
images [2, 9, 11, 12, 15, 17, 18, 20, 33]. The task of connected
component labeling is cited as an important object recogni-
tion problem in the DARPA Image Understanding bench-
marks [40, 32], and also can be applied to several computa-
tional physics problems such as percolation [35, 8] and
various cluster Monte Carlo algorithms for computing
the spin models of magnets, such as the two-dimensional
Ising spin model [3, 7, 34]. All pixels with gray level (or
‘‘color’’) 0 are assumed to be background, while pixels
with color . 0 are foreground objects. A connected compo-
nent in the image is a maximal collection of like-colored
pixels such that a path exists between any pair of pixels
in the component. Note that we are using the notion of 8-
connectivity, meaning that two pixels are adjacent if and
only if one pixel lies in any of the eight positions sur-
rounding the other pixel, or 4-connectivity, in which only
the north, east, south, and west pixels are adjacent. Each
colored pixel in the image will receive a positive integer
label; pixels will have the same label if and only if they
belong to the same connected component. Also, all 0-pixels
will receive a label of 0.

The majority of previous parallel histogramming algo-
rithms are architecture- or machine-specific and do not
port well to other platforms. Table I shows some previous
running times for histogramming algorithms on parallel
machines. Note that several of these machines are special
purpose image processing machines. The last column cor-
responds to a normalized measure of the amount of work
per pixel, where the total work is defined to be the product
of the execution time and the number of processors. In
order to normalize the results between fine- and coarse-
grained machines, we divide the number of processors in
the fine-grained machines by 32 to compute the work per
pixel site.

As with the histogramming algorithms, most of the previ-
ous connected components parallel algorithms as well are
architecture- or machine-specific, and do not port easily
to other platforms. Table II shows some previous running
times for implementations of connected components for
images using parallel machines. Note that the image used
in each of these benchmarks is the DARPA II Image
Understanding Benchmark Image shown in Fig. 1. Again,
several of these machines are special purpose image pro-
cessing machines. The second last column corresponds to
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This paper presents efficient and portable implementations
of two useful primitives in image processing algorithms, histo-
gramming and connected components. Our general framework
is a single-address space, distributed memory programming
model. We use efficient techniques for distributing and coalesc-
ing data as well as efficient combinations of task and data
parallelism. Our connected components algorithm uses a novel
approach for parallel merging which performs drastically lim-
ited updating during iterative steps, and concludes with a total
consistency update at the final step. The algorithms have been
coded in SPLIT-C and run on a variety of platforms. Our experi-
mental results are consistent with the theoretical analysis and
provide the best known execution times for these two primitives,
even when compared with machine-specific implementa-
tions.  1996 Academic Press, Inc.

1. PROBLEM OVERVIEW

Given an n 3 n image with k gray levels on a p-processor
machine (p # n2), we wish to develop efficient and portable
parallel algorithms to perform various useful primitive im-
age processing computations. Efficiency is a performance
measure used to evaluate parallel algorithms. This measure
provides an indication of the effective utilization of the p
processors relative to the given parallel algorithm. For
example, an algorithm with an efficiency near one runs
approximately p times faster on p processors than the same
algorithm on a single processor. Portability refers to code
that is written independent of low-level primitives re-
flecting machine architecture or size. Our goal is to develop
portable algorithms that are scalable in terms of both image
size and number of processors, and that provide high per-
formance even when run on a sequential processor.

Our first algorithm computes the histogramming of an
image; i.e., the output consists of an array H[0, ..., k 2 1]
held in a single processor such that H[i] is equal to the
number of pixels in the image with gray level i. Without
loss of generality, k is assumed to be a power of 2. The
second algorithm performs the connected components of

1 The support by NASA Graduate Student Researcher Fellowship
NGT-50951 is gratefully acknowledged.

2 Supported in part by NSF Grant CCR-9103135 and NSF HPCC/
GCAG Grant BIR-9318183.



is described in Section 5. Section 6 generalizes the con-
nected components algorithm to multi-gray-level images.

The experimental data obtained reflect the execution
times from implementations on the Cray T3D, Thinking
Machines CM-5, IBM SP-1 and SP-2, Meiko CS-2, and
the Intel Paragon, with the number of parallel processing
nodes ranging from 16 to 128 for each machine when possi-
ble. The algorithms are implemented in SPLIT-C [13], a

a normalized measure of the amount of work per pixel,
where the total work is defined to be the product of the
execution time and the number of processors.

Section 2 describes the algorithmic model used to ana-
lyze the algorithms whereas Section 3 describes the input
images used, as well as the data layout on the parallel
platforms. The histogramming algorithm is presented in
Section 4, and the binary connected components algorithm
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TABLE I
Implementation Results of Parallel Histogramming Algorithms

Year Researcher(s) Machine Processors Image size Time Work per pixel

1980 Marks [28] AMT DAP 1024 32 3 32 17.25 ms 539 es
1983 Potter [31] Goodyear MPP 16384 128 3 128 16.4 ms 513 es
1984 Grinberg et al. [16] 3-D machine 16384 256 3 256 1.7 ms 13.3 es
1987 Ibrahim et al. [19] NON-VON 3 16384 128 3 128 2.16 ms 67.5 es
1990 Nudd et al. [30] Warwick Pyramid 16K base 256 3 256 237 es 2.47 es
1991 Jesshope [23] AMT DAP 510 1024 512 3 512 86 ms 10.5 es
1994 Bader and JáJá [4, 5] TMC CM-5 16 512 3 512 12.0 ms 732 ns

IBM SP-2 16 512 3 512 9.82 ms 599 ns
Intel Paragon 8 512 3 512 20.8 ms 635 ns
Meiko CS-2 4 512 3 512 15.2 ms 231 ns

TABLE II
Implementation Results of Parallel Connected Components of DARPA II Image (512 3 512)

Year Researcher(s) Machine PEs Time Work/pix Notes

1989 Kanade and Webb [24] Warp 10 4.34 s 166 es Shrink/expand
1989 Weems et al. [39] Alliant FX-80 8 7.225 s 220 es

Sequent Symmetry 81 8 15.12 s 461 es
Warp 10 3.98 s 152 es
TMC CM-2 32768 140 ms 547 es

1992 Choudhary and Thakur [10] Intel iPSC/2 32 1.914 s 234 es Multidim. divide & conquer
(partitioned input)

1.649 s 201 es Multidim. divide & conquer
(complete im./PE)

2.290 s 280 es Multidim. divide & conquer
(cmplt. 1 collect. comm.)

Intel iPSC/860 32 1.351 s 165 es Multidim. divide & conquer
(partitioned input)

1.031 s 126 es Multidim. divide & conquer
(complete im./PE)

947 ms 116 es Multidim. divide & conquer
(cmplt. 1 collect. comm.)

Encore Multimax 16 521 ms 31.8 es Multidim. divide & conquer
(partitioned input)

1994 Choudhary and Thakur [11] TMC CM-5 32 456 ms 55.7 es Multidim. divide & conquer
(partitioned input)

398 ms 48.6 es Multidim. divide & conquer
(complete im./PE)

452 ms 55.2 es Multidim. divide & conquer
(cmplt. 1 collect. comm.)

1994 Bader and JáJá [4–6] TMC CM-5 16 474 ms 28.9 es
32 368 ms 44.9 es

IBM SP-1 4 370 ms 5.65 es
IBM SP-2-TH 4 260 ms 3.97 es
IBM SP-2-WD 4 243 ms 3.71 es
Meiko CS-2 4 627 ms 9.57 es
Cray T3D 4 470 ms 7.17 es



parallel extension of the C programming language which
follows the SPMD (single program multiple data) model
on these parallel machines.

2. THE PARALLEL COMPUTATION MODEL

We use a simple model [21, 22] to analyze the perfor-
mance of our parallel algorithms. Each of our hardware
platforms can be viewed as a collection of powerful proces-
sors connected by a communication network that can be
modeled as a complete graph on which communication is
subject to the restrictions imposed by the latency and the
bandwidth properties of the network. We view a parallel
algorithm as a sequence of local computations interleaved
with communication steps, and we allow computation and
communication to overlap. We account for communication
costs as follows.

Assuming no congestion, the transfer of a block con-
sisting of m contiguous words between two processors
takes t 1 sm time, where t is a bound on the latency of
the network and s is the time per word for a processor to
inject or receive data from the network.

Using this cost model, we can evaluate the communica-
tion time Tcomm(n, p) of an algorithm as a function of the
input size n, the number of processors p, and the parame-
ters t and s. The coefficient of t gives the total number
of times collective communication is used, and the coeffi-
cient of s gives the maximum total amount of data ex-
changed between a processor and the remaining proces-
sors. This communication model is close to a number of
similar models (e.g., [14, 37, 1]) that have recently appeared
in the literature and seems to be well suited for designing
parallel algorithms on current high performance platforms.
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We define the computation time Tcomp(n, p) as the maxi-
mum time it takes a processor to perform all the local
computation steps. In general, the overall performance
Tcomp(n, p) 1 Tcomm(n, p) involves a tradeoff between
Tcomp(n, p) and Tcomm(n, p). Our aim is to develop parallel
algorithms that achieve Tcomp(n, p) 5 O(Tseq/p) such that
Tcomm(n, p) is minimum, where Tseq is the complexity of the
best sequential algorithm. The important point to notice is
that, in addition to scalability, our optimization criterion
requires that the parallel algorithm be an efficient sequen-
tial algorithm (i.e., the total number of operations of the
parallel algorithm is of the same order as Tseq).

Two useful data movement patterns, transpose and
broadcast, are discussed next, and their analyses will be
included as communication primitives in the algorithms
that follow.

Given a q 3 p array on a p-processor machine, where
p divides q, the transpose (also, all-to-all personalized com-
munication) consists of rearranging the data such that the
first q/p rows of elements are destined to the first processor,
the second q/p rows to the second processor, and so on,
with the last q/p rows of the matrix destined to the last
processor. An efficient matrix transposition algorithm con-
sists of p iterations such that, during iteration i, each proces-
sor Pt prefetches the appropriate block of q/p elements
from processor P(t1i) mod p .

Next, an efficient parallel algorithm (bcast) is given
which takes q elements on a single processor and broad-
casts them to the other p 2 1 processors using just two
transpose primitives.

Performance analysis given will reflect the execution
times from implementations on the T3D, CM-5, SP-2,
and CS-2, each with p 5 32 parallel processing nodes.
The algorithms are written in SPLIT-C, a parallel extension
of the C programming language, primarily intended for
distributed memory multiprocessors. SPLIT-C can express
the capabilities of our model and provides constructs to
express data layout and split-phase assignments. The split-
phase assignment operator, :5, prefetches data from the
specified remote location into local memory. Computation
can be overlapped with the remote request, and the
sync() function allows each processor to stall until all
data prefetching is complete. The SPLIT-C language also
supplies a barrier() function for the global synchronization
of the processors.

2.1. Analysis for the transpose Primitive

The analysis for the transpose primitive is similar to that
of the LogP model analysis [14]. The algorithm to perform
a q 3 p matrix transpose on a p-processor machine oper-
ates as follows. The data layout of matrix A is straightfor-
ward; each column i of q elements is stored on processor
i, for i [ h0, ..., p 2 1j. Note that the first index of A
contains the processor number, while the second index
provides the element offset in that processor.

Processor i runs the following program:

FIG. 1. DARPA II Image understanding benchmark test image.



based on the transpose communication primitive, where q
is assumed to be larger than p. Processor 0 holds the q
elements to be broadcast in the first column of matrix A.
We compute the transpose of A, thus giving every proces-
sor q/p elements. Each processor then locally rearranges
the data so that an additional transpose will result in each
processor holding a copy of all the q elements in its column
of A [21].

The following algorithm runs on processor i:

ALGORITHM 2. bcast Communication Primitive
Input:

hAj is the q 3 p input array, with only the 0th column
as valid data.

begin
1. For loop 5 0 to p 2 1 do:

1.1 Set r 5 (i 1 loop) mod p;
1.2 Prefetch AT[i][(r p q/p) ? ? ? ((r 1 1) p q/p) 2

1] :5 A[r][(i p q/p) ? ? ? ((i 1 1) p q/p) 2 1];
2. Sync()
3. For loop 5 0 to p 2 1 do:

3.1. Set r 5 (i 1 loop) mod p;
3.2. Prefetch A[i][(r p q/p) ? ? ? ((r 1 1) p q/p) 2

1] :5 AT[r][0 ? ? ? q/p 2 1];
4. Sync()

end

Notice that at the end of Step 2, only the first q/p ele-
ments in each column are valid. Because of this, we special-
ize the transpose in Step 3 to prefetch only this first block
from every other processor.

The analysis of the bcast primitive is simple. Since this
algorithm just performs two transpositions, the complexi-
ties of the broadcasting algorithm are

5Tcomm(n, p) 5 2 St 1 Sq 2
q
pD sD;

Tcomp(n, p) 5 O(q).

(2)

2.4. Experimental Results for the bcast Primitive

The performance graphs for broadcasting using the
transpose primitive on a 32-processor CM-5, SP-2, and
CS-2 and an 8-processor Paragon are given in Fig. 7. As
expected, these graphs show that the bcast primitive takes
roughly twice the time of the transpose communication
primitive. In addition, these figures show the attained data
bandwidth per processor for this broadcasting algorithm.
As expected, we achieve approximately the same results
as those of the transpose algorithm on both machines.

3. IMAGE (DATA) LAYOUT AND TEST IMAGES

A straightforward data layout is used in these algorithms
for all platforms. The input image is an n 3 n matrix of
integers. We assign tiles of the image as equally as possible
among the processors. If p is an even power of 2, i.e.,

ALGORITHM 1. transpose Communication Primitive
Input:

hAj is the q 3 p input array.
begin

1. For loop 5 0 to p 2 1 do:
1.1 Set r 5 (i 1 loop) mod p;
1.2 Prefetch AT[i][(r p q/p) ? ? ? ((r 1 1) p q/p) 2

1] :5 A[r][(i p q/p) ? ? ? ((i 1 1) p q/p) 2 1];
2. Sync()

end

Each prefetch in Step 1.2 requests a block of q/p ele-
ments. Since each processor prefetches p 2 1 blocks of
q/p each, this transpose algorithm will take t 1 s(p 2
1)q/p communication complexity, or

5Tcomm(n, p) 5 t 1 Sq 2
q
pD s ;

Tcomp(n, p) 5 O(q).

(1)

2.2. Experimental Results for the transpose Primitive

Performance graphs for the transpose primitive execu-
tion times using SPLIT-C on a 32-processor CM-5, SP-2,
and CS-2 and 8 processor Paragon are given in Fig. 7.
These results also show the attained data bandwidth3 per
processor for the transpose primitive. For large enough
data sets on the CM-5, we achieve an average bandwidth
of 7.62 MB/s per processor, which is more than three-
fourths of the maximum user-payload bandwidth per pro-
cessor of 12 MB/s per processor [26]. This is consistent
with the results achieved by other research teams that have
achieved 6.4 MB/s per processor (Culler, [14]), and 7.72
MB/s per processor (Ranka, [38]) for similar data move-
ments on the CM-5. Note that some of these cited results
are for low-level implementations using message passing
algorithms. For large enough data sets, the SP-2 achieves
greater than 24.8 MB/s per processor for the transpose
primitive, using a high performance switch hardware rated
by the vendor as having a peak node to node bandwidth
of 40 MB/s [25]. The Meiko CS-2 achieves greater than
10.7 MB/s per processor. Note that the CS-2 result is much
less than the maximum attainable bandwidth of 50 MB/s
per processor [29] because our SPLIT-C version has not
been fully optimized to make use of the architecture’s
communications coprocessor. The 8 processor Paragon
achieves greater than 88.6 MB/s per processor, with the
maximum hardware bandwidth given by Intel as 175
MB/s per processor and application peak bandwidth as
135 MB/s per processor [27].

2.3. Analysis for the Broadcasting Primitive (bcast)

An efficient algorithm to broadcast q elements from a
single processor to p processors (the bcast primitive) is
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3 Note that throughout this paper, the rate of ‘‘MB/s’’ will always
represent 106 bytes per second.



p 5 2d, for even d, the processors will be arranged in a
Ïp 3 Ïp logical grid. For future reference, we will denote
the number of rows in this logical grid as v and the number
of columns as w. For odd d, we assign the number of rows
of the logical processor grid to be v 5 2d/2, and the number
of columns to be w 5 2d/2. Each processor initially owns
a tile of size (n/v) 3 (n/w). For future reference, we assign
q 5 n/v and r 5 n/w. We assume that the p processors
are labeled consecutively from 0 to p 2 1 and are assigned
in row-major order to the logical processor grid just de-
scribed.

Several test images have been used to test the correctness
and the performance of the algorithms presented here.
These test images, shown in Fig. 2, are generated at run-
time, with images 1–4, 7, and 9 augmented to the needed
image size, while images 5, 6, and 8 are scaled appropri-
ately. Figure 1 is a 512 3 512 image with 256 gray-levels
from the Second DARPA Image Understanding Bench-
mark [40]. The histogramming algorithm is assumed to
be correct because ok21

i50 H[i] 5 n2, and for regular patterns,
it is easy to verify that each H[i]/n2 equals the percentage
of area that gray level i covers in the image. Verifying
the connected components algorithm is more difficult. In
addition to the DARPA Benchmark Image, we include
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the most widely used test patterns for binary images. A
catalog of nine automatically generated scalable images is
used, as shown in Fig. 2, and include horizontal, vertical,
and forward- and back-slanting diagonal bars, a cross, a
filled disc, concentric circles with thickness, four squares
inset from the four corners, and a dual-spiral pattern, a
‘‘difficult’’ image [36].

4. HISTOGRAMMING

Histogramming is a useful image processing primitive.
One application is histogram normalization (or equaliza-
tion), a technique that flattens the histogram and, thus,
improves the contrast of an image by ‘‘spreading out’’
colors which might be too clumped together for human
visual distinction. There are also several image segmenta-
tion techniques based upon detection of peaks and valleys
in the histogram.

Let k be the number of gray levels in the n 3 n input
image X; without loss of generality, k is assumed to be a
power of 2. Note that this implies that for k $ p, the value
of k/p is an integer $1. Our histogramming algorithm is
quite simple. The first step consists of creating an array
Hi[0, ..., k 2 1] on every processor i, such that each proces-

FIG. 2. Binary test images.



cursive strategy to split problems into smaller subproblems,
and, given the solutions to these subproblems, merge the
results into the final solution. It is common to have either
an easy splitting algorithm and a more complicated merg-
ing, or vice versa, a hard splitting followed by an easy
merging. In our parallel connected components algorithm,
the splitting phase is trivial and implicit, while the merging
process requires more work.

Each processor holds a unique tile of the image, and
hence can find the initial connected components of its
tile by using a standard sequential algorithm based upon
breadth-first search. Next, the algorithm iterates log p
times,4 alternating between combining the tiles in hori-
zontal merges of vertical borders and vertical merges of
horizontal borders, with the number of horizontal merges
equal to log w and the number of vertical merges equal
to log v, since log p 5 log(v p w) 5 log v 1 log w. Our

sor tallies the number of gray levels in its own (n/v) 3
(n/w) subimage into its array Hi[,]. The purpose of the
next step is to rearrange the data so that the tallies of each
gray level reside on the same processor. If k , p we use
a truncated transpose primitive to put each row into a pro-
cessor, Pi , 0 # i # k 2 1. If k $ p we transpose k/p rows
of the local histograms into each processor, such that each
processor, Pi , has all the intermediate sums needed to
compute H[i k/p] through H[(i 1 1)k/p 2 1]. The routing
step is followed by local computations of the histogram,
which can be done in O(k) operations. Next, one processor,
P0 , prefetches the results by doing a circular data move-
ment, as described in Section 2, and outputs the k-bar
histogram of the image.

The communication complexity can be estimated as fol-
lows. Two main communication steps are used in our algo-
rithm. The first is a transpose primitive of the k 3 p histo-
gram array and takes Tcomm(n, p) 5 t 1 (k 2 max(k/p,
1))s. The second communication collects the histogram
bars on a single processor and takes Tcomm(n, p) # t 1
(k 2 max (k/p, 1))s. Thus, the histogramming algorithm
has the following complexities:

5
Tcomm(n, p) # 2(t 1 ks);

Tcomp(n, p) 5 O Sn2

p
1 kD.

(3)

4.1. Experimental Results for Histogramming

The above analysis indicates that, for fixed p and k, the
communication complexity is independent of the problem
size. Hence, as n increases, we expect the local computation
to dominate.

The histogramming algorithm has been implemented on
a CM-5 with p 5 16, 32, 64, and 128 processors, and the
algorithm’s performance is plotted in Fig. 3 for 256 gray
levels for images ranging from 32 3 32 to 4096 3 4096
pixels in size, and expanded in Fig. 9 for 128 3 128 to 1024
3 1024 images on 32 and 64 processors. Corresponding
performance graphs are given for the IBM SP-2 in Fig. 13.
Plots indicate quadratic performance as a function of n for
fixed p, and scalability in terms of p. Hence, our theoretical
analysis is supported.

Please refer to the plot in Fig. 3 for an illustration of the
scalability of the histogramming algorithm’s performance.
Since computation dominates for large n, the algorithm
runs as O(n2/p). We have plotted n2 vs time for four con-
figurations of the CM-5. The resulting plot shows the linear
relationship between time and image size for each fixed p.
Also, when the number of processors doubles, the running
time approximately halves.

5. CONNECTED COMPONENTS OF BINARY IMAGES

The high-level strategy of our connected components
algorithm uses the well-known divide and conquer tech-
nique. Divide and conquer algorithms typically use a re-
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4 Note that throughout this paper ‘‘log x’’ will always be the logarithm
of x to the base b 5 2, i.e., log2 x.

FIG. 3. Histogramming and connected components scalability on the
CM-5.



algorithm uses novel techniques to perform the merges
and to update the labels. We start by describing the initial
sequential connected components algorithm.

5.1. Initialization and Sequential Connected Components

The initialization consists of entirely local operations on
each processor. Pixels on each tile are examined in row-
major order fashion. If a pixel is an unmarked, colored
pixel, a breadth-first search procedure starting at that pixel
labels all connected like-colored pixels within that tile with
a globally unique label. When a pixel is visited in the
labeling procedure, it becomes marked. During the initial
row-major order search, for 8-connectivity, only the four
pixels to the right, below-left, below, and below-right need
to be examined for connectivity. For 4-connectivity, only
the pixels to the right and below need to be examined.
This sequential connected components algorithm runs in
O(uV u 1 uE u) where uV u is the number of vertices, and uE u
is the number of edges searched. Since uE u # 8 uV u, this
algorithm runs in O(uV u) 5 O(n2/p) time. The result is an
array of nonnegative integers corresponding to the unique
label values of the connected components in the subimage.

The initial labeling of each pixel with local offset (i, j)
in the processor with logical grid position (I, J) will be
(Iq 1 i)n 1 ( Jr 1 j) 1 1. This labeling ensures that each
processor will obtain unique labelings across the subimages
after running the sequential connected components step,
without having to do any communication among the pro-
cessors. Thus, the initialization step runs in

Tcomp(n, p) 5 O Sn2

pD. (4)

5.2. Merging Algorithm—Overview

Now we are ready to begin the merging phase. As men-
tioned above, we merge the p subimages into larger and
larger image sections with consistent labelings. There will
be log p iterations since we cut the number of uncombined
subimages in half during each iteration. Unlike previous
connected components algorithms, we use a technique
which identifies processors as either group managers or
clients during each phase. The group managers have the
task of organizing the retrieval of boundary data, per-
forming the merge, and creating the list of label changes.
Once the group managers broadcast these changes to their
respective clients, all processors must use the information
to update their tile hooks, data structures which point to
connected components on local tile borders. See Figure 5
for an illustration of the tile hook data structure in which
three tile hooks contain the information needed to update
the border pixels. The clients assist the group managers
by participating in the coalescing of data during each merge
phase. Finally, the complete relabeling is performed at the
very end using information from the tile hooks.

Without loss of generality, we first perform a horizontal
merge along every other vertical border, then a vertical

179HISTOGRAMMING AND CONNECTED COMPONENTS

merge along every other horizontal border, alternating
orientation until we have merged all the tiles into one
consistent labeling. We merge vertical borders exactly
log w times, where w is the number of columns in the
logical processor grid. Similarly, we merge horizontal bor-
ders exactly log v times, where v is the number of rows in
the logical processor grid.

The merging algorithm for a horizontal merge is similar
to that of a vertical merge. Most of the code is identical,
except for substituting ‘‘up’’ for ‘‘left’’ and ‘‘down’’ for
‘‘right.’’ However, one nontrivial change relates to identi-
fying during each iteration which processors will be group
managers and which will be clients, concepts defined pre-
cisely in the following section.

5.3. Merging Algorithm—Group Managers’ Task

We perform log p merge iterations, alternating between
horizontal and vertical merge phases. Let t represent the
current merge phase iteration, with 1 # t # log p. For each
odd merge iteration t, 1 # t # log p, we will perform the
((t 1 1)/2)th horizontal merge phase, and similarly, for
each even merge iteration t, 1 , t # log p, we will perform
the (t/2)th vertical merge phase.

During each merge, a subset of the processors will act as
group managers. These designated processors will prefetch
the necessary border information along the column (or
row) that each is located upon in the logical processor grid,
set up an equivalent graph problem, solve the sequential
connected components graph problem, note any changes
in the labels, and store these changes ((ai , bi) pairs) in a
shared structure. Each client decides which processor is
its current group manager and waits until the list of label
changes is ready. Each retrieves the list, and finally, all
processors make the necessary updates to a proper subset
of their labels.

During odd merge iterations t, the horizontal merge
phases, a processor is a group manager if it resides in the
logical grid with both

• a row index whose binary representation ends with a
0 followed by ((t 1 1)/2 2 1) 1’s (or just ending in a 0
when t 5 1), and

• a column index whose binary representation ends in
(t 1 1)/2 0’s.

Similarly, during the even merge iterations t, the vertical
merge phases, a processor is a group manager if it resides
in the logical grid with both

• a row index whose binary representation ends in t/2
0’s, and

• a column index whose binary representation ends with
a 0 followed by (t/2 2 1) 1’s (or just ending in a 0 when
t 5 2).

An example data layout and merge is given in Fig. 4.
This image of size 512 3 512 is distributed onto a 4 3 8
logical processor grid, with each tile being 128 3 64 pixels in



proved by using a second processor, called a shadow man-
ager, which is designated as the processor adjacent to the
group manager, directly across the border being merged.
Using this implementation, both the group and shadow
manager prefetch only their side of the border, respec-
tively, and sort each border by label. The reasons for this
sorting will be described below. The group manager then
prefetches the sorted results from the shadow manager
and continues on with the algorithm. From this point on,
the shadow manager reverts back to being a client of this
group manager.

The total complexities for prefetching summed up over
the log w horizontal merges and the log v vertical
merges are

5
Tcomm(n, p) # Olog v

r51
(t 1 4q2rs) 1 Olog w

k51
(t 1 4r2ks)

# t log p 1 8ns ;

Tcomp(n, p) 5 O SOlog v

r51
(4q2r) 1 Olog w

k51
(4r2k)D

5 O(n).

(5)

The merging problem is converted into finding the con-
nected components of a graph represented by the border
pixels. We use an adjacency list representation for the
graph, and add vertices to the graph representing colored
pixels. Two types of edges are added to the graph. First,
pixels are scanned down the left (or upper) border, and
edges are strung linearly down the list between pixels con-
taining the same connected component label. The same is
done for pixels on the right (or lower) border. The second
step adds edges between pixels of the left (upper) and
right (lower) border which are both like-colored pixels and
adjacent to each other. We scan down the left column
(upper row) elements, and if we are at a colored pixel, we
check the pixels in the right column (lower row) adjacent
to it. In order to add the first type of edges, the pixels are
sorted according to their label for both the left (upper)
and right (lower) border by using radix sort.5 Note the
discussion above regarding the use of a shadow manager.
A secondary processor is used to prefetch and sort the
border elements on the opposite side of the border from
the group manager, and the results are then sent to the
group manager. This sort takes Tcomp(n, p) 5 O(uV u) steps
for a border of uV u nodes.6 The maximum number of edges
attached to each vertex in this graph is at most five; two
edges in its own column to pixels above and below of the
same label plus the three adjacent pixels in the right col-

size. This example shows the second merge step, a vertical
merge, for t 5 2. Group managers are, thus, any processor
sitting in the logical processor grid with both last bits of
the row and column indices’ binary representation equal
to ‘‘0.’’ These group managers, along with their respective
borders to be merged, are circled in this figure. Suppose
now that p $ 128, and we are at the t 5 7th merge phase,
which will be a horizontal merge. A processor in this case
is a group manager if it is in a logical grid position whose
row index’s binary representation ends with 0111, and
whose column index’s binary representation ends with
0000.

For a horizontal merge, the group manager will prefetch
the pixel colors and labels from the vertical borders to be
merged, which spans across 2(t11)/2 rows of processors.
There are 2q (5 2n/Ïp) pixels per processor row in the
border to be merged, meaning that 2q2(t11)/2 2 q pixels
and an equal number of labels need to be prefetched from
the clients, while q pixels and q labels are locally available.
Thus, each prefetch in the horizontal merge can be done
in Tcomm(n, p) # t 1 4q2(t11)/2s and Tcomp(n, p) 5
O((n/Ïp)2(t11)/2)).

Similarly for a vertical merge, the group manager will
prefetch the pixel colors and labels from the horizontal
borders to be merged, which spans across 2t/2 columns of
processors. There are 2r pixels per processor column in
the border to be merged, meaning that 2r2t/2 2 r pixels
and an equal number of labels need to be prefetched
from the clients for each iteration, while r pixels and r
labels are locally available. Thus, each prefetch in the
vertical merge can be done in Tcomm(n, p) # t 1 4r2t/2s
and Tcomp(n, p) 5 O((n/Ïp)2t/2).

Note that the running time of this prefetching is im-
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FIG. 4. Data layout of a 512 3 512 image on 32 processors—vertical
merge (t 5 2). Merge Phase 2: Circled processors are group managers.
Dotted borders were merged in Phase 1. Circled borders will be merged
in Phase 2.

5 Note that whenever radix sort is mentioned in this paper, the actual
coding uses the standard UNIX quicker-sort function for smaller sorts,
and radix sort for larger sorts, using whichever sorting method is fastest
for the given input size.

6 Our radix sort uses four passes; each pass will sort on one byte of
the 32-bit key by using 256 buckets.



umn. Thus, inserting an edge into the adjacency list takes
at most five steps, and we add at most 5uV u edges. For
each horizontal merge step, the number of vertices
uV u # 2q2(t11)/2, and for each vertical merge step, uV u #
2r2t/2. Thus, the construction of this graph summed over
all the iterations of the connected components algorithm
takes Tcomp(n, p) 5 O (olog v

r51 (2q2r) 1 olog w
k51 (2r2k)) 5 O(n).

A sequential breadth-first search based connected com-
ponents algorithm finds the connected components of this
graph. It runs in O(uV u 1 uE u) steps, with uV u, uE u 5
O(q2(t11)/2) for horizontal merges and O(r2t/2) for vertical
merges. The pixels in this graph are then scanned again,
and any changes in the labeling (a changing to label b)
are eventually stored in a sorted array of all unique changes
(ai , bi). The following algorithm describes the procedure
for creating the sorted array of label changes from the
original arrays.

• Step (1). Copy all label pairs, (a, b), where label a has
changed to label b, into a contiguous array.

• Step (2). Radix sort this array, using a as the sorting
index.

• Step (3). Scan down the sorted array, copying all
unique (a, b) pairs into a new array.

There are at most 2uV u changes, so Steps (1), (2), and (3)
take O(uV u) time. Thus, the creation of the sorted array of
label changes takes O(uV u) time. Summing over the log p
steps, this is equivalent to Tcomp(n, p) 5 O (olog v

r51 (2q2r) 1
olog w

k51 (2r2k)) 5 O(n).
The array structure is actually two contiguous arrays,

one holding the obsolete labels (a’s) and the other holding
the corresponding new labels (b’s). The size of these arrays
of a’s and b’s is also placed into a shared memory location.

Now each processor hits a barrier and waits until all
processors have completed their tasks. After the barrier,
a group manager will update its pixels’ labels in O(n2/p)
by the following procedure.

After the initial tile labelings, but before the merging
iterations, each processor creates a sorted array of hooks
to each local component containing a border pixel of the
tile. There will be exactly one hook for each of these
components, including the initial label of that component
and the offset address in the tile of any pixel in that compo-
nent. This is done as follows:

• Step (1). For each colored pixel on the tile border with
offset position (i, j)

(1.1). Place (label [(i, j)], (i, j)) at the next position
of an array.

• Step (2). Radix sort this array, using label as the sort-
ing index.

• Step (3). Scan down the sorted array, copying all
unique (label [(i, j)], (i, j)) pairs into a new array.

This initialization takes computational complexity of
O(n/Ïp) for each of Steps (1), (2), and (3), yielding a total
of Tcomp(n, p) 5 O(n/Ïp).
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At the conclusion of each of the log p merging steps,
only the labels of pixels on the border of each tile are
updated. There is no need to relabel interior pixels since
they are not used in the merging stage. Only boundary
pixels need their labels updated. The procedure is simple;
for each colored pixel on the boundary, we perform a
binary search of the list of label changes in Tcomp(n, p) 5
O((n/Ïp) log uV u) per step. The total computational
complexity over the log p merging iterations is then
O (olog v

r51 [(n/Ïp) log(2q2r)] 1 olog w
k51 [(n/Ïp) log(2r2k)]) 5

O((n/Ïp) log n log p).
At the end of the last merging step, each processor must

update its interior pixel labels. Each hook described above
is compared with the current label at the hook’s offset
position index. If the hook’s label label [i ] is different from
the current label at position i, the processor runs a breadth-
first search relabeling technique beginning at pixel i, rela-
beling all the connected pixels’ labels to the new label.
Since there is only one hook per tile component on the
border, the breadth-first search relabeling procedure takes
O(n2/p) time.

The total complexity associated with updating the labels

FIG. 5. An example of tile hooks.

FIG. 6. Connected components of the 512 3 512 DARPA Bench-
mark image on various machines.
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FIG. 7. Transpose and broadcasting performance graphs.



of each tile is Tcomp(n, p) 5 O((n/Ïp) log(n/Ïp) 1
(n/Ïp) log n log p 1 n2/p) 5 O(n2/p), assuming p # n for
large enough n. For n $ 128, p # n/8 is sufficient.

After each merging step label update, a manager hits
another barrier, waiting for the end of this iteration. In
summary, the group managers’ routine has the following
complexities:

5
Tcomm(n, p) # t log p 1 8ns;

Tcomp(n, p) 5 O Sn2

p
1 nD.

(6)

5.4. Merging Algorithm—Clients’ Task

The client processors are any processors not selected to
run the group manager tasks during the current iteration.
Each client calculates the logical processor grid address of
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the manager in charge of its border to be merged and waits
for the first barrier. After this barrier, each client prefetches
the size (chSize) of the list of change pairs from its manager
in Tcomm(n, p) # t 1 2ts, where (t 1 1)/2 and t/2 are the
numbers of vertical and horizontal merges, respectively,
performed inclusively during the tth merge phase.

Next, each client prefetches a block of chSize (a, b)
change pairs from its manager. This is done in
Tcomm(n, p) # t 1 2(2t)2q2(t11)/2s for horizontal merges,
and Tcomm(n, p) # t 1 2(2t)2r2t/2s for vertical merges,
since there are at most 2q2(t11)/2 (or 2r2t/2) changes, and
exactly (2t 2 1) processors requesting these change pairs
from each group manager. The client processors use the
same procedure described in the previous section for rela-
beling their border pixels at the end of each merge itera-
tion, and the interior pixels after the final merge. After
each pixel label update, each client hits another barrier
and waits for the end of this iteration. Over the log p

FIG. 8. Histogramming performance.
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FIG. 9. Histogramming algorithm performance graph on the CM-5, with p 5 32 and p 5 64 in the left and right columns, respectively. Rows
1, 2, 3, and 4 correspond to images of size 128 3 128, 256 3 256, 512 3 512, and 1024 3 1024, respectively.



iterations, the clients’ routine has the following complex-
ities:





Tcomm(n, p) # Olog p

l51
[t 1 2ls] 1 Olog v

r51
[t 1 2(22r)2q2rs ]

1 Olog w

k51
[t 1 2(22k21)2r2ks]

# (2 log p)t 1 (14np 1 2p)s;

Tcomp(n, p) 5 O SOlog p

l51
2l 1 Olog v

r51
[2(22r)2q2r]

1 Olog w

k51
[2(22k21)2r2k]D1 O Sn2

pD
5 O Sn2

p
1 npD.

(7)

Clearly, for large p, this is not an optimal procedure for
distributing the list of change pairs from a group manager
to the respective clients. If a manager has f(i) 2 1 clients
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at the end of iteration i, 0 # i , log p, instead of sending
the entire list of c(i) change pairs to f(i) 2 1 processors,
a distribution algorithm based on the transpose communi-
cation primitive can be used. Using this algorithm, a man-
ager will send blocks of size c(i)/f(i) to each of f(i) proces-
sors during the first phase. Each of the f(i) processors
repeat this operation by concurrently sending its block to
the other processors, in a circular fashion. The complexities
for this are

5Tcomm(n, p) # 2 St 1 Sc(i) 2
c(i)
f(i)DsD

Tcomp(n, p) 5 O Sc(i)
f(i)D.

(8)

The clients’ complexities are thus improved to





Tcomm(n, p) # Olog p

l51
[t 1 2ls] 1 Olog v

r51
[2(t 1 2q2rs)]

1 Olog w

k51
[2(t 1 2r2ks)]

# (3 log p)t 1 (16n 1 2p)s;

Tcomp(n, p) 5 O SOlog p

l51
2l 1 Olog v

r51
F2q2r

22r G
1 Olog w

k51
F2r2k

22k21GD1 O Sn2

pD
5 O Sn2

pD.

(9)



5.5. Parallel Complexity for Connected Components

Thus, for p # n, the total complexities for the parallel
connected components algorithm are

5
Tcomm(n, p) # (4 log p)t 1 (24n 1 2p)s

5 (4 log p)t 1 O Sn2

pDs ;

Tcomp(n, p) 5 O Sn2

pD.

(10)

Clearly, the computational complexity is the best possi-
ble asymptotically. As for the communication complexity,
it seems that intuitively a latency factor t has to be incurred
during each merge operation, and hence the factor (log p)t.

5.6. Experimental Results for Connected Components

Our theoretical analysis indicates that our connected
components algorithm is scalable whenever p # n/c, where

FIG. 10. Connected components algorithm performance graph on
the CM-5 (p 5 16).



details are very similar to those of the binary case and can
be found in [4].

Results for the 256-gray level DARPA Image Under-
standing Benchmark image of size 512 3 512 pixels, shown
in Fig. 1, are given in Fig. 6 for p 5 16 to 128 processors
on the CM-5, and for a wide range of configurations on
the SP-1 and Meiko CS-2 parallel machines.

7. IMPLEMENTATION NOTES

Note that the performance graphs for the CM-5, Figs.
3, 6, and 7–12, are for SPLIT-C (version 1.2) programs
linked with the CM-5 CMMD Message Passing Libraries
(version 3.2). Figure 6 uses the message passing library
MPL on the IBM SP-1, and Figs. 7, 13, and 14 are for the
IBM SP-2 with thin nodes and also MPL. Figures 6 and 7
are run on a Meiko CS-2 with SPLIT-C linked with the Elan
Widgets message passing library. Note that our port of
SPLIT-C to the CS-2 results in less than optimal perfor-
mance because this SPLIT-C installation has not been fully
optimized to make use of Elan, the low level communica-

c is approximately 26 from the first expression in (10). We
have implemented our algorithm in SPLIT-C; the resulting
performance on the CM-5 is plotted for images ranging
from 128 3 128 to 1024 3 1024 pixels in size in Figs. 10–12
for p 5 16, 32, and 64 processors. Figure 3 presents the
summary on the performance of our connected compo-
nents algorithm on the CM-5 and clearly shows the scalabil-
ity of our algorithm. Comparable results for execution on
the IBM SP-2 are given in Fig. 14. See [4, 5] for additional
performance results.

6. CONNECTED COMPONENTS OF GRAY
SCALE IMAGES

An n 3 n image with k gray levels, (0, ..., k 2 1), similarly
can have its connected components labeled. A 0-pixel is
assumed to be background, while each component is the
set of like-colored connected pixels. Our algorithm for gray
scale connected components of images is based upon the
binary image algorithm in the previous section. Again,
there will be three phases, an initial labeling, a merge of
subimages, and a final updating of interior labels. The
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FIG. 11. Connected components algorithm performance graph on
the CM-5 (p 5 32).

FIG. 12. Connected components algorithm performance graph on
the CM-5 (p 5 64).
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FIG. 13. Histogramming algorithm performance graph on the SP-2 (p 5 16).
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