
Computers and Operations Research 111 (2019) 21–34

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Tailoring parallel alternating criteria search for domain specific MIPs:

Application to maritime inventory routing

Lluís-Miquel Munguía

a , ∗, Shabbir Ahmed

b , David A. Bader a , George L. Nemhauser b ,
Yufen Shao

c , Dimitri J. Papageorgiou

d

a College of Computing, Georgia Institute of Technology, Atlanta GA 30332, USA
b School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta GA 30332, USA
c ExxonMobil Upstream Research Company, Houston, TX 77098, USA
d Corporate Strategic Research, ExxonMobil Research and Engineering Company, Annandale NJ 08801, USA

a r t i c l e i n f o

Article history:

Received 24 September 2018

Revised 20 March 2019

Accepted 29 May 2019

Available online 30 May 2019

Keywords:

Parallel computing

Primal heuristics

Discrete optimization

Maritime inventory routing

Large neighborhood search

a b s t r a c t

Parallel Alternating Criteria Search (PACS) relies on the combination of computer parallelism and Large

Neighborhood Searches to attempt to deliver high quality solutions to any generic Mixed-Integer Program

(MIP) quickly. While general-purpose primal heuristics are widely used due to their universal applica-

tion, they are usually outperformed by domain-specific heuristics when optimizing a particular problem

class. In this paper, we focus on the fast development of domain-specific parallel primal heuristics. Our

approach entails specializing PACS to better adapt to the target problem structure. We showcase its ap-

plication to two classes of the Maritime Inventory Routing Problem, an important application of MIPs

to real world problems. We computationally compare the proposed modified framework with state-of-

the art specialized algorithms and MIP solvers. Results show the effectiveness of our approach, and how

the modular nature of PACS can provide a platform for the rapid prototyping of parallel domain-specific

heuristics.

© 2019 Elsevier Ltd. All rights reserved.

1

W

o

e

a

d

m

w

i

R

{

r

T

t

t

p

c

M

b

o

r

c

m

d

B

t

k

l

b

a

h

p

t

h

0

. Introduction

Mixed Integer Programming (MIP) (Nemhauser and

olsey, 1988) algorithms can solve a large variety of planning and

perational problems in transportation (SteadieSeifi et al., 2014),

nergy (Baños et al., 2011), production (Pochet and Wolsey, 2006),

nd finance (Bertsimas et al., 1999). Formally, MIPs can be

escribed as:

in { c T x | Ax = b, l ≤ x ≤ u, x i ∈ Z , ∀ i ∈ I} (MIP)

here c ∈ R

n , A ∈ R

m ×n , b ∈ R

m , and I ⊆ { 1 , . . . , n } is the subset of

nteger variable indices. The decision vector x is bounded by l ∈

n
and u ∈ R

n
, where R is the extended set of real numbers R ∪

−∞ , ∞} .
Primal heuristics are an essential component of MIP algo-

ithms whose sole purpose is to find high quality solutions quickly.

hough they rarely guarantee successfully finding such solutions,

heir role is of capital importance in providing solutions early in

he search. In addition to producing valid upper bounds for the
∗ Corresponding author.

ttps://doi.org/10.1016/j.cor.2019.05.031

305-0548/© 2019 Elsevier Ltd. All rights reserved.
roblem, high quality feasible solutions can help fathom a signifi-

ant part of the solution space during the search, thus accelerating

IP solving.

Most MIP solvers based on Branch-and-Cut (Hoffman and Pad-

erg, 1985) are general-purpose tools that can be applied to any

ptimization problem that can be modeled as a MIP. These algo-

ithms incorporate the use of primal heuristics as part of their

ore functionality. Due to their importance, a catalogue of pri-

al heuristics (Berthold, 2006; Fischetti and Lodi, 2011) has been

eveloped and incorporated in all general-purpose MIP solvers.

ecause of their use as an integrated component, most heuris-

ics must be of universal application, and cannot rely on any

nowledge that may be applicable to only a handful of prob-

em classes. However, general-purpose MIP solvers may prove to

e inadequate for solving particular applications. Problem-specific

lgorithms capable of exploiting additional structural properties

ave been shown to outperform their general-purpose counter-

arts. Thus when solving difficult instances, it may be necessary

o use specialized heuristics.

https://doi.org/10.1016/j.cor.2019.05.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2019.05.031&domain=pdf
https://doi.org/10.1016/j.cor.2019.05.031

22 L.-M. Munguía, S. Ahmed and D.A. Bader et al. / Computers and Operations Research 111 (2019) 21–34

Fig. 1. Transition to a high quality feasible solution.

m
s

a

c

B

e

r

i

2

fi

w

p

w

e

k

o

d

a

f

2

s

p

w

w

i

a

t

a

2

a
Parallel Alternating Criteria Search (Munguía et al., 2018) (PACS)

is a parallel distributed-memory primal heuristic designed for find-

ing solutions to any generic MIP. PACS relies on Large Neighbor-

hood Search (LNS) techniques in order to find solution refinements

very quickly. LNS’s entail solving carefully restricted sub-MIPs

derived from the original problem. The advantage is that this re-

duced problem is significantly easier to optimize quickly. It has

also been proven to be a very successful technique for deal-

ing with large MIPs. The heuristic proves to be very effective

at finding high quality solutions to MIPs belonging to all kinds

of applications, since it does not rely on assumptions regard-

ing the underlying structure of the problem. The approach is

competitive or better than state-of-the art MIP solvers for more

than 90% of the instances in the MIPLIB2010 library (Koch et al.,

2011).

In this paper, we seek to bridge the performance gap be-

tween general purpose and domain-specific heuristics. We in-

vestigate the suitability of PACS as a platform available for

rapidly prototyping a specialization that better addresses the

specific structure of the targeted MIP. Its application is show-

cased using a uniform set of real-world Maritime Inventory Rout-

ing Problem (MIRP) instances. When specialized to better ex-

ploit the internal structure of MIRPs, PACS can be substan-

tially more effective. Improvements in performance are made

possible with two main novel contributions: new definitions

of MIRP-specific search neighborhoods and a modified objective

function.

The remainder of the paper is organized as follows: Section 2

introduces the PACS heuristic. In Section 3 we introduce the math-

ematical models of the Maritime Inventory Routing problem as

well as details of the specialization. Section 4 presents computa-

tional experiments and results on standard instances from the lit-

erature. Finally, Section 5 provides some concluding remarks. Ad-

ditionally, auxiliary Appendix A provides a review of the nomen-

clature used in the formulation.

2. Parallel alternating criteria search

In PACS, two auxiliary MIP subproblems derived from the orig-

inal problem are iteratively solved to attain a first feasible solu-

tion, and to improve it with respect to the original objective. The

first of the auxiliary MIPs is a Feasibility MIP (FMIP) , and poses

the problem of finding a feasible starting solution as an optimiza-

tion problem. Two vectors of continuous variables �+ and �− of

size m (corresponding to the m constraints) are introduced. A de-

cision vector is feasible to a MIP if and only if it can be extended

to a solution of value 0 to the associated FMIP . Rather than di-

rectly solving FMIP , its difficulty is reduced by fixing a given sub-

set F of the integer variables and optimizing the remaining. In

turn, a second auxiliary problem, referred to as an Optimality MIP

(OMIP) , is aimed at improving a partially feasible vector with re-

spect to the original objective. In OMIP , the same auxiliary slack

variables are introduced in each constraint. In order to ensure that

the optimal solution to OMIP remains at most as infeasible as the

input solution ˆ x , an additional constraint that limits the amount

of slack is added, where the degree of infeasibility is bounded

by
∑ m

i =1 (̂
 �+
i

+

ˆ �−
i
) .

min

∑ m

i =1 �
+
i

+ �−
i

s.t.
Ax + I m

�+ − I m

�− = b
x j =

ˆ x j , ∀ j ∈ F

l ≤ x ≤ u

x j ∈ Z , ∀ j ∈ I
�+ ≥ 0 , �− ≥ 0

(FMIP)
in c T x
.t.

Ax + I m

�+ − I m

�− = b ∑ m

i =1 (�
+
i

+ �−
i
) ≤ ∑ m

i =1 (̂ �+
i

+

ˆ �−
i
)

x j =

ˆ x j , ∀ j ∈ F

l ≤ x ≤ u

x j ∈ Z , ∀ j ∈ I
�+ ≥ 0 , �− ≥ 0

(OMIP)

By iteratively solving carefully restricted neighborhoods of both

uxiliary MIPs, the heuristic will hopefully converge (although its

onvergence is not guaranteed) to a high quality feasible solution.

y construction, infeasibility decreases monotonically after each it-

ration. On the other hand, the solution quality may fluctuate with

espect to the original objective. Fig. 1 depicts the expected behav-

or of the algorithm.

.1. Parallelization of alternating criteria search

We introduce parallelism by generating and solving a diversi-

ed set of large neighborhood searches in each step of the process,

hich are solved simultaneously. The improved solutions found in

arallel are then combined by solving an additional sub-MIP, in

hich the variables that have the same value across the differ-

nt solutions are fixed. Fig. 2 depicts an example for a simple 0–1

napsack instance. Firstly, the Feasibility MIP is derived from the

riginal problem instance. Next, two subproblems characterized by

ifferent fixings are solved in parallel. In a final step, the vari-

bles with coinciding values are fixed and a feasible solution is

ound.

.2. Specializing PACS

PACS is a heuristic designed for general purpose MIPs, and as

uch, none of its components leverages the MIP structure of the in-

ut problem. In order to increase the effectiveness of the heuristic,

e introduce a set of problem-specific algorithmic improvements

hich substitute its generic counterparts. The proposed changes

nclude the use of new LNS neighborhood definitions as well as

 modification to the objective function in FMIP and OMIP . With

he latter measure, we hope to improve the rate of convergence to

 first feasible solution.

.2.1. Increasing the effectiveness of LNS

In Large Neighborhood Search, the set of variables to be fixed

djusts the difficulty of the sub-MIP to be optimized, as well as

L.-M. Munguía, S. Ahmed and D.A. Bader et al. / Computers and Operations Research 111 (2019) 21–34 23

Fig. 2. Example depicting a feasibility improvement iteration for a 0–1 knapsack sample instance.

t

q

s

e

t

e

p

t

t

s

c

r

b

s

m

t

p

2

t

h

s

P

w

f

c

c

o

e

t

t

b

a

s

s

d

i

c

3

o

w

t

A

p
he effectiveness of the MIP solver at finding high quality solutions

uickly. PACS uses a simple, generic, yet intuitive variable fixing

cheme to be able to tackle any kind of problem structure. Greater

ffectiveness in finding solutions can be achieved by considering

he internal structure of the problem in variable fixing. Numerous

xamples can be found in the literature for most common MIP ap-

lications. All high performing variable selection schemes intend

o preserve the integrity and cohesiveness of substructures within

he problem, as this is the key for decomposing it effectively. A

uccessful variable fixing must identify which variables must be

hanged in order to find a better solution, free them, and leave the

emainder fixed. Additionally, a variable fixing scheme must not

e too restrictive, or very few improvements will be found as a re-

ult. Conversely, if not enough variables are fixed, the search space

ight be too large to find any improvements in a small amount of

ime. Neighborhood diversification is another key property, since

arallel efficiency depends on it.

.2.2. Improving the rate of convergence to a first feasible solution

As introduced so far, one of the primary objectives of PACS is

o find a first feasible solution. Although the convergence of the

euristic is not guaranteed, the system in place has proven to be

ubstantially effective when optimizing most problems of the MI-

LIB2010 library (Munguía et al., 2018). When solving problems

here feasibility is a challenge however, PACS is likely to stall and
ail at finding any solution at all. Our second algorithmic modifi-

ation is geared towards improving the heuristic’s effectiveness at

onverging to a first feasible solution and reducing the probability

f stalling.

We propose to use an objective penalization system in order to

ffectively enforce an order in which constraints are satisfied. To

his end, the objective of FMIP is modified with an additional vec-

or of weights �∈ [0, ∞) m to bias the objective function, which

ecomes
∑ m

i =1 �i (�
+
i

+ �−
i
) . The main goal of the measure is to

chieve feasibility in the most critical constraints first. As a re-

ult, infeasibility is driven to secondary constraints instead, which

hould be easier to repair in the future.

Constraint satisfaction priorities are completely problem depen-

ent. As shown in the experimental results, however, they can be

nstrumental in increasing the effectiveness of the heuristic when

hosen appropriately.

. Application to maritime inventory routing

Currently, global seaborne logistics are the most utilized form

f freight transportation and account for the vast majority of

orld trade. In most cases, the optimization of the costs related

o these shipping operations is vital to their economic viability.

s a result, these problems are ideal examples of real-world ap-

lication of MIPs. In the petrochemicals sector alone, maritime

24 L.-M. Munguía, S. Ahmed and D.A. Bader et al. / Computers and Operations Research 111 (2019) 21–34

A

a

p

a

t

b

m

s

h

m

l

a

t

b

s

i

c

(

L

M

d

C

t

a

l

a

c

t

d

a

t

3

d

t

w

a

t

e

t

p

n

e

a

s

M

a

w

v

t

s

i

e

f

p

i

f

g

m
inventory routing problems are solved regularly to assist business

users make tactical and operational decisions. Maritime inventory

routing problems (MIRP) are often formulated as MIPs and attempt

to capture important practical details present in maritime shipping,

such as inventory management at ports and vessels, as well as ves-

sel routing and scheduling. Despite being an extremely flexible and

faithful mathematical model, MIRP instances are very challenging

to solve to provable optimality. In some cases, it is challenging to

find a single feasible solution.

3.1. Related work

Our primary focus is on methods for finding primal solu-

tions to maritime inventory routing problems. Papageorgiou et al.

(2014c) provide a thorough literature review. Papageorgiou et al.

(2018) conduct a comprehensive comparison of the state-of-the art

in primal heuristics and exact methods used for solving this class

of problems.

Maritime inventory routing problems have been applied to

a broad range of applications, such as cement manufactur-

ing (Christiansen et al., 2011), calcium carbonate slurry ship-

ping (Dauzère-Pérès et al., 2007), oil supply in stochastic scenar-

ios (Agra et al., 2015), and routing and inventory management of

vacuum gas oil (Furman et al., 2011). MIRP instances present a

real challenge to most commercial MIP solvers, and it can even

be challenging to find a good feasible solution. Many construc-

tion heuristics have been proposed for MIRPs or similarly con-

structed problems, such as the ones presented in Goel et al. (2012) ,

Stålhane et al. (2012) , and Shao et al. (2015) . These are special-

ized algorithms designed to provide a first feasible solution at

the beginning of the optimization. Construction heuristics usually

rely on greedy procedures, multi-start local searches or solving re-

stricted subproblems. Additional specialized heuristics for similar

LNG routing problems are presented in Mutlu et al. (2016) .

A large number of works have proposed solution methods

based on some variation of Large Neighborhood Search (LNS).

LNS heuristics circumvent the complexity of the original prob-

lem by solving derived subproblems obtained by restricting a

subset of the variables. A fully featured MIP solver is then

used to optimize the subproblem, which delivers a solution

valid to the original problem. LNS approaches differ in how

the search neighborhood is defined. In the context of MIRP in-

stances, a widely used LNS strategy entails fixing the variables

related to a subset of the vessels. Different variations of this

approach are used in Goel et al. (2012) , Hewitt et al. (2013a) ,

Papageorgiou et al. (2014a) , Papageorgiou et al. (2014b) , Song and

Furman (2013) , and Papageorgiou et al. (2018) , and differ in how

the subset of vessels is selected.

Song and Furman (2013) apply LNS techniques in combination

with a branch-and-cut algorithm to find improved solutions to an

arc-flow model very similar to the one used in this section. On

the same instances, Engineer et al. (2012) introduce an alterna-

tive column generation formulation, and solve it using branch-cut-

and-price in combination with several newly introduced classes of

cuts. Hewitt et al. (2013a) follows by applying a branch-and-price

guided search (a method previously used for Fixed-Charge Multi-

commodity Network Flow problems (Hewitt et al., 2013b)) in order

to find high quality solutions quickly. This approach uses a small

amount of parallelism (four processors) to speed up the algorithm.

An alternative decomposition approach very popularly applied

to MIRPs is based on rolling horizon techniques. In a rolling hori-

zon heuristic, the planning horizon is subdivided into smaller

overlapping subhorizons. Each subdivision can be characterized

with a tractable subproblem, which can be consecutively solved

in a limited amount of time. Rolling horizon heuristics are in-

troduced in Al-Khayyal and Hwang (2007) , Rakke et al. (2011) ,
gra et al. (2014) , and Shao et al. (2015) . A variation is the fix-

nd-relax heuristic proposed by Uggen et al. (2013) , in which all

osterior integer decision variables not included in the subhorizon

re relaxed, and left to be continuous. Another significant depar-

ure is the approximate dynamic programming approach proposed

y Papageorgiou et al. (2014a) , in which the MIRP instance is for-

ulated as a dynamic programming problem and interpreted as a

equence of vessel dispatching problems. Outside of the realm of

euristics, Goel et al. (2015) introduce a constraint programming

ethod based on a disjunctive scheduling representation.

Most of the aforementioned works focus on large MIRPs with

arge planning horizons. Papageorgiou et al. (2014b) focuses on

n operational MIRP with a much smaller horizon, a more de-

ailed model and more challenging from the perspective of feasi-

ility. They overcome the added complexity by designing a two-

tage algorithm, in which decisions are first made among load-

ng/discharging regions. In a second step, more detailed routing de-

isions are made at the ports within each of the regions.

To the best of our knowledge, the works of Asokan et al.

2014) are the only attempt at introducing parallel heuristics for

NG inventory routing problems, which are a special class of

IRPs. In this work, the authors parallelize LNS heuristics intro-

uced in Goel et al. (2012) .

Parallel MIP solvers such as GUROBI (Gurobi, 2015),

PLEX (CPLEX, 2015), and ParaSCIP (Shinano et al., 2012) are

he only alternative parallel algorithms currently available. In

ddition to high quality solutions, MIP solvers also provide a

ower bound. Studies have suggested that parallelizing the branch-

nd-bound search may not scale well to a large number of

ores (Koch et al., 2012), and this behavior is reflected in some of

he aforementioned distributed-memory implementations. Another

isadvantage is the fact that MIP solvers are general algorithms

nd they usually do not exploit the underlying network structure

hat characterizes MIRPs.

.2. A time-space discretization of MIRPs

In the remainder of this section, we introduce the arc-based

iscrete-time formulations used in the modeling of MIRPs. Fur-

her, we perform a preliminary analysis of the performance of PACS

hen applied to the problems at hand. To conclude, we showcase

 set of problem-specific modifications in order to further improve

he performance of the parallel algorithm.

MIRPs model deep-sea vessel routing with inventory tracking at

very port-vessel pair throughout a time-space network. A depic-

ion of the model used is shown in Fig. 3 . Given a set T of time

eriods and a set of J of ports, the network consists of a set of

odes N s,t , which symbolize the state of the ports through differ-

nt time periods. Additionally, a source node n s and a sink node n t
re used to symbolize the entrance/exit of vessels to the system. A

et of directed arcs A model the travel of vessels between ports.

ore concretely, each vessel v uses a set of dedicated arcs A

v . For

 particular pair of node n and vessel v , we may define the for-

ard star FS v n as the set of outgoing arcs associated with a vessel

 leaving from node n . Conversely, the reverse star RS v n denotes

he set of incoming arcs.

The MIRPLIB library (Papageorgiou et al., 2014c) consists of a

et of MIRP instances inspired by real-world problems. The library

s composed of multiple instance classes, which differ in the op-

rational resolution and the planning horizon. Group 1 instances

eature an operational MIRP with planning horizons of 45 and 60

eriods, multiple ports per region and split pickups and deliver-

es. Group 1 instances present a challenge from the perspective of

easibility, and most commercial MIP solvers struggle to find a sin-

le feasible solution. In contrast, group 2 instances offer sim plified

odels with planning horizons greater than 60 time periods, but

L.-M. Munguía, S. Ahmed and D.A. Bader et al. / Computers and Operations Research 111 (2019) 21–34 25

Fig. 3. Time-space horizon modeling of MIRP.

Fig. 4. Group 1 MIRP formulation.

o

l

l

3

r

m

t

d

n

v

c

e
nly involving one port per region and never split pickups and de-

iveries. Feasibility is trivial for group 2 instances, and the chal-

enge is rather to find high quality feasible solutions quickly.

.2.1. Group 1 instances: the challenge of feasibility

In group 1 instances (Fig. 4), the objective is to maximize the

evenue obtained when product is delivered to a port and to
inimize the expenses incurred by the transportation costs, penal-

ies for buying/selling product to the spot market as well as the

elays in its loading/unloading. The model features two sets of bi-

ary decision variables: x ∈ { 0 , 1 } |A| and z ∈ { 0 , 1 } |N |×|V| . x v a takes

alue 1 if vessel v uses a travel arc a . The binary variable z v n indi-

ates whether vessel v loads/discharges at node n . The constraints

nsure the coherency of the model as follows: constraints (1b)

26 L.-M. Munguía, S. Ahmed and D.A. Bader et al. / Computers and Operations Research 111 (2019) 21–34

Fig. 5. Group 2 MIRP formulation.

r

t

i

n

s

a

t

m

i

w

o

o

g

i

i

h

s

t

3

d

p

p

e

p

p

t

t

s

a

t

u

a

s

s

u

e

i

m

r

s

t
guarantee the conservation of vessel flow for each triplet of port,

time, and vessel. Constraints (1c) and (1d) ensure the inventory is

balanced at each vessel and port throughout timesteps and main-

tained within limits. Constraints (1e) guarantee that the number

of loads/discharges at a given pair of port and time does not ex-

ceed the number of available berths. The coupling constraints (1f)

ensure a vessel can only load/discharge at a node if it is present.

Constraints (1g) and (1h) require the vessels to travel at capacity

from a loading region to a discharging region and empty when

traveling in the opposite direction. The amount of product that a

port can buy/sell in the spot market is restricted by (1i) and (1j).

A thorough explanation of each of the symbols is provided in the

Appendix A .

3.2.2. Group 2 instances: the challenge for optimality

Group 2 instances (Fig. 5) feature long-horizon deterministic

routing with simplified operational constraints. The objective re-

mains to minimize the transportation costs and penalties caused

by buying/selling product from/to the spot market. The only inte-

ger decision variables are x v c a , which determine the number of ves-

sels belonging to vessel class vc that take arc a . Similar to group 1

instances, constraints (2b) ensure the conservation of flow for each

triplet of port, time, and vessel class. Inventory restrictions for each

pair of port and time are specified in (2c), and constraints (2d)

ensure that the number of vessels that attempt to load/discharge

is limited by the number of berths available. This formulation

does not require inventory tracking of vessels, since vessels are re-

quired to travel at capacity from a loading region to a discharg-

ing region and empty when traveling in the opposite direction.

In contrast to group 1 instances, there are no constraints that

limit the amount of stockout, although stockout is penalized in the

objective.

3.3. Applying PACS to MIRP instances

One of our primary focuses is on the application of PACS to

group 1 instances. Our computational experiments presented in

Section 4 indicate that the algorithm struggles considerably to

converge to feasible solutions. The reason for this is an apparent

stalling of the heuristic, and its inability to repair all infeasibilities.

We illustrate the issue in Fig. 6 (a), where the performance of the

heuristic is depicted for a particular problem instance. Specifically,

we display the number of violated constraints in the incumbent

solution as a function of time. The objective value of all the solu-

tions found by the heuristic are also plotted on the secondary axis.

As seen in the chart, the infeasibility of the incumbent solution is
educed significantly at the beginning of the process. Meanwhile,

he quality of the solutions found also converges to a value signif-

cantly lower than the best known bound for the problem. Since

ot all constraints are enforced, it is possible to obtain infeasible

olutions with a better objective than the best bound. PACS is un-

ble to repair all infeasibilities. Fig. 6 (b) provides further informa-

ion regarding the nature of the infeasible constraints. We deter-

ine that the algorithm fails in solutions featuring a few unsat-

sfied flow conservation constraints. While we illustrate the issue

ith a particular example, the same issue can be extended to most

f the instances in the set, as detailed in Section 4.3 .

We apply both algorithm modifications introduced in the previ-

us section, which attempt to increase the effectiveness of the al-

orithm at finding a first feasible solution. The first proposed mod-

fication is to the objective of FMIP , with the intent of prevent-

ng infeasibility from accumulating in constraints that may be very

ard to repair. Secondly, we introduce MIRP-specific variable fixing

chemes, which may be more effective at finding quality solutions

han their generic counterparts.

.3.1. Objective penalizations

Finding feasible solutions for group 1 instances is challenging

ue to the small tolerances imposed in the inventory constraints of

orts and vessels. A feasible vessel schedule must ensure enough

roduct is transported to satisfy the consumption demand at ev-

ry port and to avoid stockout. Vessels must carry the bulk of the

roduct, since constraints (1 i) ∪ (1 j) severely limit the amount of

roduct that can be bought or sold on the spot market. This is not

he case for group 2 instances. In the latter, no upper bound on

he spot market is imposed.

In the spirit of group 2 instances, our intent is to prioritize the

atisfiability of the vessel schedule over the inventory management

t ports. In the modified Group1FMIP , we apply a large penalty �

o all variables except the ones representing the constraints reg-

lating port inventory limits (the (1 i) ∪ (1 j)). A priori, the gener-

ted solutions will provide feasible routing schedules for each ves-

el at the expense of violating many stock deficiency/excess con-

traints. As optimization advances, we hope the latter can be grad-

ally fixed by systematically re-adjusting feasible vessel trips. The

xcess of slack αj,t is also minimized in OMIP , since it is present

n the original objective. Therefore, the amount of infeasibility is

inimized in both auxiliary MIP models.

As seen in Group1FMIP , constraints are divided into two sepa-

ate submatrices. A

α represents the submatrix related to the con-

traints regulating the excess slack αj,t , the set (1 i) ∪ (1 j). Let k be

he cardinality of such set. In turn, ˆ A contains the submatrix of the

L.-M. Munguía, S. Ahmed and D.A. Bader et al. / Computers and Operations Research 111 (2019) 21–34 27

Fig. 6. Application of PACS to a group 1 MIRP instance, with 4 loading ports, 9 discharging ports, 17 vessels, and a horizon of 60 timesteps. (a) Depicts the evolution of the

infeasibility of the incumbent, and objective value of found solutions as a function of time. (b) Shows a breakdown of the infeasibility found in the incumbent by constraint

type as a function of time.

r

i

t

m

s

3

s

s

p

fi

n

t

b

e

t

d

i

n

p

i

s

o

A

Algorithm 1 Random vessel selection neighborhood.

Require: Fraction of variables to fix ρ , 0 < ρ < 1

Ensure: Set of integer indices F

1: function VesselSelectionFixing (ρ)

2: F = set of all integer variable indices I
3: while |F| > ρ · |I| do

4: i := random vessel i ∈ V
5: Remove from F all variable indices related to vessel i

6: end while

7: return F

8: end function

s

t

t

s

a

t

s

A

t

r

b

s

l

t

c

a

fi

d
emaining constraints. � variables associated with the constraints

n

ˆ A are penalized with � in the objective, in order to prioritize

he satisfiability of the constraints in A

α .

in

∑ m −k
i =1 �(�+

i
+ �−

i
) +

∑ k
i =1 �

+ α
i

+ �−α
i

.t.
ˆ A x + I�+ − I�− =

ˆ b
A

αx + I�+ α − I�−α = b α

x i =

ˆ x i , ∀ i ∈ F

l ≤ x ≤ u

x i ∈ Z , ∀ i ∈ I
�+ ≥ 0 , �− ≥ 0

�+ α ≥ 0 , �−α ≥ 0

(Group1FMIP)

.3.2. A MIRP-specific variable fixing scheme

We propose to use two kinds of MIRP-specific variable fixing

chemes that decompose the problems into complementary sub-

tructures. The first is a variation of a vessel decomposition ap-

roach, and the latter is a modification of a time-window variable

xing scheme. Both incorporate randomness in order to satisfy the

eed for parallel diversified search neighborhoods.

A prevalent large neighborhood search algorithm in the litera-

ure is the so called k-opt search, which entails fixing the variables

elonging to all but a subset of vessels. This is a widely used strat-

gy due to its simplicity and effectiveness. We specify ours with

wo key elements. We incorporate an input parameter ρ , which

etermines the proportion of vessels to be fixed. In addition, we

ncorporate randomness in the selection of vessels. The latter is

ecessary in order to leverage computer parallelism. In the pro-

osed algorithm, a diversified set of large neighborhood searches

s generated by selecting different subsets of variables to fix. By

olving them simultaneously, we hope to increase the chances

f finding solution improvements. Pseudocode is provided in

lgorithm 1 .
While the k-opt search decomposes the problem by vessel, the

econd strategy we propose seeks to decompose the problem by

ime. The time-window selection scheme involves establishing a

ime window between two timesteps and fixing all travel arcs out-

ide of it. The generated neighborhood allows the improvement of

 solution by modifying the travel schedules of all vessels within

he allowed time window. Travel arcs related to all ports and ves-

els are left unfixed at the same time. Pseudocode is provided in

lgorithm 2 .

The time-window selection scheme as presented can become

erribly ineffective at finding solution improvements if a small pa-

ameter ρ is selected, or if the problem features a large num-

er of vessels and ports. In such cases, the produced variable

election may encompass a small time window. Any vessel trip

onger than this time window will have a fraction of its active

ravel variables fixed and won’t be rerouted when solving the asso-

iated LNS.

We present a modification of the standard time-window vari-

ble selection in Algorithm 3 , in which a subset of the ports are

xed for each vessel in order to allow larger time windows. In or-

er to determine which subset of ports remains fixed, we define

28 L.-M. Munguía, S. Ahmed and D.A. Bader et al. / Computers and Operations Research 111 (2019) 21–34

Algorithm 2 Random time-window selection neighborhood.

Require: Fraction of variables to fix ρ , 0 < ρ < 1

Ensure: Set of integer indices F

1: function TimeWindowSelectionFixing (ρ)

2: F = set of all integer variable indices I
3: of f set = 0

4: t := random time t ∈ T
5: while |F| > ρ · |I| do

6: Remove from F all variable indices related to time

t − of f set , for vessels v ∈ V and ports p ∈ J

7: Remove from F all variable indices related to time

t + of f set , for vessels v ∈ V and ports p ∈ J

8: of f set = of f set + 1

9: end while

10: return F

11: end function

Algorithm 3 Constrained time-window selection neighborhood.

Require: Fraction of variables to fix ρ , 0 < ρ < 1 , input solution x

Ensure: Set of integer indices F

1: function ConstrainedTimeWindowSelectionFixing (ρ)

2: Generate all pairs (p, t)

3: Rank all pairs by inventory excess/deficit α j,t

4: Select pair (p ′ , t ′) randomly among the pairs with most ex-

cess/deficit

5: of f set = 0

6: F = set of all integer variable indices I
7: while |F| > ρ · |I| do

8: t 1 := t ′ − of f set

9: t 2 := t ′ + of f set

10: for every vessel v ∈ V do

11: P := PortSpan (t 1 , t 2 , v , x)
12: P := P ∪ p ′
13: for all ports p ∈ P do

14: Remove from F all variable indices related to ves-

sel i and port p between [t 1 , t 2]

15: end for

16: end for

17: of f set := of f set + 1

18: end while

19: return F

20: end function

21: function PortSpan (t 1 , t 2 , v , x)
22: P := ∅
23: for each t ∈ { t 1 , . . . , t 2 } do

24: for each p ∈ P do

25: if vessel v is traversing p at time t then

26: P := P ∪ p

27: end if

28: end for

29: end for

30: end function

F

o

r

w

a

b

i

s

r

s

w

a

h

b

M

n

s

t

e

s

A

R

E

4

t

w

2

c

g

1

e

e

a

i

c

a

i

fi

b

t

p

i

i

f

C

t

t

G

the auxiliary concept of a port span. The port span of a vessel

v between two time steps t 1 and t 2 in a solution x is the set of

ports traversed by v during the time window in x . An example de-

picting multiple examples of port spans is shown in Fig. 7 . By its

definition, the produced set contains only the ports visited by v

within the time window. The proposed constrained time-window

selection scheme incorporates the definition of a port span in or-

der to include only the relevant ports for each vessel in the vari-

able selection, while the remaining are fixed.

The proposed algorithm also prioritizes the optimization of the

port and time pairs with the largest excess/deficiency of product.
or this purpose, all port-time pairs (p, t) are ranked by the value

f their associated αp,t variable. A single pair (p ′ , t ′) is selected

andomly among the pairs with the largest amount. Then, a time-

indow is defined using t ′ as its epicenter. For each vessel v , the

lgorithm proceeds to unfix the variables within the time window

elonging to the port span and p ′ . The size of the time window

s incremented gradually until the desired number of variables is

elected.

With (p ′ , t ′) as the epicenter of the time-window, we intend to

ectify the deficiency of stock at port p ′ and time t ′ by rerouting

ome vessel to p ′ before the timestep t ′ . By using the port span,

e force non-relevant ports to remain fixed in hopes of producing

n easier subproblem with a larger time-window that contains the

igh quality solutions.

If feasibility has already been achieved, pairs (p, t) are ranked

y their absolute contribution to the original objective instead.

odifications in high ranking pairs will hopefully have a more sig-

ificant impact in improving the solution.

Each of the proposed variable fixing strategies provides a sub-

tantially different set of search neighborhoods, which add to

he diversity of the approach. We incorporate both by allowing

ach parallel thread to choose randomly among both strategies, as

hown in Algorithm 4 .

lgorithm 4 Variable fixing selection algorithm.

equire: Fraction of variables to fix ρ , 0 < ρ < 1 , input solution x

nsure: Set of integer indices F

1: function HybridVariableFixing (ρ)

2: Generate random integer n

3: if n %2 = 0 then

4: F := VesselSelectionFixing (ρ)

5: else

6: F := ConstrainedTimeWindowSelectionFixing (ρ)

7: end if

8: return F

9: end function

. Experimental results

In this section, we evaluate the performance and behavior of

he MIRP-specific Parallel Alternating Criteria Search (MIRPpacs)

hen solving instances in the MIRPLIB library (Papageorgiou et al.,

014c). Out of the 100 instances currently present, there are 28

ategorized as group 1 instances, while the remaining belong to

roup 2. MIRPLIB group 2 instances feature a planning horizon of

20, 180 or 360 periods and are classified in three difficulty cat-

gories (Papageorgiou et al., 2018). A group 2 instance is declared

asy if at least one commercial MIP solver (in default settings) is

ble to close more than 90% of the gap (as defined in Section 4.1)

n half an hour. On the other hand, if no MIP solver is able to

lose more than 10% of the optimality gap, the instance is labeled

s hard. Of the 72 group 2 instances, the library contains 21 easy

nstances, 25 medium instances, and 26 hard instances. The dif-

culty of a problem instance is typically dependent on the num-

er of ports, vessels, and time periods. Most easy instances con-

ain fewer than 5 discharging ports and no more than 180 time

eriods, while all but 2 hard instances have more than 8 discharg-

ng ports and at least 180 time periods. MIRPpacs is implemented

n C++, using CPLEX 12.7.2 as a backbone solver. We compare our

ramework against the state-of-the-art general purpose MIP solver

PLEX 12.7.2, and the default version of PACS. All of our compu-

ations are performed on an 8-node computing cluster, each with

wo Intel Xeon X5650 6-core processors (96 cores in total) and 24

B of RAM memory.

L.-M. Munguía, S. Ahmed and D.A. Bader et al. / Computers and Operations Research 111 (2019) 21–34 29

Fig. 7. The port span of a vessel v between two time steps t 1 and t 2 in a solution x is the set of ports traversed by v during the time window in x .

4

m

a

γ

γ

[

s

t

P

t

r

m

t

z

�

4

r

w

c

s

l

a

T

p

a

e

m

t

s

o

m

t

p

p

o

i

h

m

a

i

s

t

P

a

a

T

l

f

i

i

s

l

l

p

o

r

s

4

a

o

f

t

p

t

a

t

M

l

f

f

M

c

i

i

o

m

c

p

.1. Evaluation of primal solution quality

We evaluate the quality of primal solutions in terms of the pri-

al gap and primal integral, as described in Berthold (2013) . Given

 solution x for a MIP with an optimal solution ˆ x , the primal gap

(x) ∈ [0, 1] of x is defined as:

(x) =

⎧ ⎨

⎩

0 if | c T ˆ x | = | c T x | = 0

1 if c T ˆ x · c T x < 0

| c T ˆ x −c T x |
max {| c T ˆ x | , | c T x |} else.

(3)

Given a time limit t max , we define the primal gap function p :

0, t max] �→ [0, 1] as:

p(t) =

{

1 if no solution is found by time t
γ (x (t)) with x (t) being the incumbent solution

at point t , else.

(4)

The primal gap function is monotonically decreasing and mea-

ures the progress of the optimization towards the optimal solu-

ion. The primal integral is defined as:

 (t) =

∫ T

t=0

p(t)d t (5)

The primal integral P (t) captures the notion of how early solu-

ions are found. Both p (t) and P (t) are considered powerful met-

ics when evaluating the performance of finding high quality pri-

al solutions.

In addition to the primal gap, the optimality gap � captures

he difference between the best found upper and lower bounds,

 UB and z LB :

=

z UB − z LB

z UB

. (6)

.2. Tuning of parameters and nondeterminism

MIRPpacs and PACS require two kinds of input parameters that

egulate the initial difficulty and the solution time of each LNS

ithin the heuristic. The parameter pair [ρ , t] determine the per-

entage of variables to be fixed and the LNS time limit (mea-

ured in seconds). For group 1 instances, the pair [0.7,5] is se-

ected. In turn, group 2 instances are solved using [0.2,5], [0.5,5]

nd [0.7,5], for Easy, Medium and Hard instances respectively.

he initial choice of parameters for ρ and t is of relative im-

ortance, since both MIRPpacs and PACS have a mechanism for

djusting them dynamically throughout the process. For each it-

ration that parallel heuristics fail to find a solution improve-

ent, the underlying solvers are gradually allowed more time and

he proportion of variables to be left free is increased. CPLEX is

et in its parallel distributed-memory nondeterministic setting in

rder to utilize all 96 available cores and with a focus on pri-

al solutions (the emphasis on Hidden Feasible solutions set-

ing). Settings are set to default, otherwise. All the compared
arallel algorithms are of nondeterministic nature, and we re-

eat each of the experiments five times. We limit the number

f repetitions to five due to the sheer number combinations of

nstances and algorithms to test, which total 1780 experiment

ours, or 74 consecutive days. Unless otherwise noted, the perfor-

ance charts presented in this section display the average among

ll runs.

The following set of figures and tables evaluate the qual-

ty of the solutions provided by the different methods when

olving group 1 instances. To our knowledge, the only heuris-

ic developed for this specific problem set is presented by

apageorgiou et al. (2014b) . The construction heuristic is based on

 construction phase in which multiple starts are tested to obtain

 solution to a coarse-grained, aggregate version of the problem.

his is followed by solution polishing at each regional level and

ocal search. A Gurobi-based implementation was used, and its per-

ormance results are presented under the label CH+LS. We tested

t using shared-memory parallelism available in a single comput-

ng node (12 cores). A priori this may seem an unfair compar-

ion. In reality, CH+LS is ill-suited for distributed-memory paral-

elism, as it relies on solving a sequence of small MIP subprob-

ems with a small time limit for each. Having a large worker

ool to solve a single small search tree is not an effective use

f distributed memory parallelism (Gurobi, 2019) and one of the

easons why PACS employs parallelism to solve multiple MIPS

imultaneously.

.3. Group 1 MIRP instances

In Fig. 8 (a), we show the evolution of the average primal gap

s a function of time. As stated in its definition, a primal gap

f 100% is assigned if no solution for a particular instance is

ound. At first glance, standard PACS is only able to find solu-

ions for a small subset of instances. As a result it scores a com-

aratively higher average primal gap throughout the optimiza-

ion. The reason for its poor performance has already been an-

lyzed in Section 3.3 , and it is one of the main motivating fac-

ors behind the development of MIRPpacs. CPLEX is a full-fledged

IP solver. As such, it is not afflicted by the same stalling prob-

em and performs slightly better. CH+LS is able to find solutions

or significantly more instances than CPLEX, despite using only a

raction of the cores. The algorithmic modifications introduced in

IRPpacs certainly make a difference in comparison to its generic

ounterpart. The specialized heuristic becomes effective at find-

ng high quality solutions for most instances, and this is reflected

n a much improved average gap right from the beginning of the

ptimization.

The same differences are reflected in Fig. 8 (b), in which the pri-

al integral is depicted instead. The differences are quite signifi-

ant after one hour of optimization, as MIRPpacs shows an average

rimal integral that is 2.5 times smaller than CPLEX.

30 L.-M. Munguía, S. Ahmed and D.A. Bader et al. / Computers and Operations Research 111 (2019) 21–34

Fig. 8. (a) Average primal gap and (b) average primal integral for group 1 instances.

Fig. 9. (a) Percentage of instances for which a feasible solution is found. (b) Percentage of instances for which MIRPpacs finds a feasible solution, broken down by instance

subclass.

l

t

o

M

s

b

i

p

C

t

a

j

a

t

w

p
Fig. 9 (a) plots the percentage of group 1 instances for which a

feasible solution is found by each of the compared methods. MIRP-

pacs is able to find feasible solutions for 85% of the instances,

CH+LS is able to do so for 69%, while CPLEX stalls at 25% and

standard PACS at 18%. In Fig. 9 (b), the performance of MIRPpacs

is shown after group 1 instances are subdivided by the number of

time periods (45 vs. 60) and by the number of loading regions (1 vs.

2). Note that a region may contain multiple ports. Results show

that instances with a single region are significantly easier than

their multiple region counterparts, as MIRPpacs is able to find so-

lutions for 100% of the single loading region instances in less than

730 seconds. Increasing the number of regions raises the complex-

ity. When 45 period instances are considered, solutions are found

for 75% of the cases. Performance drops significantly for instances

with two regions and 60 ports.

Table 1 provides further details about the variability in the per-

formance of the two best non-deterministic approaches. We ana-
yze the statistical results of the multiple executions in terms of

he average, standard deviation, minimum, maximum, and median

f the primal gap and primal integral for different time cutoffs.

IRPpacs shows more variability than CPLEX, especially at early

tages of the optimization. However, the relative distance between

oth diminishes with time. Even when the worst run of MIRPpacs

s compared with the best run of CPLEX, the parallel heuristic dis-

lays a better primal gap after 180 s than the one achieved by

PLEX after one hour.

In Section 3.3.2 , we presented a modification of the standard

ime-window variable fixing approach. In the proposed variant,

 subset of the ports are fixed for each vessel with the ob-

ective of allowing larger time windows. In addition, our vari-

ble fixing scheme prioritizes optimizing the tuples of port and

ime with the largest amount of stock deficiency first. In Fig. 10 ,

e evaluate the impact of the proposed modifications by com-

aring MIRPpacs to a variant of the heuristic in which the

L.-M. Munguía, S. Ahmed and D.A. Bader et al. / Computers and Operations Research 111 (2019) 21–34 31

Table 1

Group 1: Performance comparison of non-deterministic approaches.

MIRPpacs CPLEX

(Opportunistic mode)

Time cutoff(s) 180 600 3600 180 600 3600

Avg. P. gap(%) 53.02 37.10 18.89 80.96 77.36 75.90

P. integral 137.16 311.19 1001.33 160.31 489.16 2782.76

Count (%) 52.14 67.86 86.43 22.14 25.71 25.71

Std dev Primal gap 9.51 4.40 3.84 1.74 1.62 2.05

Primal integral 10.10 29.63 128.12 1.17 9.06 60.65

Count (%) 9.94 3.19 1.60 1.60 1.60 1.60

Min Primal gap 42.10 31.88 13.41 78.44 74.72 72.51

Primal integral 125.98 274.80 837.57 158.92 475.78 2679.98

Count (%) 42.86 64.29 85.71 21.43 25.00 25.00

Median Primal gap 54.13 37.32 19.45 81.21 77.86 76.58

Primal integral 136.45 310.89 1005.48 160.22 490.63 2804.07

Count (%) 50.00 67.86 85.71 21.43 25.00 25.00

Max Primal gap 63.24 42.13 22.56 82.32 78.37 77.17

Primal integral 149.93 346.80 1158.71 161.75 496.56 2818.57

Count (%) 64.29 71.43 89.29 25.00 28.57 28.57

Fig. 10. (a) Percentage of instances for which a feasible solution is found. (b) Percentage of instances for which MIRPpacs finds a feasible solution, broken down by instance

subclass.

s

u

l

v

t

4

c

P

h

a

c

t

c

a

d

i

h

p

b

t

r

T

t

c

p

f

c

I

s

t

t

s

s

n

i

d

p

t

1 S norm

= 7605 (Intel Xeon X5650)
2 S = 14403 (Intel Xeon E5-2687W)
tandard time-window variable fixing strategy (Algorithm 2) is

sed instead.

Our proposed modification allows MIRPpacs to find feasible so-

utions for 7% more instances. After one hour of optimization, the

ersion using the standard time-window displays a primal integral

hat is 28% larger, and an average primal gap that is 32% higher.

.4. Group 2 MIRP instances

We incorporate a state-of-the-art MIRP-specific heuristic to the

omparison, such as the rolling horizon heuristic as introduced in

apageorgiou et al. (2018) . As explained in Section 3.1 , the rolling

orizon heuristic is a very common form of time decomposition

pplied to MIRPs. After the authors in the aforementioned work

ompared multiple state-of-the-art primal algorithms for MIRPs,

he provided heuristic proved to be one of the best performing

onstruction heuristics. While it is a sequential algorithm, it takes

dvantage of the shared-memory parallelism provided by the un-

erlying MIP solver. The data displayed in the following charts

s the one presented in the original work. The rolling horizon

euristic (RHH) was run using a single computing node with 8

arallel cores. With the purpose of eliminating the discrepancies

etween computer systems, we also report its performance af-

er normalizing the CPU times according to the performance met-
ics in Passmark (Ltd, 2017). Normalized times are calculated as

 norm

=

T
orig

·S
orig

S norm

, where T orig is the original time reported by

he authors, while S norm

1 and S orig
2 are the CPU scores of the pro-

essors used in our experiments and the other authors in the com-

arison respectively.

Fig. 11 (a) shows the evolution of the average primal time as a

unction of time for all compared methods. When all instances are

onsidered, MIRPpacs proves to be the best performing algorithm.

t is able to achieve an average primal gap of 20% in less than 168

econds, while the next algorithm to achieve the same requires 5

imes as much time. It also requires less than 600s to find solu-

ions with an average gap of less than 10%. The mark of 10% is not

urpassed by any other method. The commendable performance of

tandard PACS is also worth noting, as it performs similarly to the

on-normalized version of the rolling horizon heuristic despite be-

ng a heuristic for general purpose MIPs. CPLEX seems to follow a

ifferent pattern to the aforementioned heuristics, as it is able to

erform on the level of MIRPpacs at the beginning of the optimiza-

ion. However, it is surpassed by most heuristics after 500 seconds
orig

32 L.-M. Munguía, S. Ahmed and D.A. Bader et al. / Computers and Operations Research 111 (2019) 21–34

Fig. 11. (a) Average primal gap and (b) average primal integral for all group 2 instances.

Fig. 12. Average primal gap and average primal integral for (a) easy, (b) medium, and (c) hard group2 instances.

s

s

t

p

v

a

l

m

c

a

s

and ends as the worst performing contender after 20 0 0 seconds.

The rolling horizon heuristic proves to be a better performer than

most parallel methods despite using only 8 cores.

The primal integral is plotted in Fig. 11 (b). Similarly reflected as

in the previous plot, MIRPpacs shows a significantly lower average

primal integral. Precisely, it is 2.5 times better than the next best

contender after 3600 seconds. CPLEX shows a slight advantage at

the beginning of the optimization versus PACS and RHH. The ad-

vantage is neutralized after 1200 seconds.

In Fig. 12 , group 2 instances are split by difficulty category.

When only small instances are considered, a full featured MIP
olver is able provide high quality solutions after other methods

tagnate. CPLEX is able to outperform all methods at the end of

he optimization and obtain the best average gap. However, MIRP-

acs presents a lower primal integral due to the fact that it con-

erges to high quality solutions much earlier in the search. The

dvantage of the primal heuristics gradually increases as the prob-

em size grows. RHH shows better performance than PACS for both

edium and hard instances, though PACS uses 12 times as many

ores. The combination of domain-specific improvements and par-

llelism allow MIRPpacs to be particularly effective for hard in-

tances in comparison to its general purpose counterpart.

L.-M. Munguía, S. Ahmed and D.A. Bader et al. / Computers and Operations Research 111 (2019) 21–34 33

Table 2

Group 2: Performance comparison of non-deterministic approaches.

MIRPpacs CPLEX

(Opportunistic mode)

Time cutoff(s) 180 600 3600 180 600 3600

Avg. P. gap(%) 20.75 12.17 5.70 51.19 41.76 27.98

P. integral 75.48 140.56 352.36 111.26 302.07 1305.22

Std dev Primal gap 3.84 3.71 2.23 3.29 2.56 2.24

Primal integral 5.75 18.79 86.46 3.55 12.52 67.22

Min Primal gap 16.53 8.10 3.45 47.75 38.49 25.08

Primal integral 68.77 119.81 263.15 107.54 288.25 1226.04

Median Primal gap 20.49 11.72 5.28 50.87 41.79 28.14

Primal integral 75.39 138.20 339.69 110.98 301.13 1305.10

Max Primal gap 25.82 17.15 8.95 55.51 44.75 30.56

Primal integral 82.97 166.18 476.49 116.09 318.04 1391.54

m

s

v

T

a

C

M

e

a

t

p

g

5

f

b

k

o

e

n

p

s

s

v

t

v

i

i

h

i

c

a

o

s

i

g

l

u

M

b

w

t

a

A

s

F

A

I

t

v
v

n

n

a

a

a

a

a

a

a

F

P

α

α

B

C

C

d

�

ε

Table 2 provides details regarding the effects of nondeter-

inism on the variability between experiments. MIRPpacs has a

imilar variability to the one displayed by CPLEX. The standard de-

iation on the primal gap decreases as the optimization advances.

he trend seen in group 1 instances is maintained, as MIRPpacs

chieves a better average primal gap in less than 180 seconds than

PLEX is able to achieve after 1 h of optimization. As a result

IRPpacs shows a primal integral that is 3.7 times better on av-

rage.

At the time of this writing, primal heuristics remain the best

vailable option for handling MIRP instances of practical size, as

hey significantly outperform state-of-the-art MIP solvers in the

rocess. In turn, specialized heuristics will always outperform their

eneral purpose counterparts.

. Conclusions

Parallel Alternating Criteria Search proves to be an effective

ramework when solving Maritime Inventory Routing Problems,

ut it can be significantly improved by tailoring a few of the

ey components of the algorithm. Firstly, we introduce specific

bjective penalizations, with the intent of improving the discov-

ry of a first feasible solution. Secondly, we introduce new defi-

itions of MIRP-specific variable fixing schemes, in order to im-

rove the effectiveness of the large neighborhood search. The new

pecialized parallel heuristic is able to significantly outperform

tate-of-the-art MIP solvers and domain specific heuristics. The ad-

antage increases considerably when solving hard instances fea-

uring long horizon periods, and a large number of ports and

essels.

The specialization process described in this paper can be eas-

ly adapted to other MIP problem classes as well. When target-

ng a specific problem, we preliminarily recommend running the

euristic in its vanilla form. If feasible solutions are not found, it

s highly likely that all the infeasibility is accumulated in a single

onstraint class. The next step is to penalize the related � vari-

bles and run Parallel Alternating Criteria Search again. Our rec-

mmendation is then to iterate on penalizing the constraint sets

talling the heuristic until feasible solutions are found. In order to

mprove the convergence to a high quality feasible solution, the

eneric variable fixing scheme can be readily exchanged for a prob-

em specific counterpart.

Parallel Alternating Criteria Search is a platform that can be

sed as is, or for a rapid prototyping of heuristics for particular

IP domains. It can be applied as a standalone heuristic or em-

edded in an exact branch-and-bound algorithm. We hope this

ork will motivate researchers to apply Parallel Alternating Cri-

eria Search to their own MIP domains. The framework is readily

vailable for download (Munguia, 2017).
cknowledgements

This research has been supported in part by ExxonMobil Up-

tream Research Company, the Office of Naval Research and the Air

orce Office of Scientific Research.

ppendix A. Nomenclature

ndices and sets

 ∈ T Set of time periods with T = |T |
 ∈ V Set of vessels

 c ∈ VC Set of vessel classes

j ∈ J

P Set of production ports

j ∈ J

C Set of consumption ports

j ∈ J Set of all ports: J = J

P

 ∈ N Set of regular nodes or port-time pairs: N = { n = (j, t) :

j ∈ J , t ∈ T }
 ∈ N s,t Set of all nodes, including the source node n s and a sink

node n t
 ∈ A Set of all arcs

 ∈ A

v Set of arcs associated with vessel v ∈ V
 ∈ A

v c Set of arcs associated with vessel class v c ∈ VC
 ∈ FS v n Set of all outgoing arcs associated with node n = (j, t) ∈

N s,t and vessel v ∈ V
 ∈ FS v c n Set of all outgoing arcs associated with node n = (j, t) ∈

N s,t and vessel class v c ∈ VC
 ∈ RS v n Set of all outgoing arcs associated with node n = (j, t) ∈

N s,t and vessel v ∈ V
 ∈ RS v c n Set of all outgoing arcs associated with node n = (j, t) ∈

N s,t and vessel class v c ∈ VC
S v c,inter

n Set of all outgoing interregional arcs for node n = (j, t) ∈
N s,t and vessel class v c ∈ VC

roblem data
max
j,t

Upper bound on the amount of product that can be

bought/sold at the spot market at port j ∈ J and time

t ∈ T
max
j

Upper bound on the cumulative amount of product

that can be bought/sold at the spot market at port

j ∈ J over the entire planning horizon

 j Number of berhs available at port j ∈ J

v
a Cost for vessel v ∈ V to traverse arc a ∈ A

v

v c
a Cost for vessel class v c ∈ VC to traverse arc a ∈ A

v

 j,t Number of units produced or consumed at port j ∈ J

in time period t ∈ T
j An indicator parameter taking value +1 if j ∈ J

P , and

−1 otherwise

z Nonnegative cost parameter associated with attempt-

ing to load or discharge at a port

34 L.-M. Munguía, S. Ahmed and D.A. Bader et al. / Computers and Operations Research 111 (2019) 21–34

F

F

G

G

G
G

H

H

K

K

L

M

M

N

P

P

P

P

R

S

S

S

S

S

U
F min
j,t

(F max
j,t

) Minimum (maximum) amount of product that can be

loaded or discharged at port j ∈ J from a single vessel

in time period t ∈ T
P j,t Nonnegative penalty parameter associated with one

unit of lost production or stockout at port j ∈ J in

time period t ∈ T
Q

v Capacity of vessel v ∈ V
Q

vc Capacity of vessel class v c ∈ VC
R n The unit sales revenue for product discharged at port-

time pair n = (j, t) ∈ N

S min
j,t

(S max
j,t

) Lower bound (capacity) at port j ∈ J in time period

t ∈ T
s j ,0 Initial inventory at port j ∈ J

s v
0

Initial inventory on vessel v ∈ V

Problem decision variables

αj,t (continuous) Amount of product that port j ∈ J pur-

chases or sells to the spot market in time period t ∈ T
f v n (continuous) Amount loaded or discharged at port-time

pair n = (j, t) ∈ N from vessel v ∈ V
s j,t (continuous) Number of units of inventory at port j ∈ J

available at the end of period t ∈ T
s v t (continuous) Number of units of inventory on vessel v ∈

V available at the end of period t ∈ T
x v a (binary) Takes value 1 if vessel v ∈ V uses arc a incident

to node n = (j, t) ∈ N

x v c a (integer) Takes value 1 if vessel class v c ∈ VC uses arc a

incident to node n = (j, t) ∈ N

z v n (binary) Takes value 1 if vessel v ∈ V attempts to load or

discharge product at node n = (j, t) ∈ N

References

Agra, A. , Christiansen, M. , Delgado, A. , Hvattum, L.M. , 2015. A maritime inventory
routing problem with stochastic sailing and port times. Comput. Oper. Res. 61,

18–30 .
Agra, A. , Christiansen, M. , Delgado, A. , Simonetti, L. , 2014. Hybrid heuristics for a

short sea inventory routing problem. Eur. J. Oper. Res. 236 (3), 924–935 .

Al-Khayyal, F. , Hwang, S.-J. , 2007. Inventory constrained maritime routing and
scheduling for multi-commodity liquid bulk, part I: applications and model. Eur.

J. Oper. Res. 176 (1), 106–130 .
Asokan, B.V. , Furman, K.C. , Goel, V. , Shao, Y. , Li, G. , 2014. Parallel large-neighborhood

search techniques for LNGinventory routing. Submitted for publication .
Baños, R. , Manzano-Agugliaro, F. , Montoya, F. , Gil, C. , Alcayde, A. , Gómez, J. , 2011.

Optimization methods applied to renewable and sustainable energy: a review.

Renew. Sustain. Energy Rev. 15 (4), 1753–1766 .
Berthold, T. , 2006. Primal Heuristics for Mixed Integer Programs. TU Berlin .

Berthold, T. , 2013. Measuring the impact of primal heuristics. Oper. Res. Lett. 41 (6),
611–614 .

Bertsimas, D. , Darnell, C. , Soucy, R. , 1999. Portfolio construction through mixed-in-
teger programming at grantham, mayo, van otterloo and company. Interfaces 29

(1), 49–66 .

Christiansen, M. , Fagerholt, K. , Flatberg, T. , Øyvind Haugen , Kloster, O. , Lund, E.H. ,
2011. Maritime inventory routing with multiple products: a case study from the

cement industry. Eur. J. Oper. Res. 208 (1), 86–94 .
CPLEX, 2015. IBM CPLEX optimizer. http://www-01.ibm.com/software/commerce/

optimization/cplex-optimizer/ .
Dauzère-Pérès, S. , Nordli, A. , Olstad, A. , Haugen, K. , Koester, U. , Myrstad, P.O. , Teistk-

lub, G. , Reistad, A. , 2007. Omya hustadmarmor optimizes its supply chain for

delivering calcium carbonate slurry to european paper manufacturers. Interfaces
37 (1), 39–51 .

Engineer, F.G. , Furman, K.C. , Nemhauser, G.L. , Savelsbergh, M.W.P. , Song, J.-H. , 2012.
A branch-price-and-cut algorithm for single-product maritime inventory rout-

ing. Oper. Res. 60 (1), 106–122 .
ischetti, M., Lodi, A., 2011. Heuristics in mixed integer programming. Wiley En-
cyclopedia of Operations Research and Management Science. American Cancer

Society doi: 10.1002/9780470400531.eorms0376 .
urman, K.C. , Song, J.-H. , Kocis, G.R. , McDonald, M.K. , Warrick, P.H. , 2011. Feed-

stock routing in the ExxonMobil downstream sector. Interfaces 41 (2), 149–
163 .

oel, V. , Furman, K.C. , Song, J.-H. , El-Bakry, A.S. , 2012. Large neighborhood search
for LNG inventory routing. J. Heurist. 18 (6), 821–848 .

oel, V. , Slusky, M. , van Hoeve, W.-J. , Furman, K.C. , Shao, Y. , 2015. Constraint pro-

gramming for LNG ship scheduling and inventory management. Eur. J. Oper. Res.
241 (3), 662–673 .

urobi, 2015. Gurobi optimizer. http://www.gurobi.com .
urobi, 2019. Parallel & distributed optimization. [Online].

ewitt, M. , Nemhauser, G. , Savelsbergh, M. , Song, J.-H. , 2013. A branch-and-price
guided search approach to maritime inventory routing. Comput. Oper. Res. 40

(5), 1410–1419 .

ewitt, M. , Nemhauser, G. , Savelsbergh, M.W.P. , 2013. Branch-and-price guided
search for integer programs with an application to the multicommod-

ity fixed-charge network flow problem. INFORMS J. Comput. 25 (2), 302–
316 .

Hoffman, K. , Padberg, M. , 1985. Lp-based combinatorial problem solving. Annal.
Oper. Res. 4 (1), 145–194 .

och, T. , Achterberg, T. , Andersen, E. , Bastert, O. , Berthold, T. , Bixby, R.E. , Danna, E. ,

Gamrath, G. , Gleixner, A.M. , Heinz, S. , Lodi, A. , Mittelmann, H. , Ralphs, T. , Sal-
vagnin, D. , Steffy, D.E. , Wolter, K. , 2011. MIPLIB 2010. Math. Program. Comput. 3

(2), 103–163 .
och, T. , Ralphs, T. , Shinano, Y. , 2012. Could we use a million cores to solve an inte-

ger program? Math. Method. Oper. Res. 76 (1), 67–93 .
td, P. S. P., 2017. Passmark software. [Online; accessed 2017-08-05].

unguia, L.-M., 2017. Pacs, https://bitbucket.org/llmunguia/parallel-alternating-

criteria-search . [Online].
unguía, L.-M. , Ahmed, S. , Bader, D.A. , Nemhauser, G.L. , Shao, Y. , 2018. Alternating

criteria search: a parallel large neighborhood search algorithm for mixed integer
programs. Comput. Optim. Appl. 69 (1), 1–24 .

Mutlu, F. , Msakni, M.K. , Yildiz, H. , Sönmez, E. , Pokharel, S. , 2016. A comprehensive
annual delivery program for upstream liquefied natural gas supply chain. Eur. J.

Oper. Res. 250 (1), 120–130 .

emhauser, G.L. , Wolsey, L.A. , 1988. Integer and Combinatorial Optimization, 18. Wi-
ley New York .

apageorgiou, D.J. , Cheon, M.-S. , Harwood, S. , Trespalacios, F. , Nemhauser, G.L. , 2018.
Recent progress using matheuristics for strategic maritime inventory routing.

In: Modeling, Computing and Data Handling Methodologies for Maritime Trans-
portation. Springer, pp. 59–94 .

apageorgiou, D.J. , Cheon, M.-S. , Nemhauser, G. , Sokol, J. , 2014. Approximate dy-

namic programming for a class of long-horizon maritime inventory routing
problems. Transp. Sci. 49 (4), 870–885 .

Papageorgiou, D.J. , Keha, A.B. , Nemhauser, G.L. , Sokol, J. , 2014. Two-stage decom-
position algorithms for single product maritime inventory routing. INFORMS J.

Comput. 26 (4), 825–847 .
apageorgiou, D.J. , Nemhauser, G.L. , Sokol, J. , Cheon, M.-S. , Keha, A.B. , 2014.

Mirplib–a library of maritime inventory routing problem instances: sur-
vey, core model, and benchmark results. Eur. J. Oper. Res. 235 (2), 350–

366 .

ochet, Y. , Wolsey, L.A. , 2006. Production Planning by Mixed Integer Programming.
Springer Science & Business Media .

akke, J.G. , Stålhane, M. , Moe, C.R. , Christiansen, M. , Andersson, H. , Fagerholt, K. ,
Norstad, I. , 2011. A rolling horizon heuristic for creating a liquefied natural gas

annual delivery program. Transp. Res. Part C 19 (5), 896–911 .
hao, Y. , Furman, K.C. , Goel, V. , Hoda, S. , 2015. A hybrid heuristic strategy for lique-

fied natural gas inventory routing. Transp. Res. Part C 53, 151–171 .

hinano, Y. , Achterberg, T. , Berthold, T. , Heinz, S. , Koch, T. , 2012. ParaSCIP: a par-
allel extension of SCIP. In: Competence in High Performance Computing 2010.

Springer, pp. 135–148 .
ong, J.-H. , Furman, K.C. , 2013. A maritime inventory routing problem: practical ap-

proach. Comput. Oper. Res. 40 (3), 657–665 .
tålhane, M. , Rakke, J.G. , Moe, C.R. , Andersson, H. , Christiansen, M. , Fagerholt, K. ,

2012. A construction and improvement heuristic for a liquefied natural gas in-

ventory routing problem. Comput. Indus. Eng. 62 (1), 245–255 .
teadieSeifi, M. , Dellaert, N. , Nuijten, W. , Woensel, T.V. , Raoufi, R. , 2014. Multimodal

freight transportation planning: a literature review. Eur. J. Oper. Res. 233 (1),
1–15 .

ggen, K.T. , Fodstad, M. , Nørstebø, V.S. , 2013. Using and extending fix-and-relax to
solve maritime inventory routing problems. Top 21 (2), 355–377 .

http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0001
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0001
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0001
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0001
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0001
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0002
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0002
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0002
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0002
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0002
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0003
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0004
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0005
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0006
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0007
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0008
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0009
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0009
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0010
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0011
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0011
https://doi.org/10.1002/9780470400531.eorms0376
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0013
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0014
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0015
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0015
http://www.gurobi.com
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0016
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0017
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0018
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0018
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0018
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0019
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0020
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0020
https://bitbucket.org/llmunguia/parallel-alternating-criteria-search
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0021
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0022
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0023
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0024
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0025
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0025
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0025
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0025
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0025
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0026
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0027
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0027
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0027
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0027
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0027
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0027
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0028
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0028
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0028
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0029
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0030
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0030
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0030
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0030
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0030
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0031
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0031
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0031
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0031
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0031
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0031
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0032
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0032
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0032
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0033
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0033
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0033
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0033
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0033
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0033
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0033
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0034
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0034
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0034
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0034
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0034
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0034
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0035
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0035
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0035
http://refhub.elsevier.com/S0305-0548(19)30152-2/sbref0035

	Tailoring parallel alternating criteria search for domain specific MIPs: Application to maritime inventory routing
	1 Introduction
	2 Parallel alternating criteria search
	2.1 Parallelization of alternating criteria search
	2.2 Specializing PACS
	2.2.1 Increasing the effectiveness of LNS
	2.2.2 Improving the rate of convergence to a first feasible solution

	3 Application to maritime inventory routing
	3.1 Related work
	3.2 A time-space discretization of MIRPs
	3.2.1 Group 1 instances: the challenge of feasibility
	3.2.2 Group 2 instances: the challenge for optimality

	3.3 Applying PACS to MIRP instances
	3.3.1 Objective penalizations
	3.3.2 A MIRP-specific variable fixing scheme

	4 Experimental results
	4.1 Evaluation of primal solution quality
	4.2 Tuning of parameters and nondeterminism
	4.3 Group 1 MIRP instances
	4.4 Group 2 MIRP instances

	5 Conclusions
	Acknowledgements
	Appendix A Nomenclature
	References

