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High-Performance Phylogenetic
Inference

David A. Bader and Kamesh Madduri

Abstract Software tools based on the maximum likelihood method and Bayesian
methods are widely used for phylogenetic tree inference. This article surveys recent
research on parallelization and performance optimization of state-of-the-art tree
inference tools. We outline advances in shared-memory multicore parallelization,
optimizations for efficient Graphics Processing Unit (GPU) execution, as well as
large-scale distributed-memory parallelization.
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3.1 Introduction

Computational phylogenetics is an active research area. A variety of algorithms and
software tools exist for the compute-intensive task of tree inference. Early methods
were based on distance-based similarity clustering [18, 43, 46] and on theMaximum
Parsimony principle [17, 20]. These simple methods are now subsumed by more
sophisticated algorithms. Probabilistic approaches, specifically Maximum Likeli-
hood (ML)-based [15] methods and Bayesian inference methods [25, 42], currently
dominate the landscape of tree inference software. As of October 2018, the OMIC-
tools website [39] lists 266 software tools in the Phylogenetic Inference category.
Felsenstein’s Phylogeny Programsweb page [14] lists more than 90ML-basedmeth-
ods and more than 25 Bayesian inference methods. The Cyberinfrastructure for Phy-
logeneticResearch (CIPRES)ScienceGatewayVersion 3.3 [9, 30] currently supports
15 parallel programs for tree inference and sequence alignment. Phylogeny.fr [10]
is another long-running web portal for phylogenetic analysis.
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Popular, free, and open-source tools include PHYLIP [13], RAxML [47, 48],
PhyML [22, 23], MrBayes [42], and BEAST 2 [6]. Nearly all of these tools support
some form of parallelism.

Moret played a seminal role in establishing the research area of high-performance
computational phylogenetics by leading the development of GRAPPA and associ-
ated algorithms [21, 32–34]. GRAPPA is a maximum parsimony-based suite of
programs for phylogeny reconstruction using genome rearrangements. For break-
point phylogeny reconstruction, using efficient data structures and optimizations,
GRAPPA was engineered to perform nearly 2500 times faster than the original
Sankoff–Blanchette algorithm [44] on a single processor. When executed on a 512-
processor cluster, GRAPPA achieved an awe-inspiring million-fold speedup [5].
GRAPPA is a significant milestone in the areas of algorithm engineering and paral-
lel phylogenetic inference. Many of the current probabilistic inference methods take
aligned sequences, typically DNA or amino acid sequences, as input. The quality of
multiple sequence alignment will thus directly impact the quality of trees generated.
The methods also assume a model for site evolution and estimate model parameters.
The Generalized Time Reversible (GTR) model [51] is a commonly used model for
inference on DNA and amino acid sequences. For additional background on statisti-
cal methods, please refer to [24, 52]. Current software tools support a wide variety
of evolutionary models.

Likelihood calculations [48] constitute a significant fraction of the overall run-
ning time of bothML and Bayesian inference methods. We first discuss performance
optimizations and parallelization strategies to speed up likelihood calculations. In
Sect. 3.3,wediscussmiscellaneous execution time-reducing implementation changes
and approaches to improve multi-node performance. (See also the chapters by Sta-
matakis and Guindon & Gascuel in this book for more about this subject.).

3.2 Faster Likelihood Calculations

ML-based tree reconstruction has been shown to be anNP-hard optimization problem
under various assumptions [8, 41]. An exponential number of tree configurations
need to be evaluated in order to find the optimal solution, and this is intractable
with even a modest number of organisms. Thus, software tools employ a variety of
heuristics to reduce the search space. For each tree topology, evaluating the likelihood
function involves postorder tree traversal and propagating likelihood values from
the tips to the root according to Felsenstein’s pruning algorithm [15]. Likelihood
computations also appear in Bayesian inference methods. These computations are
both floating-point operation and memory-intensive, and take up a dominant fraction
of the running time in state-of-the-art programs.

Fortunately, there is abundant fine-grained parallelism to exploit in these likeli-
hood calculations. The partial likelihood scores at each site can be computed inde-
pendent of other sites. Since the number of sites can vary from thousands to mil-
lions, the multiple sequence alignment output can be further split into partitions that



3 High-Performance Phylogenetic Inference 41

can be evaluated independently. Likelihood calculations are also prone to floating-
point rounding errors and need to be evaluated carefully. The community is moving
away from monolithic codes and transitioning to using library-based approaches.
Bio++ [12] is an early example of a C++ library with optimized implementations
of key phylogenetic primitives. BEAGLE (Broad-platform Evolutionary Analysis
General Likelihood Evaluator) [4, 50] is a library and an application programming
interface for parallel likelihood calculations. BEAGLE routines can be used in both
ML-based inference methods and Bayesian methods. In addition to partitioning of
alignment sites, fine-grained data parallelism is possible across rate categories and
state values. BEAGLE includes SSE implementations for CPUs, as well as CUDA
and OpenCL implementations of routines for GPUs.

BEAGLE also provides interfaces to the inference tools BEAST 2 [6],
BEAST [11], MrBayes [42], and GARLI [54]. It is shown that the library-based
approaches outperform the standalone implementations, and that the GPU-based
approach delivers a significant performance boost over a CPU implementation.
Recent work by Ayres and Cummings [3] explores additional tuning opportunities
to further improve the performance of BEAGLE routine.

Phylogenetic Likelihood Library (PLL) [19] is another open-source library
inspired by Bio++ and BEAGLE. PLL is used by ExaML [29] and RAxML-NG [28],
two recent and modern implementations of RAxML, and also interfaces with IQ-
TREE [37], a recent ML-based inference package. PLL has a backend for the Intel
Xeon Phi accelerator, Python bindings, includes many SIMD implementations, and
also supportsMPI parallelization. It is shown to be 1.9–4× faster [19] than BEAGLE
on benchmarks.

3.3 Performance Optimizations and Multi-node Parallelism

Bayesian methods [7, 52] approximate the posterior distribution of evolutionary
parameters using Bayes’ theorem. The methods rely on sampling approaches such
as theMetropolis-coupledMarkov chainMonteCarlo (MCMC)algorithm, give prob-
ability distributions for model parameters, and allow incorporation of prior assump-
tions. Altekar et al. [2] discuss shared-memory and distributed-memory paralleliza-
tion of the sampling scheme used in MrBayes. ExaBayes [1] also uses distributed
Metropolis-coupled chains, and further proposes chain swaps using nonblocking
communication messages. This nonblocking communication optimization is shown
to reduce running time by up to 19% [1]. ExaBayes also includes a memory-saving
technique by recomputing partial results on-demand. ExaML uses a similar recom-
putation optimization to reduce inter-node communication. When likelihood calcu-
lations are parallelized based on partitions, the Pi matrix calculations are redundantly
performed by every process. Kobert et al. [27] formulate a bi-criterion data distribu-
tion problem to determine the optimal distribution of partitions and sites to processes,
and show that their new implementation is up to 3× faster than the implementation
with the prior data distribution scheme. Other notable multi-node parallelizations
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include the master–worker strategy to parallelize the IQPNNI approach [31] and
the Java-based DPRml [26] method. I/O optimizations and checkpointing are other
important considerations in parallel environments. ExaML and Beast 2 include sup-
port for periodic disk-based checkpointing. ExaML converts the text-based input file
to a binary format to permit parallel I/O.

In addition to parallelism, algorithmic changes also contribute to significant
speedups. For instance, FastTree [40] employs several novel optimizations and is
shown to be two orders of magnitude faster than RAxML version 7. A recent eval-
uation by Zhou et al. [53] shows that FastTree continues to be faster than recent
versions of RAxML/ExaML, PhyML, and IQ-TREE, while also producing trees that
are more dissimilar to trees generated using the other tool.

3.4 Conclusions

We have witnessed dramatic advances since early work on parallel phylogenetic
inference [16, 45, 49]. Software development for computational phylogenetics is
thriving [36], and performance optimization continues to be a focal area. It is now
possible to achieve significant performance improvements for phylogenetic likeli-
hood function calculations by leveraging modern libraries such as BEAGLE and
PLL. Moret et al. [35] review methods for phylogenetic inference from rearrange-
ment data, and describe anML-based method that is competitive with approaches for
sequence data. For the problem of supertree estimation, Nguyen et al. [38] show that
Matrix Representation with Likelihood (MRL), an ML-based approach, is fast and
outperforms leading alternative supertree methods (see chapter by Warnow in this
book for more aboutMRL and supertree methods). Parallel algorithms and optimiza-
tions to improve scaling of these recent ML-based methods could be a promising
future research direction.
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