Ranking in Dynamic Graphs Using Exponential
Centrality

Eisha Nathan'®) James Fairbanks?, and David Bader!

! School of Computational Science and Engineering, Georgia Institute of Technology,
Atlanta, USA
{enathan3,bader}@gatech.edu
2 Georgia Tech Research Institute, Atlanta, USA
james.fairbanks@gtri.gatech.edu

Abstract. Many large datasets from several fields of research such as
biology or society can be represented as graphs. Additionally in many real
applications, data is constantly being produced, leading to the notion of
dynamic graphs. A heavily studied problem is identification of the most
important vertices in a graph. This can be done using centrality mea-
sures, where a centrality metric computes a numerical value for each
vertex in the graph. In this work we focus on centrality scores obtained
from the computation of the matrix exponential. Specifically, we present
a new dynamic algorithm for updating exponential centrality-based val-
ues of vertices in evolving graphs. We show that our method is faster than
pure static recomputation, obtaining about 16x speedup in real-world
networks while maintaining a high quality of recall of the top ranked
vertices in graphs. Moreover, we do not see a deterioration of the quality
of our algorithm over time as more data is inserted into the graph.

1 Introduction

Network analysis has become an increasingly important research area with appli-
cations to biological, societal, or financial data [9,24]. One of the most funda-
mental questions arising from the analysis of complex networks is to determine
the “most important” vertices in a graph. Vertex importance is termed as cen-
trality, where a centrality metric typically provides a numerical value for each
vertex in the graph [6,19]. Centrality scores can then be turned into rankings
on the vertices of a graph [16,20], where a higher centrality value indicates a
more important (or highly ranked) vertex. For many application purposes, it is
primarily the highly ranked vertices that are of interest [3]. Consider the results
of a Google search, where a user desires the most relevant results to the original
query to appear first. Additionally, in a network modeling disease spread, an
analyst might be interested in identifying the sites that contribute to the forma-
tion of epidemics. These queries are answered by identifying the highly ranked
vertices in the respective graphs. In this paper, we focus on the centrality values
derived from the matrix exponential.

© Springer International Publishing AG 2018
C. Cherifi et al. (eds.), Complex Networks € Their Applications VI,
Studies in Computational Intelligence 689, https://doi.org/10.1007/978-3-319-72150-7_31

Ranking in Dynamic Graphs Using Exponential Centrality 379

Additionally, large real world data sets today are constantly evolving, and
the analysis of changing relationships in networks is an important aspect of
modern data analysis. These changing relationships in data over time can be
represented by a dynamic graph. Our work extends the study of centrality met-
rics on static graphs to the study of centrality on dynamic graphs. Specifically,
we want analytics that can update quickly as the underlying graph changes as
well. Any algorithm to compute a centrality metric can be used to update the
centrality metric in dynamic graphs by recomputing the centrality metric from
scratch every time the graph changes. We term this naive approach as static
recomputation. However, this becomes very costly as the number of changes to
the graph increases. For low latency applications such as cyber-network mon-
itoring, financial fraud detection, or social media applications it is important
to update centrality values in a dynamic graph efficiently to avoid a full static
recomputation.

This work develops a new dynamic algorithm for updating exponential-based
centrality scores in evolving graphs. Our method is faster than standard static
recomputation and maintains high recall of the highly ranked vertices over time.
We test our method on both synthetic and real-world dynamic graphs. The
remainder of the paper is organized as follows: Sect.2 gives some background
and definitions required to understand the problem. We outline related work
in the literature in Sect. 3. Section4 presents our new dynamic algorithm and
Sect. 5 contains experimental results on both synthetic and real-world graphs.
In Sect. 6 we conclude.

2 Background and Definitions

Let G = (V,E) be a graph where V is the set of n vertices and E the set of
m edges. One very popular representation of a graph is the use of an adjacency
matrix A, which is an n x n matrix of 1s and 0s where A(i,7) = 1if (i,7) € E,
0 otherwise. In this work we deal with undirected, unweighted graphs so (i, j),
A(i,j) = A(j,7) and all edge weights are 1; however, our results generalize
to weighted and directed networks where applicable. To represent a dynamic
graph, we take snapshots of the current graph at different points in time. Let
Gy = (Vi, Ey) and A; be the snapshot of graph G and its corresponding adjacency
matrix at time ¢. Here, we assume a fixed vertex set so Vt,V; = V', but edges are
allowed to change over time and F; denotes the edge set at time t. Let AA be the
matrix denoting the edges that are being inserted into the graph at time £+ 1, or
intuitively the change between the graphs at time ¢ and ¢+ 1. For example, if we
insert an edge between vertices v and w at time ¢, then AA[v,u] =1 at time t.
Given the previous adjacency matrix at time ¢, we can write the new adjacency
matrix at time t 4+ 1 as A,y = Ay + AA.

In [11], the authors introduced subgraph centrality as a measure of calculating
vertex importance. Subgraph centrality is determined by the diagonal elements
of some matrix function applied to the adjacency matrix A of the graph under
study. A frequent function of choice is the matrix exponential e [10]. Consider

380 E. Nathan et al.

the power series expansion of e [14]:

2 A3

et =T+ A+t +—+ Zk,,

where [is the n x n identity matrix. It is a well-known fact from graph theory
that A*(i,j) counts the number of walks of length k between vertices i and
7, where a walk of length k£ in a graph is a sequence of vertices vy, vs, -+ , Uk
and (v;,v;41) € E for 1 < i < k — 1. Therefore, the diagonal elements of e,
e“(i,4), count the number of closed walks (starting and ending at the same
vertex) centered at vertex i weighting a walk of length k by 71+ In this paper,
we use the diagonal elements of the matrix exponential, e(i,4) as the centrality
scores for the vertices. An alternate means of calculating centrality scores from
the matrix exponential is to use the row sums of e?, since in practice this is
faster than obtaining the diagonal elements, which requires computation of the
entire matrix. However, various results in previous literature have shown that
these two methods (row sums versus only the diagonal elements) often produce
fairly different rankings and so we cannot simply replace one with the other
[5]. Since our analysis of exponential centrality requires calculating the entire
matrix, which is a dense matrix, this work focuses on medium sized graphs;
however future work can consist of using methods to approximate the matrix
exponential to scale to larger graphs.

3 Related Work

Several centrality measures can be expressed as a function of the adjacency
matrix of a graph. PageRank is a common method for ranking vertices in graphs,
where a high score means random walks through the graph tend to visit the
highly ranked vertices, and was first introduced rank webpages in a web search
[25]. The solution x to the equation (I — aATD " Y)x = (1 — a)v gives the
desired PageRank vector, where v is usually drawn from a uniform distribu-
tion, « is typically set to 0.85 [12], and D is the matrix of diagonal elements
from A. Eigenvector centrality is another linear algebra based centrality mea-
sure for weighing relative importance of vertices in networks, by examining the
eigenvector corresponding to the largest eigenvalue of the adjacency matrix [7].
Figenvector centrality takes into account both direct connections to vertices as
well as indirect, thereby taking into consideration all walks through the network.
It is defined as the solution x to the equation: Ax = Ax, where X is the largest
eigenvalue of A. In this work we focus on the centrality scores obtained by using
the diagonal elements of the matrix exponential e as discussed in Sect. 2. Many
previous works in the literature have extensively studied the matrix exponen-
tial, but all of these have been with respect to static (non-evolving) graphs.
For example, [9] uses row sums to calculate vertex importance, [4] applies cal-
culations involved in computing the matrix exponential to the identification of
hubs in directed networks, and [14] presents methods to approximate the matrix
exponential.

Ranking in Dynamic Graphs Using Exponential Centrality 381

Although the study of centrality measures in static networks has been used
for a variety of applications [23], several networks are constantly changing and it
is therefore important to develop definitions of centrality measures for dynamic
graphs. One such work considers a temporal network as a sequence of lay-
ers and examines centrality scores between these layers [8]. The most popular
approach when analyzing temporal networks considers path-based centrality in
static graphs and extends the metric using time-respecting paths, where a time-
respecting path as one that allows up to an unlimited number of edge traversals
during a particular time step. Several works have examined extending PageR-
ank for dynamic networks. One such example is seen in [18], where the authors
update the eigenvalue formulation of PageRank to update the vector using the
power method. By using exact [21] and approximate [27] aggregation techniques,
they efficiently update the transition matrix after updates to the graph are made.
Temporally extended versions of betweeness centrality [2], communicability [13],
and closeness centrality [26] have also been studied in the past literature. For a
comprehensive survey of dynamic centrality measures, see [28]. However, as far
as the authors are aware there has been no prior work in developing an algorithm
to update the matrix exponential for dynamic graphs.

4 Methodology

The goal of our dynamic algorithm is to prune unnecessary computation when
calculating the updated centrality scores of the vertices in the graph after edge
updates occur. Therefore, our algorithm uses the computations from the previous
timestep in the calculation of the scores in the current timestep. This forms the
basis of our dynamic algorithm. We obtain updated snapshots of the adjacency
matrix at time t +1 as Ay = Ay + AA, where AA represents the edge udpates
occurring at time ¢ + 1.

The end goal is to calculate et+1 or equivalently e4++24 . Since we are work-
ing with exponentials, a naive first pass algorithm is to attempt to exploit basic
properties of exponentials, namely the additive property. However, the additive
property of exponentials fails for matrices unless we have commutativity: for
n x n matrices A = B + C, e # P + e unless BC = BC. Since we cannot
trust graph updates to be commutative, this naive additive property alone is not
sufficient for our purposes and we cannot simply compute e+t as e/t + 24,
However, there is still a relationship between the parts of the sum for the matrix
exponential as stated in Theorem 1 that we can use to develop a streaming
algorithm for the matrix exponential in dynamic graphs.

Theorem 1. Suppose A = B+ C where A, B, and C' are n x n matrices. Then
the exponential of A is related to the exponentials of B and C by the Trotter

product formula [29]:
e = lim (

eB/meC/m)m'

Furthermore, the Trotter result can be used to approzimate e by using the
approximation [22]:
6A ~ (eB/meC/m)m.

382 E. Nathan et al.

Suppose we have the matrix exponential of A at time t, eA*. Given edge updates
AA to the graph, our goal is to compute the updated matrix exponential e+
with minimal computation. Using Theorem 1, we can calculate e+ as:

eAt+1 — 6At +AA

~ (eAt/meAA/m)m

As the value of m increases, although we obtain better quality approximations,
the computation time increases. Since there is an inverse relationship between
quality and performance, in this work we use values of m = 2 and 3 and results
shown are averaged between these two parameter values. We see in practice that
we obtain high quality results from this setting.

5 Results

We test our algorithm on both synthetic and real-world graphs. For synthetic
networks, we test two types: preferential attachment and small-world. The pref-
erential attachment graphs are built using the Barabdsi-Albert model [1] and
possess a scale-free degree distribution. The graph is created by adding vertices
one by one. The model takes two parameters: n and d, where n is the number of
vertices in the graph and d is the number of edges each new vertex is given when
it is first inserted into the graph. To create a scale-free distribution, edges of the
newly inserted vertex connect to vertices already in the network with a proba-
bility proportional to the degree of the existing vertices. Small-world networks
are build using the Watts-Strogatz model [30]. This model produces graphs with
high levels of clustering as seen in real networks and with small graph diame-
ter (the small-world property). This model takes three parameters: n, d, and p,
where n is the number of vertices in the graph, which are arranged in a ring and
connected to their d nearest neighbors. Each vertex is then independently consid-
ered and with probability p an edge is placed between the vertex and a randomly
chosen vertex. Here, we fix p at 0.1. For both types of graphs (Barabdsi-Albert
and Watts-Strogatz) we use values of n = 1000, 2000, and 3000 and vary d from
1 — 10. For real graphs, we draw from the KONECT [17] collection of datasets,
listed in Table 1. All the real graphs are temporal networks, meaning the edges
have timestamps associated with them.

For our experiments, we insert edges in timestamped order for the real graphs
and permute edges randomly for synthetic networks. To simulate a dynamic
graph, we insert edges in batch sizes of 2¢ for i = 0,1,2,3,4,5,7, and 9. Specif-
ically, at each timepoint ¢, 2° more edges are added to the graph. We compare
the performance and quality of our dynamic algorithm to the standard static
algorithm of recomputing the matrix exponential from scratch every time the
underlying graph is changed. The code was implemented in Python and we use
SciPy’s built in EXPM function to calculate the matrix exponential. All experi-
ments were performed on a 4 core Intel Xeon CPU at 2.40 GHz.

Ranking in Dynamic Graphs Using Exponential Centrality 383

Table 1. Real graphs used in experiments.

Graph V| ||E|

Facebook 2,888 | 2,981
Power-grid 4,941 16,594
ca-HepTh 9,877 | 25,998
whb-cs-stanford | 9,435 | 36,854

5.1 Synthetic Graphs

For synthetic graphs, we show results for a batch size of 1. First we measure
performance of our dynamic algorithm. Let Ts denote the time taken by the
static recomputation averaged over all points in time and let Tp denote the time
taken by our dynamic algorithm. To measure performance, we calculate speedup
as speedup = Ts/Tp. Values greater than 1 indicate that our dynamic algorithm
is faster than a pure static recomputation. Figures 1a and b plot speedup versus d
for the preferential attachment graphs and small-world graphs, respectively. The
speedups for the preferential attachment graphs are several orders of magnitude
higher than the corresponding small-world networks. For both types of graphs
however, as the graph becomes denser (larger values of d), the speedups increase.
The speedups seen can be attributed to two factors: the sparsity of AA and the
rate of convergence of e24 versus that of e*. Since AA only consists of the
edge updates at a particular time point, this matrix contains far fewer entries
than that of A; and therefore the calculations needed for the matrix exponential
for AA will converge far quicker than those needed for the full matrix A; as is
required by the static algorithm.

102 200
175
15.0
s S 125
? 10! 3
3 2 100
n n
75
5.0
10° 25 < =3000
2 4 6 8 10 2 4 6 8 10
d d
(a) Preferential attachment graphs speedup. (b) Small world graphs speedup.

Fig. 1. Speedup for synthetic graphs for batch size 2° = 1.

Next we evaluate the quality of our dynamic algorithm with respect to static
recomputation. Many applications in data analysis are concerned with only the
highly ranked vertices in graphs [3]. Therefore to measure quality, we calculate

384 E. Nathan et al.

recall of the top k vertices for k = 25,50, and 100. Let Rg(k) be the set of the
top k highly ranked vertices from static recomputation and Rp(k) be the set of
the top k vertices from our dynamic algorithm. Then recall of the top k vertices
is calculated as recally = |Rs(k) N Rp(k)|/k. Values close to 1 indicate that our
algorithm identifies a high percentage of the top ranked vertices compared to
the solution from static recomputation. Tables2 and 3 show values of the recall
for the top 25, 50, and 100 highly ranked vertices for different values of d for
the preferential attachment and small-world graphs, respectively. For both types
of graphs we average over n = 1000, 2000 and 3000. We observe that the recall
values for the preferential attachment graphs are higher than their small world
counterparts. This can be attributed to the different degree distributions of the
two types of graphs. Due to the manner of creation of the small-world networks,
the topology of the network is relatively homogeneous and all vertices have
essentially the same degree. In contrast, the preferential attachment graphs have
hubs and a scale-free degree distribution. The difference in rankings of vertices is
more likely much more prominent in graphs with a scale-free degree distribution
(the preferential attachment graphs) compared to graphs with a much more
homogenous degree distribution (the small-world graphs). In graphs where all
vertices have a similar degree it is likely that the centrality scores themselves
are also fairly similar. Since our dynamic algorithm is an approximation to the
statically recomputed scores, with similar centrality scores, the rankings can
themselves be easily interchanged for similarly valued vertices. Therefore it is
not surprising that the recall values for the small-world graphs are lower than
their preferential attachment counterparts. Furthermore, while the recall values
for the preferential attachment graphs decrease as values of d increase, there is
no such trend for the small world graphs, which tend to have fairly constant
values of recall for different values of d.

Table 2. Recall values for preferential attachment graphs.

recallss | Tecallsg | recallioo
0.88 0.88 0.88
0.90 0.91 0.91
0.88 0.88 0.89
0.87 0.87 0.88
0.85 0.85 0.86
0.84 0.84 0.85
0.82 0.83 0.83
0.80 0.80 0.81
0.77 0.77 0.79
0.75 0.76 0.76

O |0 ||| U =W N~

—_
o

Ranking in Dynamic Graphs Using Exponential Centrality 385

Table 3. Recall values for small world graphs.

d |recallss | recallso | recalliog
1 1077 0.78 0.80
2 10.77 0.78 0.80
3 10.77 0.78 0.82
4 10.78 0.80 0.83
5 10.80 0.82 0.83
6 |0.77 0.80 0.84
7 10.72 0.73 0.80
8 10.73 0.78 0.80
9 10.71 0.76 0.80
101 0.68 0.72 0.78

Note again that these results are averaged over values of m = 2 and 3. As
mentioned earlier, there is an inverse relationship between computational cost
and quality of our algorithm with respect to choosing the paramater m. Specif-
ically, as we increase the value of m, we would obtain recall values approaching
closer to 1, but at a higher computational cost.

5.2 Real Graphs

Next we evaluate our dynamic algorithm on the real graphs from Table1. In
terms of performance, Fig. 2 plots the speedup versus batch size (note that both
axes are on a log scale base 2 for clarity). We are able to obtain up to a 32x
speedup for batch sizes larger than 23 = 8 with a median speedup of about 16x,
and we always have greater than a 1x speedup. As the batch size increases,
the speedup obtained increases to a certain point, after which it plateaus at an
average of around 16x speedup.

Next we examine the quality of our algorithm on real-world graphs. Table 4
gives the average recall values over all points in time for all batch sizes for
all graphs for the top R highly ranked vertices for R = 25,50, and 100, and
gives the average over all batch sizes. In most cases, the average recall is over
0.75 indicating our algorithm is able to retrieve a large percentage of the highly
ranked vertices compared to static recomputation. There is also a slight trend
of increasing values of recall with larger batch sizes, though the average recalls
over all batch sizes are fairly high. Figure 3 plots the recall over time for all the
graphs for a batch size of 128, though trends for other batch sizes are similar.
The x-axis simulates time as we insert more edges into the graph and the y-axis
plots the recall at that point in time. The most important trend we note is that
while there are occasionally dips in the recall values over time, there is no overall
trend of the quality worsening over time. This indicates that at no point in time
is there evidence that we need to restart our dynamic algorithm. In fact, for some

386 E. Nathan et al.

26 —— maximum —— median —— minimum

25

24

23

Speedup

22

2! //—\/—
20
2! 23 2° 27 29
Batch size

Fig. 2. Speedup versus batch size for real graphs.

Table 4. Recall for real-world graphs.

Graph Top R | Batch size Average
20 |2t 22 2% 2t 2% 27 |2f
facebook R =25 |0.610.59/0.790.79 0.72 0.80 0.74 | 0.73 | 0.72

R =50 [0.83/0.81]/0.93/0.930.930.930.89/0.98|0.90
R =100|0.610.61|0.80|0.78 1 0.77]0.80 | 0.76 1 0.76 | 0.74
power-grid R=25 0.83/0.860.860.86 0.87]0.89 0.89|0.920.87
R=50 0.84/0.870.87/0.86 0.86|0.88 0.93|0.87|0.87
R =100|0.860.88]0.870.88 0.880.900.95/0.92|0.89
wb-cs-stanford | R =25 | 0.520.66 | 0.80|0.900.95]0.96 0.96 | 0.97 | 0.84
R =50 |[0.580.56|0.700.890.94/0.940.93 0.94|0.81
R =100/0.69 | 0.66 | 0.69 | 0.84 0.900.90|0.89]0.920.81
ca-HepTh R=25]0.680.63/0.790.86 0.880.890.83/0.76 | 0.79
R =50 |[0.57/0.63]0.73]/0.820.83]0.81/0.80 0.730.74
R =100{0.60 0.72]0.770.84 0.86 0.86 | 0.85|0.79 | 0.79

of the graphs (WB-CS-STANFORD and CA-HEPTH) the recall actually increases
over time.

Finally, in addition to recall, we examine the Kendall rank correlation coef-
ficient (7), a measure of the correspondence between two rankings [15]. For two
n x 1 vectors x and y, we define P to be the number of concordant pairs (the
number of elements where the ranks given by both x and y agree) and @ to
be the number of discordant pairs. For example, a pair of elements (i, j) is con-
cordant if both x; > x; and y; > y; or if both x; < x; and y; < y;. They are
discordant if x; > x; and y; < y; or if ; < x; and y; > y;. The Kendall 7 coef-

P—

ficient is then calculated as 7 = n(n—l)Q/2 We compare the rankings given by the

entire statically recomputed vector versus the vector obtained from our dynamic

Ranking in Dynamic Graphs Using Exponential Centrality 387

1.0 1.0
0.8 0.8
= 06 T 06
3 S

X 04 X 04

— R=25 — R=25

0.2 — 0.2 =

e R=100 s R=100
0.0 0.0

0 5 10 15 20 25 0 5 10 15 20 25
Time steps Time steps
(a) FACEBOOK graph. (b) POWER-GRID graph.
1.0 sz 1.0
0.8 0.8
E 0.6 @ 0.6
0]]

® 04 X 04

0.2 — R=25 0.2 — R=25

-- R=50 ---- R=50

-~ R=100 s R=100
0.0 0.0

0 5 10 15 20 25 0 5 10 15 20
Time steps Time steps
(c) WB-CS-STANFORD graph. (d) cA-HEPTH graph.

Fig. 3. Recall over time for different graphs for batch size 27 = 128.

algorithm. Values close to 1 indicate strong agreement whereas values close to
—1 indicate strong disagreement. Specifically, if the two rankings agree perfectly
(they provide the same rankings for all pairs of vertices) we expect a value of
1. Similarly, if the two rankings disagree perfectly, 7 would be 1 A value of 0
indicates the two rankings have no relationship to each other. Table5 gives the
values of 7 for the real graphs averaged over all batch sizes and over all points in
time. We note that for all real graphs tested, the value of 7 is above 0 indicat-
ing that there is always agreement between the statically computed vector and
dynamically computed vector. For all but one of the real graphs, the value of 7
is above 0.7, indicating a strong agreement in the rankings of all the vertices.

Table 5. Values of 7 for real graphs.

Graph T

Facebook 0.747
Power-grid 0.812
ca-HepTh 0.528
whb-cs-stanford | 0.761

388 E. Nathan et al.

6 Conclusions

In this paper, we presented a new algorithm for computing the values of
exponential-based centrality in dynamic graphs by studying the matrix exponen-
tial. We tested our method on both synthetic and real-world graphs and observe
that our dynamic algorithm outperforms static recomputation. Additionally, the
quality of our method is robust and does not decay over time, meaning that since
there is no significant drift, there is no evidence that we would need to recom-
pute the values at any point in time. Since this work compares the quality of our
streaming algorithm to the exact computation of the matrix exponential (which
is a computationally heavy task), the graphs used were fairly small. However,
future work will consist of scaling our algorithm to larger graphs, which would
include investigation of alternative methods of approximating the matrix expo-
nential. Additionally, future work can compare rankings obtained from using the
diagonal entries of the matrix exponential to row sums and observing how these
rankings change over time in dynamic graphs.

Acknowledgments. Eisha Nathan is in part supported by the National Physical Sci-
ence Consortium Graduate Fellowship. The work depicted in this paper was sponsored
in part by the National Science Foundation under award #1339745. Any opinions,
findings and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect those of the National Science Foundation.

References

1. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74(1), 47 (2002)

2. Alsayed, A., Higham, D.J.: Betweenness in time dependent networks. Chaos, Soli-
tons & Fractals 72, 35-48 (2015)

3. Bauer, F., Lizier, J.T.: Identifying influential spreaders and efficiently estimating
infection numbers in epidemic models: a walk counting approach. EPL Europhysics
Lett. 99(6), 68007 (2012)

4. Benzi, M., Estrada, E., Klymko, C.: Ranking hubs and authorities using matrix
functions. Linear Algebra Appl. 438(5), 2447-2474 (2013)

5. Benzi, M., Klymko, C.: Total communicability as a centrality measure. J. Complex
Netw. 1(2), 124-149 (2013)

6. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5),
1170-1182 (1987)

7. Bonacich, P.: Some unique properties of eigenvector centrality. Soc. Netw. 29(4),
555-564 (2007)

8. Braha, D., Bar-Yam, Y.: From centrality to temporary fame: dynamic centrality
in complex networks. Complexity 12(2), 59-63 (2006)

9. Estrada, E.: The structure of complex networks: theory and applications. Oxford
University Press (2012)

10. Estrada, E., Higham, D.J.: Network properties revealed through matrix functions.
STAM Rev. 52(4), 696-714 (2010)

11. Estrada, E., Rodriguez-Velazquez, J.A.: Subgraph centrality in complex networks.
Phys. Rev. E 71(5), 056103 (2005)

12.
13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

Ranking in Dynamic Graphs Using Exponential Centrality 389

Gleich, D.F.: Pagerank beyond the web. STAM Rev. 57(3), 321-363 (2015)
Grindrod, P., Higham, D.J.: A matrix iteration for dynamic network summaries.
SIAM Rev. 55(1), 118-128 (2013)

Higham, N.J.: Functions of matrices: theory and computation. SITAM (2008)
Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81-93
(1938)

Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
(JACM) 46(5), 604—632 (1999)

Kunegis, J.: Konect: the koblenz network collection. In: Proceedings of the 22nd
International Conference on World Wide Web, pp. 1343-1350. ACM (2013)
Langville, A.N.,; Meyer, C.D.: Updating pagerank with iterative aggregation. In:
Proceedings of the 13th International World Wide Web Conference on Alternate
Track Papers and Posters, pp. 392-393. ACM (2004)

Langville, A.N., Meyer, C.D.: A survey of eigenvector methods for web information
retrieval. STAM Rev. 47(1), 135-161 (2005)

Langville, A.N., Meyer, C.D.: Who’s# 17: The Science of Rating and Ranking.
Princeton University Press (2012)

Meyer, C.D.: Stochastic complementation, uncoupling markov chains, and the the-
ory of nearly reducible systems. STAM Rev. 31(2), 240-272 (1989)

Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a
matrix, twenty-five years later. SIAM Rev. 45(1), 3-49 (2003)

Newman, M.: Networks: An Introduction. Oxford University Press (2010)
Newman, M.E.: The structure and function of complex networks. STAM Rev. 45(2),
167-256 (2003)

Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
bringing order to the web (1999)

Pan, R.K., Saramaéki, J.: Path lengths, correlations, and centrality in temporal
networks. Phys. Rev. E 84(1), 016105 (2011)

Stewart, W.J.: Introduction to the Numerical Solutions of Markov Chains. Prince-
ton University Press, Princeto (1994)

Taylor, D., Myers, S.A., Clauset, A., Porter, M.A., Mucha, P.J.: Eigenvector-based
centrality measures for temporal networks. Multiscale Modeling Simul. 15(1),
537-574 (2017)

Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc.
10(4), 545-551 (1959)

Watts, D.J., Strogatz, S.H.: Collective dynamics of small-worldnetworks. Nature
393(6684), 440-442 (1998)

