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Abstract— Graph processing is typically considered to be a
memory-bound rather than compute-bound problem. One com-
mon line of thought is that more available memory bandwidth
corresponds to better graph processing performance. However,
in this work we demonstrate that the key factor in the utilization
of the memory system for graph algorithms is not necessarily
the raw bandwidth or even the latency of memory requests.
Instead, we show that performance is proportional to the
number of memory channels available to handle small data
transfers with limited spatial locality.

Using several widely used graph frameworks, including
Gunrock (on the GPU) and GAPBS & Ligra (for CPUs),
we evaluate key graph analytics kernels using two unique
memory hierarchies, DDR-based and HBM/MCDRAM. Our
results show that the differences in the peak bandwidths
of several Pascal-generation GPU memory subsystems aren’t
reflected in the performance of various analytics. Furthermore,
our experiments on CPU and Xeon Phi systems (see extended
version [11]) demonstrate that the number of memory channels
utilized can be a decisive factor in performance across several
different applications. For CPU systems with smaller thread
counts, the memory channels can be underutilized while systems
with high thread counts can oversaturate the memory subsys-
tem, which leads to limited performance. Finally, we model the
potential performance improvements of adding more memory
channels with narrower access widths than are found in current
platforms (see [11]). We analyze performance trade-offs for the
two most prominent types of memory accesses found in graph
algorithms, streaming and random accesses.

I. INTRODUCTION

Graph processing is usually considered memory-bound
due to the irregular and data-dependent nature of most
graph problems, which leads to many irregular memory
accesses. It is also commonly believed that these algorithms
contain a mix of bandwidth- and latency-bound operations.
For modern shared memory systems that handle these
types of applications, there has been an explosion in new
memory technologies as well as the amount of parallelism for
computation and memory accesses. For example, a Power 9
system might have multiple processors in a single node, each
with up to 24 cores and 96 threads. Similarly, Intel’s Knights
Landing (KNL) processor can have up to 68 cores and 272
threads, and the latest generation of NVIDIA’s Volta GPUs can
support up to 5120 threads on 80 streaming multi-processors.
This increase in thread parallelism has been combined with
faster and more complex memory technologies and standards
in the last decade, including DDR4, DDRS5 (expected to be
released in 2020), GDDRS5, Hybrid Memory Cube (HMC),
and High Bandwidth Memory 2.0 (HBM?2).
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Graph algorithms are typically latency-bound if there is
not enough parallelism to saturate the memory subsystem.
However, the growth in parallelism for shared-memory
systems brings into question whether graph algorithms are
still primarily latency-bound. Getting peak or near-peak
bandwidth of current memory subsystems requires highly
parallel applications as well as good spatial and temporal
memory reuse. The lack of spatial locality in sparse and
irregular algorithms means that prefetched cache lines have
poor data reuse and that the effective bandwidth is fairly low.
The introduction of high-bandwidth memories like HBM and
HMC have not yet closed this inefficiency gap for latency-
sensitive accesses [14]. However, high-bandwidth memory
has introduced a higher number of memory channels for
stacked DRAMs, which can process a higher number of
outstanding memory transactions. For this work, we define
a memory channel as a logically grouped set of DRAM
DIMMs for traditional memory systems (or a logical grouping
of TSVs within a 3D stacked memory like HBM or HMC).
Each channel is able to service and output data requests
independently.

In this work, we analyze the performance and scalability
of graph algorithms and their memory access characteristics
as the number of threads is increased on a wide range of
CPU and GPU systems. The fact that these systems have
such a high thread count is crucial as the phenomena of over-
saturating the memory subsystem is not visible for smaller
thread counts (even on new CPU systems with tens of cores).

Extended Version of Paper

An extended version of our paper can be found at [11].
The extended version of this paper has additional benchmarks
and performance analysis not covered in this shorter paper.
Specifically, the extended version includes experiments on
CPU systems, including Intel’s KNL processor. The extended
version also includes a performance model that looks at how
a system might perform with additional but narrower memory
channels. Specifically, this analysis focuses on systems where
the bandwidth is not increased, but rather that bandwidth is
split across more memory channels of narrower width.

Contributions

In this paper we challenge the commonly held notion
that graph algorithms are either memory bandwidth- or
latency-bound. Instead we show that the performance of these
algorithms is dependent on the number of memory channels in



the memory subsystem. Using a wide range of CPU and GPUs
with a mix of DDR4, GDDRS5, HBM?2, and Multi-Channel
DRAM (MCDRAM), we benchmark numerous analytics
from highly optimized frameworks across a wide range of
graphs with different properties. Contrary to past research that
focused on analyzing only large thread counts, our analysis
includes threads counts at different ranges, which allows us
to find the point at which the memory subsystem is stressed.

Key findings: For the Intel KNL processor, which has
both DDR4 and MCDRAM memories, MCDRAM starts to
outperform DDR4 at around 64 threads. Neither DDR nor
MCDRAM are saturated with less than 64 threads, and in
this regime there is little performance difference due to the
similar latencies of the memories.

For the NVIDIA GPU, we compare an HBM2-based GPU
system with several GDDR5 and GDDR5X GPUs. While
the GDDR5-based GPU’s specifications suggest that peak
available bandwidth has a large role to play, the HBM2 GPU
outperforms them by over a factor of 2X even when the
bandwidth relative to a GDDRS device is less than 1.33X.
Furthermore, there is little variance in performance across
the GDDR5-based GPUs. We show that the performance
is correlated to the number of memory channels available
to the system - a number that is rarely reported when
conducting performance analysis.

Lastly, we present a performance model that projects the
performance impact of added, narrower memory channels.
Our model does not focus on how such a subsystem should
be created, but rather evaluates performance trade-offs from
an application’s point of view.

While the significance of memory channels has come up
in architecture research and states that more channels will
be better, to the best of our knowledge our paper is the first
to show this dependency for sparse applications and to show
that the performance of these applications is limited by the
number of channels.

II. RELATED WORK

Applications: Recently, Beamer et al. [1] showed that
memory bandwidth is not fully utilized for several widely
used graph kernels on a multi-threaded processor but that it
is still possible to improve bandwidth utilization. We extend
this analysis and show that for the same types of applications
analyzed in Beamer er al. [1] it is quite likely that the fairly
small number of thread counts (32 threads with 16 cores) was
not large enough to saturate the memory sub-system, and
this led to memory under-utilization. Xu et. al. [16] profiled
a spectrum of graph applications on the GPU and found that
long memory latencies as a result of high L1 cache miss
rates tended to be the biggest performance bottleneck. Peng
et. al. [13] analyzed the performance of different benchmarks
for large threads on MCDRAM vs. DRAM on the KNL
system. They concluded that sequential access, bandwidth-
bound applications benefit from the MCDRAM but random
access benchmarks are latency-bound and perform better on
DRAM.

68

Architectural Approaches: Brunvand et. al. [2] note that
the number of memory channels and clock rate determine
peak memory bandwidth and correspond to the level of
achievable concurrency while bank counts, access patterns,
and the sophistication of memory controllers are other factors
which determine the actual bandwidth achieved.

Generally speaking, data bandwidth is given by B = W« F,
where W is data width and F' is data frequency. Zhang et.
al. [17] propose Half-DRAM as a way to toggle W to match
B and to induce narrower rows, while preserving bandwidth
and improving power consumption. Their implementation
decouples rows into half-rows within banks, which reduces
row activation power and enables doubling of memory-level
parallelism. Similarly, the Emu Chick architecture [5] divides
a DRAM channel into multiple “Narrow-Channel DIMMs”
(NCDIMM) which allow for more fine-grained access for
irregular applications. The Emu Chick would be an interesting
comparison point for this study, but the Chick prototype
currently is not able to run large-scale analytics applications.

Fine-grained DRAM or FGDRAM, as proposed by
O’Connor et. al. [10], proposes the most novel approach
to scaling memory bandwidth and reducing the energy
contributions of memory accesses. This work rethinks the
design of stacked memory by partitioning the DRAM die
into smaller independent units with dedicated channels (64
channels versus 16 on current HBM) and reduced effective
row size. Results on a GPU simulator show up to several
factors of improvement on irregular benchmarks, due to
increased concurrency for handling requests and higher row
activation rates. Our characterization looks to evaluate whether
this “fine-grained” approach with more channels would lead
to better performance for real-world analytics test cases.

III. RESULTS - GPU

System Configuration: The specifications of the GPUs
used in our experiments can be found in Table I. The data
transfer time between the GPU and GPU is not factored into
runtime measurements, so we do not include the character-
istics of the host systems and their CPU configurations. Ex-
periments are primarily conducted on four different NVIDIA
Pascal (same micro-architecture) GPUs. While the GPUs
differ slightly in terms of core counts and clock frequencies
(see Table I), these devices have roughly equivalent FLOP
rates. Benchmarking is also run on a NVIDIA V100 GPU
(Volta micro-architecture) with HBM2 memory.

The Pascal-based GPUs have slightly different characteris-
tics in terms of core counts, frequency, cache sizes, number
of memory transactions per second, bandwidth, and memory
channels. Specifically, these differences include the following:
1) Core counts vary by 7%, 2) clock speed varies by 26%,
3) the P100 also has a larger L2 cache size (4 MB vs 3
MB), and 4) maximum memory bandwidth, which varies by
more than 2x. Cache size is not as impactful for the larger
graph inputs as these are several times larger than any current
GPU’s L2 cache. Thus, we can guarantee that a majority of
the memory accesses will need to access global memory.



TABLE I: GPU used in experiments. GPUs are primarily Pascal generation except for one V100 GPU from the Volta

generation of GPUs. FLOP rate for the GPUs is for single point precision. All GPUs are PCI-E based.

’ Architecture ‘

Processor

Base
Clock

|

SMs

Total
SPs

|

L2 Size
(MB)

DRAM
Type

|

Size
(GB)

Mem Clock
(MT/s)

|

Bandwidth
(GB/s)

|

Bus width
(bits)

|

Memory
Channels

Sin. Per.
(TFLOP/s)

‘ TDP (W) ‘

GPU-CUDA

P100

1126

56

3854

HBM2

16 GB

1406

720

4096

32

9.5

250

GPU-CUDA

P40

1303

30

3840

GDDRS5

24 GB

7200

345

384

12

10

250

GPU-CUDA

Titan Xp

1480

30

3840

GDDRS5X

12 GB

11410

547.7

384

12

10.1

250

GPU-CUDA

Titan X

1417

28

3584

GDDR5X

12 GB

10000

480

384

12

11.3

250

GPU-CUDA_|

V100

[

1370

80

[ 5120

[

HBM2

[

16 GB

[ 1750

[

9000

[

4096

32

[

14

[

250

Speedup

04

o

02

01

00 e

%y, I, Shay Ok s, Sy,
T o5, e, KutRiog, <0, 200, "%0q
01 ”

(a) PageRank

Speedup

- P40
- Titan X
Titan Xp
- 'i I
, I I I I
0.00
W, I, Sk, O W Y, e,
b magen A oo, ey, “20p 00,
2000 o % Y % %00, %

(b) Betweenness Centrality

- a0
- Titan X

10 | | i
08
06
0.4 - - - =] -] -] - - - - - - T
§ I|{ || II II |I-|I-|I.|I.|I.|I ||
00 4 y
U oy g, Tkt m, My o, Mg, Yo S,

(c) Shortest Path

Fig. 1: Speedup in comparison to a P100 GPU (only HBM2
based GPU). Execution times are normalized to the P100’s
time. The line y = .375 denotes the ratio in number of
memory channels of the other GPUs to the P100.

Speedup

The memory subsystems in the GPUs serves as the biggest
distinction, and this varies between 345 GB/s on the P40 to
the highest bandwidth of 720 GB/s on the P100. The NVIDIA
P100 and V100 use High Bandwidth Memory (HBM2) and
both have 32 memory channels serving 4096-bit total bus
width. The remaining GPUS use GDDR5/GDDRS5X memory
and have 12 channels serving a 384-bit bus width. The number
of memory channels for these processors is determined to
the best of our ability using a recent NVIDIA presentation of
high-bandwidth memory [12]. We also consulted per-channel
width information reported in Micron Technology’s GDDRS
and GDDR5X technical notes.

Gunrock Analysis on Pascal and Volta GPUs: We use
the highly optimized Gunrock [15] framework to demonstrate
that there is almost no difference for the three GDDRS based
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GPUs despite there being up to a nearly 60% difference in
bandwidth. This analysis and comparisons to the P100 and
V100 GPUs are used to show that these common analytics
kernels are not primarily bandwidth-bound.

Experiment setup: To measure the impact of the
memory channels on the performance of graphs on the
GPUs we use both Gunrock, and we also report results for
nvGRAPH, a linear-algebra based graph analytics library by
NVIDIA. The graphs used in the experiments are taken from
SNAP [8] and the Florida Matrix Market [4] repositories.
For Gunrock, we measure the execution time (excluding data
transfer) for the following analytics: Betweenness Centrality,
Single-Source Shortest Path, and PageRank. Runtime results
for Betweenness Centrality and Single-Source Shortest Path
are averaged for the 200 top-degree vertices in the graph.
Results for PageRank are averaged for 5 runs of each kernel,
where each run has 50 fixed iterations. Using nvGRAPH we
measure the execution time for Single-Source Shortest Path
and PageRank using similar settings.

Gunrock Analysis: Fig. 1 depicts the performance
of several graph algorithms using Gunrock. The abscissa
represents the graph used in the experiment. The ordinate
represents the normalized speedup execution with respect
to the NVIDIA P100 PCI-E based GPU, the only NVIDIA
Pascal GPU to have high-bandwidth memory.

For most algorithms and inputs, the P100 GPU outperforms
the remaining GPUs by a significant factor - despite the other
GPUs supporting a larger number of memory transactions per
second. There are a few instances where the GDDRS5-based
GPUs outperform the P100. In most cases, this occurs for the
smaller graphs where the data structure used by the analytics
can mostly fit into the GPU’s LLC. There are a very few
cases where the larger graphs perform better on the GDDRS5-
based GPUs. As these experiments are not optimized to take
advantage of a specific GPU, the difference in execution
might be associated with load-balancing. These few cases
require additional investigation.

For three of the benchmarks (PageRank, Betweenness
Centrality, and Single-Source Shortest Path), the P100 out-
performs the other benchmarks by about 2x-3x. Recall that
the P100 has 32 memory channels whereas the other GPUs
have 12. We have added a line at y = % = 0.375 (in all
the subplots of Fig. 1) to indicate this ratio. Note that the
bars of the GDDR5-based GPUs are fairly close to this curve.
This is especially surprising given the fact that the Titan XP
has almost 60% more bandwidth than the P40, while the
difference in their execution time is clearly not 60%. Further,
the Titan XP has 75% of the peak bandwidth fort the P100.



TABLE II: GPU Bandwidth Analysis With Synthetic Micro-
benchmarks.

P100 P40 Titan Xp Titan X
Peak bandwidth (GB/s) 720 345 547.7 480
Coalesced read (GB/s) [3] 573 230 316 270
Coalesced write (GB/s) [3] 432 249 312 266
Random read (GB/s) 17.1 9 9 7.7
Random write (GB/s) 74 3.9 8.4 7.6

If these graph algorithms were solely bandwidth-bound, then
we could expect the execution times to be correlated. Rather,
it seems that, across all the GPUs, the ability to handle
saturation of memory subsystems via additional channels is
the dominant factor in the performance of the algorithms.

NVIDIA (VOLTA) V100 GPU: In the above analysis
we primarily focus on the Pascal based GPUs as these share
a lot of common traits. Experiments with the V100 GPU
(not shown) show that the performance of the V100 is quite
similar to the P100 GPU despite having an additional 30%
cores and extra 25% bandwidth. This evaluation demonstrates
that performance is constrained by the number of memory
channels rather than by other factors.

nvGraph Analysis: We also run experiments using
nvGRAPH [9], specifically for PageRank and Single-Source
Shortest Path. NVGraph implements graph algorithms using
linear algebra based operations (as discussed in the Graph-
BLAS standard [7]). For the sake of brevity, we only give
a short summary of the results on for nvGRAPH and note
that similar trends were seen when comparing performance
for the P100 and P40. By using nvGraph, in addition to
Gunrock, we show that the performance impacts of many
small, irregular accesses is not dependent on the programming
and load-balancing scheme that is use in Gunrock, and we
demonstrate that this performance penalty for high-bandwidth,
limited memory channel systems also can be found in sparse
matrix-based implementations of graph analytics.

Synthetic Benchmark Analysis: Table II depicts the
performance of the GPUs running two synthetic benchmarks:
1) the SHOC benchmark [3], which tests the GPUs bandwidth
capabilities for regular memory access patterns and 2) random
memory access benchmarks that measure random reads and
writes in an array. The latter is our own implementation,
which performs reads and writes to addresses determined
by an efficient FNV-1 [6] hash. Bandwidth reported for
random reads and writes is effective bandwidth, or simply
the total number of memory accesses (scaled by data type
size) divided by execution time. The coalesced read/write
benchmarks show relative performance consistent with peak
bandwidth differences across the different GPUs. However,
our benchmarks suggest that the P100 is roughly twice as
effective as other GPUs on random reads. For random writes,
the P100 achieves comparable bandwidth to the Titan Xp and
Titan X, a ratio that is 2x more than the P40.

IV. CONCLUSIONS

In this paper, we have demonstrated that the performance
of graph algorithms depends not just on latency or bandwidth
but instead is correlated with the number of memory channels
available in the memory subsystem. Our experiments show
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that as a larger number of threads are launched on both Intel’s
KNL processor and NVIDIA GPUs, the high bandwidth
memory system outperforms DRAM by a factor that is closely
tied to the ratio of memory channels in their respective
memory subsystems. This scalability for high-bandwidth
memory systems is almost twice is high as that of the DRAM-
based systems, even when controlling for bandwidth and other
factors. Additionally (see Extended version [11]), by using
gap analysis and a simple performance model, we project
that systems with narrower but more numerous channels
will provide additional performance benefits for continued
performance scaling up to maximum thread resources. This
finding is especially important as new processors and acceler-
ators with larger numbers of cores are deployed, and the gap
between threads and memory channels continues to grow.
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