p,s 

TMC CM-5 16 0,474 28.9/~s 
Meiko CS-2 4 0.627 9.57/~s 

8 0.393 12.0/as 
16 0.351 21.4/~s 
32 0.317 38.7 #s 

CRAY T3D 2 0.472 3.60/~s 
4 0.470 7.17/~s 
8 0.479 14.6 #s 

Table 1. I m p l e m e n t a t i o n  results  o f  paral lel  connec ted  componen t s  o f  the  D A R P A  II  i m a g e  (53_2 x 512) .  
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CM-2  and CM-5  machines ,  and lower- level  implementa t ions  on the CM-5  using Fortran 

with several message-pass ing  schemes.  For  example,  F igure  A.2  shows two of  the more  

difficult images  f rom the study by Copty  et al. [22] that are segmented  by region growing.  

Image  3 is a 256-gray level  128 x 128 image,  containing six homogeneous  circles.  Image  

6 is a binary 256 x 256 image  of  a tool.  Tables 2 and 3 show the compar ison  of  execut ion 

t imes for Images  3 and 6, respectively.  Because  these images  are noise-free,  our a lgor i thm 

skips the image  enhancement  task. No t i ce  that our  algori thms are faster by several orders 

of  magni tude  than those o f  Copty  et al. [22] on the CM-5  with 32 processors.  

Table 2. Implementation results of segmentation algorithm on image 3 from Copty et al. [22], six gray circles 
(128 • 128 pixels). 

Year Researcher(s) Machine PEs Time (s) Work/Pix Notes 

1994 Copty et al. [22] TMC CM-2 8192 13.911 217 ms Data parallel 
16384 9.650 302 ms Data parallel 

TMC CM-5 32 42.931 83.9 ms Data parallel 
9.567 18.5 ms Message passing, comml 
5.537 10.8 ms Message passing, comm2 

1995 Bader et al. TMC CM-5 16 0.0816 79.7/~s 
(this paper) 32 0.0720 141/zs 

IBM SP-2-WD 4 0.0629 15.4/zs 
Meiko CS-2 4 0.0996 24.3/~s 

8 0.0909 44.4 ]zs 

Table 3. Implementation results of segmentation algorithm on image 6 from Copty et al. [22], a binary tool 
(256 x 256 pixels). 

Year Researcher(s) Machine PEs Time (s) Work/Pix Notes 

1994 Copty et al. [22] TMC CM-2 8192 20.538 80.2 ms Data parallel 
16384 13.955 109 ms Data parallel 

TMC CM-5 32 77.648 37.9 ms Data parallel 
12.290 6.00 ms Message passing, comml 
7.334 3.58 ms Message passing, comm2 

1995 Bader et al. TMC CM-5 16 0.223 54.4 #s 
(this paper) 32 0.175 85.5/zs 

IBM SP-2-TH 4 0.202 12.3/zs 
8 0.187 22.8/zs 

16 0.177 43.2/zs 
IBM SP-2-WD 4 0.194 11.8/zs 

8 0.176 21.5/zs 
Meiko CS-2 4 0.414 25.3/zs 

8 0.274 33.5/~s 
16 0.204 49.8 #s 

CRAY T3D 4 0.396 24.2/zs 

The  scalabili ty of  the segmenta t ion  a lgor i thm running on the 512 x 512 Landsat  T M  band 

5 subimage,  shown in Figure  B.1, is g iven in F igure  9 for various machine  configurat ions 
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of the CM-5, CS-2, SP-2, and T3D. For this image the first, second, and third phases of 
SNF iterate 4, 26, and 34 times, respectively. Also, the I-Nearest Neighbor task contains 8 
iterations. 

20 

15 �84 
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16 32 4 8 16 32 4 13 16 4 13 16 32 P 

I I I  I I I I I 
TMC CM-5 Meik0 CS-2 IBM SP-2-TH CRAY T3D 

Figure 9. Scalability of the segmentation algorithm for the 522 x 512 Landsat TM band 5 image. 

Results are given in Table 4 for a larger 1024 x 1024 subimage of the same view. Note 
that the SNF and 1-Nearest Neighbor filters are iterative and data-dependent, with timings 
that ramp down after the initial iteration; thus only the slowest timing for a single iteration 
is reported. Figure 10 shows the scalability of the segmentation algorithm running on the 
1024 x 1024 subimage, with various machine configurations of the CM-5, SP-2, and T3D. 
For this image the first, second, and third phases of SNF iterate 4, 56, and 47 times, respec- 
tively. Also, the 1-Nearest Neighbor task contains 11 iterations. For both the 512 • 512 and 
1024 • 1024 images and on each machine, the total execution time for the segmentation 
process scales with respect to the number of processors. 

Table 5 compares the best-known sequential code for SNF to that of the parallel implemen- 
tation. Again, this test uses the 1024 • 1024 image and performs a total of 4-4-56 + 47 = 107 
iterations. The sequential tests are performed on fast workstations dedicated to a single user 
and reflect only the time spent doing the filter calculations. These empirical results show 
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Tab& 4. Segment~ion execufiont ime(inms) fo r the1024  • 1024 Landsm TMband 5image. 

Machine PEs Decide Noisy Calc. a*  Max. SNF Iter. Max. 1-NN Iter. Crop 6-CC 

TMC CM-5 16 576 2347 1300 1275 124 3218 
32 292 1232 657 641 62.4 1963 

IBM SP-2-TH 4 963 1875 1185 1288 66.8 1828 
8 563 1142 679 72.9 34.0 1320 

16 287 675 349 377 17.7 885 

IBM SP-2-WD 4 958 1795 1130 1272 64.3 1734 
8 554 1063 645 713 32.8 1113 

16 283 628 339 365 17.0 839 
32 169 596 202 212 9.71 721 

CRAY T3D 4 918 3880 1460 1209 48.9 3083 
8 324 1021 586 472 24.5 1788 

16 162 1075 298 236 12.4 1287 
32 81.3 712 147 118 6.19 1083 
64 40.6 506 73.7 59.4 3.10 1019 

o u r  s e g m e n t a t i o n  a l g o r i t h m  s c a l i n g  w i t h  m a c h i n e  a n d  p r o b l e m  s i ze  a n d  e x h i b i t i n g  s u p e r i o r  

p e r f o r m a n c e  o n  s e v e r a l  p a r a l l e l  m a c h i n e s  w h e n  c o m p a r e d  w i t h  s t a t e - o f - t h e - a r t  s e q u e n t i a l  

p l a t f o r m s .  

Table 5. Total SNF execution time (in seconds) for the 1024 • 
1024 Landsat TM band 5 image. 

Machine PEs Time (s) for 107 Iter. 

Sun Sparc 10 - Model 40 1 104 
Sun Sparc 20 - Model 50 1 83.6 
IBM SP-2-TH 1 78.2 
DEC AlphaServer 2100 4/275 1 48.1 

TMC CM-5 16 35.2 
32 18.5 

IBM SP-2-TH 4 30.9 
8 24.4 

16 12.5 

CRAY T3D 4 45.3 
8 20.9 

16 10.6 
32 5.35 
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Figure 10. Scalability of the segmentation algorithm for the 1024 x 1024 Landsat TM band 5 image. 

7. Implementation Notes 

Note that the performance results for the CM-5 are for SPLIT~C (version 1.2) programs 
linked with the CM-5 CMMD Message Passing Libraries (version 3.2), and IBM SP-2 
results use MPL for message passing. The Meiko CS-2 port of SPLIT-C uses the Elan 
communications libraries. For the CRAY T3D, SPLIT-C is built on top of AC (version 2.6) 
[17] and SHMEM from Cray Research. 
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Appendix A 

Test Images of Artificial Scenes 

Figure A.1. DARPA II Image Understanding Benchmark test image (512 • 512). 

Image 3 (128 x 128) Image 6 (256 x 256) 

Figure A.2. Test images from Copty et al. [22]. 



164 D . A .  B A D E R !  J .  J ~ , J A ,  D .  H A R W O O D ,  A N D  L.S .  D A V I S  

Appendix B 

Test Images of Real Scenes 
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Figure B.1. L a n d s a t  T M  b a n d  5 i m a g e s .  
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Figure B.2. L a n d s a t  T M  b a n d  4 i m a g e s .  

N o t e s  

N o t e  t ha t  t h r o u g h o u t  this  p a p e r  l o g  x wil l  a l w a y s  b e  the  l o g a r i t h m  o f  x to  the  b a s e  b = 2,  n a m e l y ,  l o g  2 x .  

No te  tha t  w h e n e v e r  r a d i x  so r t  is  m e n t i o n e d  in th is  paper ,  the  ac tua l  c o d i n g  u se s  t he  s t a n d a r d  U N I X  qu i cke r - so r t  
f u n c t i o n  for  s m a l l e r  so r t s  a n d  r a d i x  sor t  fo r  l a rge r  sor ts ,  d e p e n d i n g  on w h i c h  s o r t i n g  m e t h o d  is fas tes t  fo r  the  
g iven  inpu t  size.  
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