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Abstract

This paper presents efficient and portable implementa-

tions of two useful primitives in image processing algo-

rithms, histogramming and connected components. Our

general framework is a single-address space, distributed

memory programming model. We use efficient techniques

for distributing and coalescing data as well as efficient

combinations of task and data parallelism. Our connected

components algorithm uses a novel approach for paral-

lel merging which performs drastically limited updating

during iterative steps, and concludes with a total con-

sistency update at the final step. The algorithms have

been coded in SPLIT-C and run on a variety of plat-

forms. Our experimental results are consistent with the

theoretical analysis and provide the best known execution

times for these two primitives, even when compared with

machine-specific implementations. More efficient imple-

mentations of SPLIT-C will likely result in even faster

execution times.

Keywords: Histogramming, Connected Components,

Image Processing, Image Understanding, Scalable Paral-

lel Processing, Parallel Algorithms.

1 Problem Overview

Given an n x n image with k grey levels on a p proces-

sor machine (p < nz), we wish to develop efficient and
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portable parallel algorithms to perform various primitive

image processing computations. Efficiency is a perfor-

mance meaaure used to evaluate parallel algorithms. This

measure provides an indication of the effective utilization

of the resources relative to the given parallel algorithm.

For example, an algorithm with an efficiency near one

runs approximately p times faster on p processors than

the same algorithm on a single processor. Portability

refers to code that is written independently of low-level

primitives reflecting machine architecture or size. Our

goal is to develop portable algorithms that are scalable in

terms of both image size and number of processors, when

run on distributed memory multiprocessors.

Our first algorithm computes the histogramming of an

image; i.e., the output consists of an array H [0. .k – 1] held

in a single processor such that ll[i] is equal to the num-

ber of pixels in the image with grey level i. The second

algorithm performs the connected components of images

([1], [6], [7], [12], [14]). The task of connected compo-

nent labeling is cited as important in object recognition

in the DARPA Image Understanding benchmarks ([28]),

and also can be applied to several computational physics

problems such as percolation ([5], [25]) and various cluster

Monte Carlo algorithms for computing the spin models

of magnets such as the two-dimensional Ising spin model

([2], [4]). All pixels with grey level (or ‘color’) O are as-

sumed to be background, while pixels with color > 0 are

foreground objects. A connected component in the image

is a maximal collection of pixels such that a path exists

between any pair of pixels in the component. Note that

we are using the notion of 8-connectivity, meaning that

two pixels are adj scent if and only if one pixel lies in any

of the eight positions surrounding the other pixel, or 4-

connectivity, in which only the north, east, south, and

west pixels are adjacent. Each pixel in the image will re-

ceive a positive integer label; pixels will have the same

label if and only if they belong to the same connected

component. Also, all O-pixels will receive a label of O.
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The majority of previous parallel histogramming algor-

ithms are architecture- or machine-specific and do not

port well to other platforms (e.g. [17], [23], [13]). Using

parallel machines such as the Thinking Machines CM-5,

IBM SP-1 and SP-2, Meiko CS-2, and Intel Paragon, our

algorithm takes between 230 and 730 nanoseconds of work

per pixel, while the best previous implementations, all on

special purpose image processing or SIMD machines, have

taken between 2.5 to 540 microseconds of work per pixel,

where the total work is defined to be the product of the

execution time and the number of processors.

As with the histogramming algorithms, most of the pre-

vious connected components parallel algorithms as well

are architecture- or machine-specific, and do not port eas-

ily to other platforms (e.g. [10], [18], [24], [11], [29], [22],

[13]). On parallel machines such as the CM-5, SP-1 and

SP-2, CS-2, and Paragon, our connected components al-

gorithm uses between 3.5 and 50 microseconds of work

per pixel, while recent implementations on identical ar-

chitectures have needed 50 to 300 microseconds of work

per pixel, where the total work is defined to be the prod-

uct of the execution time and the number of processors.

See [3] for an explicit table of both the histogramming

and connected component implementation results.

Section 2 describes the algorithmic model used to ana-

lyze the algorithms whereas Section 3 describes the input

images used, as well as the data layout on the Thinking

Machines CM-5, IBM SP-1 and SP-2, Meiko CS-2, and

Intel Paragon. The histogramming algorithm is presented

in Section 4, and the connected components algorithm is

described in Section 5.

The experimental data obtained reflect the execution

times from implementations on the TMC CM-5, IBM SP-

1 and SP-2, Meiko CS-2, and the Intel Paragon, with the

number of parallel processing nodes ranging from 16 to

128 for each machine when possible. The shared memory

model algorithms are written in SPLIT-C [8], a shared

memory programming model language which follows the

SPM13 (single program multiple data) model on these

parallel machines, and the source code is available for

distribution to interested parties.

2 Block Distributed Memory

Model

We use the Block Distributed Memory (BDM) Model

([15], [16]) as a computation model for developing and

analyzing our parallel algorithms on distributed memory

machines. This model allows the design of algorithms

using a single address space and does not assume any

particular interconnection topology. The model captures

performance by incorporating a cost measure for inter-

processor communication induced by remote memory ac-

cesses. The cost measure includes parameters reflecting

memory latency, communication bandwidth, and spatial

locality. This model allows the initial placement of data

and prefetching.

The complexity of parallel algorithms is evaluated in

terms of two measures: the computation time T’CO~P(n, p),

.Omm(n, p). The measureand the communication time T

Tcomp(n, p) refers to the maximum of the local compu-

tations performed on any processor as measured on the

standard sequential model. The communication time

TCO~~(n, p) refers to the total amount of communications

time spent by the algorithm in accessing remote data.

Using the BDM model, an access operation to a remote

location takes r + 1 time, and 1 prefetch read operations

can be executed in r + i time, where ~ is the normalized

maximum latency of any message sent in the communi-

cations network. No processor can send or receive more

than one word at a time.

Two useful data movement patterns, matrix transposi-

tion and broadcasting, are discussed next, and their anal-

yses will be included as primitives in the algorithms that

follow.

Given a q x p matrix on a p processor machine, where

p divides q, the matrix transposition consists of rearrang-

ing the data such that the first ~ rows of elements are

moved to the first processor in ro;-major order form, the

second ~ rows to the second processor, and so on, with
r

the last ~ rows of the matrix moved to the last proces-

sor. An efficient matrix transposition algorithm consists

of p iterations such that, during iteration i, each pro-

cessor Pt prefetches the appropriate block of $ elements

from processor P[~+i)mOdP. The complexities for matrix

transposition are

{

Tccmm(n,p) = T+ (q- ;);
TCOmp(TP) = O(q).

(1)

An efficient BDM algorithm which takes q elements on

a single processor and broadcasts them to the other p – 1

processors uses just two matrix transpositions.

Performance analysis reflects the execution times from

implementations on the CM-5, SP-2, and CS-2, each with

p = 32 parallel processing nodes. The algorithms are

written in SPLIT-C, a parallel extension of the C program-

ming language, primarily intended for distributed mem-

ory multiprocessors. SPLIT-C can express the capabilities

of the BMD model and provides a shared global address

space, constructs to express data layout, and split-phase

assignments. The split-phase assignment operator, :=,

prefetches data from the specified remote location into

local memory. Computation can be overlapped with the

remote request, and the sync( ) function allows each pro-

cessor to stall until all data prefetching is complete. The

SPLIT-C language also supplies a barrier( ) function for

the global synchronization of the processors.

Performance graphs for matrix transposition and

broadcasting execution times using SPLIT-C on a 32 pro-
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cessor CM-5, SP-2, and 8 processor Paragon are given

in Figure 7. These figures also show the attained data

bandwidth per processor for the transpose algorithm.

For large enough data sets on the CM-5, we achieve an

average bandwidth of 7.62 MB/s per processor, which is

more than three-fourths of the maximum user-payload

bandwidth per processor of 12 MB/s per processor [20].

This is comparable to the results achieved by other re-

search teams that have achieved 6.4 MB/s per processor

(Culler et.al., [9]), and 7.72 MB/s per processor (Wang

et al., [27]) for similar data movements on the CM-5.

Note that some of these cited results are for low-level

implement ations using message passing algorithms. For

large enough data sets, the SP-2 achieves greater than

24.8 MB/s per processor for the matrix transposition al-

gorithm, using a high performance switch hardware rated

by the vendor as having a peak node to node bandwidth of

40 MB/s [19]. The 8 processor Paragon achieves greater

than 88.6 MB/s per processor, with the maximum hard-

ware bandwidth given by Intel as 175 MB/s per processor

and application peak bandwidth as 135 MB/s per proces-

sor [21].

3 Image (Data) Layout and Test

Images

A straightforward data layout is used in these algorithms

for all platforms. The input image is an n x n matrix

of integers. We assign tiles of the image as equally as

possible among the processors. If p is an even power

of two, i.e. p = 2d, for even d, the processors will be

arranged in a @ x W logical grid. For future reference,

we will denote the number of rows in this logical grid as

v and the number of columns as w. For odd d, we assign

the number of rows of the logical processor grid to be

[$1,v = 21?], andthenumber of columns to be w = 2

Each processor initially owns a tile of size ~ x ~. For

future reference, we assign q = ~ and r = ~. We assume

that the p processors are labeled consecutively from O to

P – I and are assigned in row-major order to the logical

processor grid just described.

Several test images have been used to test the correct-

ness and the performance of the algorithms presented

here. Figure 3 is a 512 x 512, 256 grey-level, image

from the Second DARPA Image Understanding Bench-

mark [28]. The histogramming algorithm is assumed to

be correct because ~~~~ H[i] = n2, and for regular Pat-

terns, it is easy to verify that each lI[i]/n2 equals the

percentage of area that grey level i covers in the image.

Verifying the connected components algorithm is more

difficult. In addition to the DARPA Benchmark Image,

we include the most widely used patterns for binary im-

1Note that throughout this paper, the rate of “MB /s” will always

represent 106 bytes per second.

ages. A catalog of nine automatically generated scalable

images is used [3], and include horizontal, vertical, and

forward- and back-slanting diagonal bars, a cross, a filled

disc, concentric circles with thickness, four squares inset

from the four corners, and a dual-spiral pattern, a “diffi-

cult” image [26].

4 Histogramming

Histogramming is a useful image processing primitive.

One application is histogram normalization (or equaliza-

tion), a technique that flattens the histogram andl thus}

improves the contrast of an image by “spreading out”

colors which might be too clumped together for human

visual distinction.

Let k be the number of grey levels in the n x n input

image X, and without loss of generality, k is assumed to

be a power of two. Note that this implies that for k z p,

the value of ~ is an integer ~ 1. Our histogramming

algorithm is quite simple. The first step consists of creat-

ing an array H; [0. .k — 1]on every processor i, such that

each processor tallies the number of grey levels in its own

~ x : = $ subimage into its array Ili [A]. The purpose

of the next step is to rearrange the data so that the tallies

of each grey level reside on the same processor. If k < p

we use a truncated transpose to put each row into a pro-

cessor, pi, 0< i < k – 1. If k ~ p we transpose ~ rows of

the local histograms into each processor, such that each

processor, Pi, has all the intermediate sums needed to

[1 [
compute H i: through H (i + 1) ~ – 1]. The routing

step is followed by local computations of the histogram

which can be done in O(k) operations. Next, one pro-

cessor, PO, prefetches the results by doing a circular data

movement, as described in Section 2, and outputs the k-

bar histogram of the image.

The communication complexity can be estimated as

follows. Two main communication steps are used in

our algorithm. The first is a matrix transposition of

the k x p histogram array and takes T~~~~(n, P) =

~+(k-max(~,l)). The second communication col-

lects the histogram bars on a single processor and takes

COmrn(~,P) < T + (k - max (~, 1)). Thus, the his-T

togramming algorithm has the following complexities:

{

,Omm(n, p) < 2 (T + k) ;T

T~~mP(n,P) = O (~ + k) ~
(2)

4.1 Experimental Results for Histogram-

ming

The above analysis indicates that, for fixed p and k, the

communication complexity is independent of the problem

size. Hence, as n increases, we expect the local computa-

tion to dominate.
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The histogramming algorithm has been implemented

on a CM-5 with p = 16, 32, 64, and 128 processors, and

the algorithm’s performance is plotted in Figure 5 for

256 grey levels for images ranging from 32 x 32 to 4096 x

4096 pixels in size. Corresponding performance graphs

are given for the IBM SP- 1 and SP-2 in [3]. Plots indicate

quadratic performance as a function of n for fixed p, and

scalability in terms of p. Hence! our theoretical analysis

is supported.

Please refer to the plot in Figure 5 for an illustration

of the scalability of the histogramming algorithm’s per-

formance. Since computation dominates for large n, the

()
algorithm runs as O ~ . We have plotted n2 vs. time

for four configurations of the CM-5. The resulting plot

shows the linear relationship between time and image size

for each fixed p. Also, when the number of processors

double, the running time approximately halves.

5 Connected Components

The high-level strategy of our connected components al-

gorithm uses the well-known divide and conquer tech-

nique. Divide and conquer algorithms typically use a

recursive strategy to split problems into smaller sub-

problems, and, given the solutions to these subproblems,

merge the results into the final solution. It is common to

have either an easy splitting algorithm and a more com-

plicated merging, or vice versa, a hard splitting, following

by easy merging. In our parallel connected components

algorithm, the splitting phase is trivial and implicit, while

the merging process requires more work.

Each processor holds a unique tile of the image, and

hence can find the initial connected components of its

tile by using a standard sequential algorithm based upon

breadth-first search. Next, the algorithm iterates log p

times2, alternating between combining the tiles in hori-

zontal merges of vertical borders and vertical merges

of horizontal borders, with the number of horizontal

merges equal to log w and the number of vertical merges

equal to log v, since logp = log(v *w) = log v+-log w. Our

algorithm uses novel techniques to perform the merges

and to update the labels. We start by describing the ini-

tial sequential connected components algorithm.

5.1 Initialization and Sequential Con-

nected Components

The initialization consists of entirely local operations on

each processor. Pixels on each tile are examined in row-

major order fashion. If a pixel is an unmarked, colored

pixel, a breadth-first search procedure starting at that

pixel labels all connected like-colored pixels within that

2 Note that throughout this paper “log Z“ will always be the Iog-

arithm of z to the base b =.,.2, Le. Iogz r.

tile with a globally unique label. When a pixel is vis-

ited in the labeling procedure, it becomes marked. Dur-

ing the initial row-major order search, for 8-connectivity,

only the four pixels to the right, below-left, below, and

below-right, need to be examined for connectivity. For 4-

connectivity, only the pixels to the right and below need

to be examined. This sequential connected components

algorithm runs in 0( IVI + IEl) where 1V I is the number of

vertices, and IE{ is the number of edges searched. Since

IEI < 81VI, this algorithm runs in O(IVI) = O(x) time.

The result is an array of positive integers corresponding

to the unique label values of the connected components

in the subimage.

The initial labeling of each pixel with local offset (i, j)

in the processor with logical grid position (1, J) will be

(lq + i)n + (Jr+ j) + 1. This labeling ensures that

each processor will obtain unique labelings across the

subimages after running the sequential connected com-

ponents step, without having to do any communication

among the processors. Thus, the initialization step runs

in TCOmP(n, p) = O(%).

5.2 Merging Algorithm - Overview

Hook #1 / / Hook #2

I
Border Pix& on a Tile

Figure 1: An example of Tile Hooks

Now we are ready to begin the merging phase. As men-

tioned above, we merge the p subimages into larger and

larger image sections with consistent labelings. There

will be logp iterations since we cut the number of uncom-

bined subimages in half during each iteration. Unlike pre-

vious connected components algorithms, we use a tech-

nique which identifies processors as group managers or

clients during each phase. The group managers have the

task of organizing the retrieval of boundary data, per-

forming the merge, and creating the list of label changes.

Once the group managers broadcast these changes to their

respective clients, all processors must use the information

to update their tile hooks, data structures which point

to connected components on local tile borders. See Fig-

ure 1 for an illustration of the tile hook data structure
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in which three tile hooks contain the information needed

to update the border pixels. The clients assist the group

managers by participating in the coalescing of data dur-

ing each merge phase. Finally, the complete relabeling is

performed at the very end using information from the tile

hooks.

Without loss of generality, we first perform a horizon-

t al merge along every other vertical border, then a verti-

cal merge along every other horizontal border, alternating

orientation until we have merged all the tiles into one con-

sistent labeling. We merge vertical borders exactly log w

times, where w is the number of columns in the logical

processor grid. Similarlyl we merge horizontal borders

exactly log v times, where v is the number of rows in the

logical processor grid.

The merging algorithm for a horizontal merge is similar

to that of a vertical merge. Most of the code is identi-

cal, except for substituting “up” for “left” and “down”

for “right .“ However, one nontrivial change relates to

identifying during each iteration which processors will be

group managers and which will be clients, concepts
defined precisely in the following section.

5.3 Merging Algorithm - Group Man-

agers’ Task

We perform log p merge iterations, alternating between

horizontal and vertical merge phases. For each odd merge

iteration t, 1 s t < log p, we will perform the (~) ‘h

horizontal merge phase, and similarly, for each even merge

~ th
iteration t, 1 < t < log p, we will perform the (2)

vertical merge phase.

Let t represent the current merge phase iteration, with

1 ~ t ~ logp. Thus, there will be log w and log v hori-

zont al and vertical merge phases, respectively.

During each merge, a subset of the processors will act

as group managers. These designated processors will

prefetch the necessary border information along the col-

umn (or row) that they are located upon in the logical

processor grid, setting up an equivalent graph problem,

running a sequential connected components algorithm on

the graph, noting any changes in the labels, and storing

these changes ((ai, /3~) pairs) in a shared structure. The

clients decide who their current group manager is and

wait until the list of label changes is ready. They retrieve

the list, and all processors make the necessary updates to

a proper subset of their labels.

During odd merge iterations t, the horizontal merge

phases, processors are group managers if they reside in

the logical grid with both

. row numbers whose binary representation end with

a O followed by (& – 1) 1‘s (or just ending in a O

when t ==1),and

● column numbers whose binary representation end in

w OJs.
2

Similarly, during the even merge iterations t,the ver-

tical merge phases, processors are group managers if

they reside in the logical grid with both

b

●

row numbers whose binary representation end in ~

O’s, and

column numbers whose binary representation end

with a O followed by ( ~ — 1) 1‘s (or just ending in

a O when t = 2).

512 x 512 Image on p=32 processors

; P15

Merge Phase 2: shaded processors are group managers.

Dotted borders were merged during Phase 1.

Circled borders will be merged in Phase 2.

Figure 2: Data Layout of a 512 x 512 Image on 32 Pro-

cessors - Vertical Merge (t = 2)

An example data layout and merge is given in Figure 2.

This image is 512 x 512, distributed onto a 4 x 8 logical

processor grid, with each tile being 128 x 64 pixels in

size. This example shows the second merge step, a ver-

tical merge, for t = 2. Group managers are, thus, any

processor sitting in the logical processor grid with both

last bits of the row and column numbers’ binary repre-

sentation equal to ‘O’. These group managers, along with

their respective borders to be merged, are circled in this

figure. Suppose now that p ~ 128, and we are at the

t = 7th merge phase, which will be a horizontal merge.

A processor in this case is a group manager if it is in
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a logical grid position whose row number’s binary rep-

resentation ends with 0111, and whose column number’s

binary representation ends with 0000.

For a horizontal merge, the group manager will prefetch

the pixel colors and labels from the vertical borders to be

merged, which span across 2 ~ rows of processors. There

are 24 (= ~ ) pixels per processor row in the border

to be merged, meaning that 2q2 * – q pixels and an

equal number of labels need to be prefetched from the

clients, while q pixels and q labels are locally available.

Thus, each prefetch in the horizontal merge can be done in

..~~(n, p) < T+4q2~ and TT W?3,(TP) = 0(37*).

Similarly for a vertical merge, the group manager will

prefetch the pixel colors and labels from the horizontal

borders to be merged, which span across 2 j columns of

processors. There are 2r pixels per processor column in

the border to be merged, meaning that 2r2~ – r pixels

and an equal number of labels need to be prefetched from

the clients for each iteration, while r pixels and r labels

are locally available. Thus, each prefetch in the verti-

cal merge can be done in l%~~(rz, p) ~ ~ + 4r2~ and

Tcomp(n,p) = o(3+~).
Note that the running time of this prefetching is im-

proved by using a second processor, called a shadow

manager, which is designated as the processor adjacent

to the group manager, directly across the border being

merged. Using this implementation, both the group and

shadow manager prefetch only their side of the border,

respectively, and sort each border by label. The reasons

for this sorting will be described below. The group man-

ager then prefetches the sorted results from the shadow

manager and continues on with the algorithm. From this

point on, the shadow manager reverts back to being a

client of this group manager.

The total complexities for prefetching summed up over

the log w horizontal merges and the log w vertical merges

are Tco~~(n,p) < ~logp + 8n and T,o~P(n,p) = O(n).

The merging problem is converted into finding the con-

nected components of a graph represented by the border

pixels. We use an adjacency list representation for the

graph, and add vertices to the graph representing col-

ored pixels. Two types of edges are added to the graph.

First, pixels are scanned down the left (or upper) bor-

der, and edges are strung linearly down the list between

pixels containing the same connected component label.

‘I’he same is done for pixels on the right (or lower) bor-

der. The second step adds edges between pixels of the

left (upper) and right (lower) border which are both like-

colored pixels and adjacent to each other. We scan down

the left column (upper row) elements, and if we are at

a colored pixel, we check the pixels in the right column

(lower row) adjacent to it. In order to add the first type

of edges, the pixels are sorted according to their label

for both the left (upper) and right (lower) border by us-

ing radix sort3. Note the discussion above regarding the

use of a shadow manager. A secondary processor is used

to prefetch and sort the border elements on the opposite

side of the border from the group manager, and the re-

sults are then sent to the group manager. This sort takes

TC.~P(n, P) = o(lvl) steps for a border of [VI nodes4.

The maximum number of edges attached to each vertex

in this graph is at most five; two edges in its own column

to pixels above and below of the same label plus the three

adjacent pixels in the right column. Thus, inserting an

edge into the adjacency list takes at most five steps, and

we add at most 5] VI edges. For each horizontal merge

step, the number of vertices IVI < 2q2 *, and for each

vertical merge step, \VI < 2r2 ~. Thus, the construction

of this graph summed over all the iterations of the con-

nected components algorithm takes TCOmP(n, p) = O(n).

A sequential breadth-first search based connected com-

ponents algorithm computes the connected components of

this graph. It runs in O(IVI + IEI) steps, with IV[, [El =

O (q2*) for horizontal merges and O (7-2;) for verti-

cal merges. The pixels in this graph are then scanned

again, and any changes in the labeling (a changing to la-

bel ~) are eventually stored in a sorted array of all unique

changes (ai, ,f?i). Now all the processors hit a barrier and

wait until everyone has completed their tasks. After the

barrier, the group manager will update its pixels’ labels

()inO~ .

At ‘~h~ conclusion of each of the log p merging steps,

only the labels of pixels on the border of each tile are

updated. There is no need to relabel interior pixels

since they are not used in the merging stage. Only

boundary pixels need their labels updated. The pro-

cedure is simple; for each colored pixel on the bound-

ary, we will binary search the list of label changes in

~COmP(TI,P) = O(% h Iv/) perstep Thetotalcom-
putational complexity over the log p merging iterations is

( )
then O ~ log n log p .

At the end of the last merging step, each processor

must update its interior pixel labels. Each hook described

above is compared to the current label at the hook’s off-

set position index. If the hook’s label labe{i] is different

from the current label at position i, the processor will

run a breadth-first search relabeling technique beginning

at pixel i, relabeling all the connected pixels’ labels to

the new label. Since there is only one hook per tile com-

ponent on the border, the breadth-first search relabeling

()
procedure takes O ~ time.

The total complexity associated with updating the la-

3Note that whenever radix sort is mentioned in this paper, the

actual coding uses the standard UNIX quicker-sort function for

smaller sorts, and radix sort for larger sorts, using whichever sorting

method is fastest for the given input size.

4 Our radix sort uses four passes; each pass will sort on one byte

of the 32-bit key by using 256 buckets.
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bels of each tile is ‘Tco~P(n, p) = 0($) assuming p ~ n

for large enough n. For n z 128, p ~ ~ is sufficient.

After each merging step label update, the manager hits

another barrier, waiting for the end of thiti iteration,

In summary, the group managers’ routine has a com-

munications complexity TComm(n, p) < T logp + 8n and

a computation complexity TCOmP(n, p) = O ($ + n).

5.4 Merging algorithm - clients’ task

The client processors are any processor not selected in the

current iteration to run the group manager tasks. These

processors calculate the logical processor grid address of

the manager in charge of their border to be merged and

wait for the first barrier. After this barrier, the clients

prefetch the size ( chSize) of the list of change pairs from

the manager in TCOmm(n, p) ~ ~ + 2i, where ~ and j

are the number of vertical and horizontal merges, respec-

tively, performed inclusively during the tth merge phase.

Next, the clients prefetch a block of chSize (a, /3)

change pairs from the manager. This is done in

.Om~(n, p) < ~ + 2 (2’) 2q2~ $x horizontal merges,T

( ) < r + 2 (2’) 2r2~ for vertical merges,and Tc.mm n, p

since there are at most 2q2~ (or 2r2~ ) changes, and

exactly (2t – 1) processors requesting these change pairs

from each group manager. The client processors use the

same procedure described in the previous section for re-

labeling their border pixels at the end of each merge iter-

ation, and the interior pixels after the final merge. After

each pixel label update, the clients hit another barrier,

and wait for the end of this iteration.

Over the logp iterations, the clients’ routine a com-

munications complexity TcO~~(n, p) < (210gp)7- +

14np + 2p and a computation complexity Tco~P(n, p) =

O(~+np).

Clearly, for large p, this is not an optimal procedure for

distributing the list of change pairs from a group man-

ager to the respective clients. If a manager has ~(i) – 1

clients at the end of iteration i, O ~ i < logp, instead

of sending the entire list of c(i) change pairs to ~(i) – 1

processors, a distribution algorithm based on the matrix

transposition can be used. Using this algorithm, the mana-

ger will send blocks of size @ to each of ~(i) processorsj(t)
during the first phase. All of the ~(i) processors repeat

this operation by concurrently sending their block to the

other processors, in a circular fashion. The complexi-

ties for this are T’COmm(n, p) <2 (r+ c(i) – M) and

“;~yjen;g0(~)“
‘ complexities are thus improved to

TCO~~(n,p) < (3 logp)~ + 16n + 2P and TCO~p(n, p) =

0($).
~hus, for p < n, the total complexities for the parallel

connected components algorithm are

{

TC.~m(n, p) s (4 logp)~ + (24rI + 2p)

< (410gp)T + 0(;); (3)

TcomP(n, P) = 0($).

Clearly, the computational complexity is the best possi-

ble asymptotically. As for the communication complexity,

it seems that intuitively a latency factor ~ has to be in-

curred during each merge

(logp)r.

5.5 Experimental

Components

Our theoretical analysis

operation, and hence the factor

Results for Connectecl

indicates that our connected
components algorithm is scalable whenever p < ~, where

e is approximately 26 from the first expression in (3).

We have implemented our algorithm in SPLIT-C on the

CM-5; detailed performance plots for images ranging from

128 x 128 to 1024 x 1024 pixels in size are given in [3].

Figure 5 presents the summary on the performance of

our connected components algorithm on the CM-5 and

clearly shows the scalability of our algorithm. Compara-

ble results for execution on the IBM SP-1 and SP-2 are

given in [3].

This connected components algorithm easily extends to

grey level images. Again, a O-pixel is assumed to be back-

ground, while each component is the set of like-colored

connected pixels. The complexity for this algorithm re-

mains the same as for binary images (3) and is both effi-

cient and optimal. Results for the 256-grey level DARPA

Image Understanding Benchmark image of size 512x 512

pixels, shown in Figure 3, are given in Figure 4 for p = 16

to 128 processors on the CM-5, and for a wide range of

configurations on the SP-1 and Meiko CS-2 parallel ma-

chines.

6 Implementation Notes

Note that the performance graphs for the CM-5, Fig-

ures 5, 7, and 4, are for SPLIT-C (version 1,2) programs

linked with the CM-5 CMMD Message Passing Libraries

(version 3.2), Figure 4 uses the IBM SP-1 with the mes-

sage passing libraries MPL, and Figure 7 uses the IBM

SP-2 with wide nodes and also MPL. Figures 7 and 4

are run on a Meiko CS-2 with SPLIT-C linked with the

Elan Widgets message passing library. Note that our

port of SPLIT-C to the CS-2 results in less than optimal

performance because this SPLIT-C installation has not

been fully optimized to make use of Elan, the low level

communications library. We expect results using an op-

timized platform shortly. Figure 7 is implemented on an

8-processor Intel Paragon, using the PAM message pass-

ing libraries, the Paragon Active Messages platform from
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UC Berkeley. SPLIT-C has also been ported to the Cray

T3D, and performance results are expected shortly. Note

that absolutely no coding modifications were made to

the application code used on the various platforms.
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A Performance Results

Histogramming of a 256-Color n x n Image

Using Split-C on a CM-5
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