Available online at www.sciencedirect.com

ScienceDirect Procedia

Computer Science

CrossMark

Procedia Computer Science 108C (2017) 68—78

International Conference on Computational Science, ICCS 2017, 12-14 June 2017,
Zurich, Switzerland

Graph Ranking Guarantees for Numerical Approximations
to Katz Centrality

Eisha Nathan!, Geoffrey Sanders?, James Fairbanks®, Van Emden Henson?, and
David A. Bader!

1 School of Computational Science and Engineering, Georgia Institute of Technology
{enathan3,bader}@gatech.edu
2 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
{sanders29,henson5}0@11nl.gov
3 Georgia Tech Research Institute
james.fairbanksQgtri.gatech.edu

Abstract

Graphs and networks are prevalent in modeling relational datasets from many fields of research.
By using iterative solvers to approximate graph measures (specifically Katz Centrality), we can
obtain a ranking vector consisting of a number for each vertex in the graph identifying its
relative importance. We use the residual to accurately estimate how much of the ranking from
an approximate solution matches the ranking given by the exact solution. Using probabilistic
matrix norms and applying numerical analysis to the computation of Katz Centrality, we obtain
bounds on the accuracy of the approximation compared to the exact solution with respect to
the highly ranked nodes. This relates the numerical accuracy of the linear solver to the data
analysis accuracy of finding the correct ranking. In particular, we answer the question of which
pairwise rankings are reliable given an approximate solution to the linear system. Experiments
on many real-world networks up to several million vertices and several hundred million edges
validate our theory and show that we are able to accurately estimate large portions of the
approximation. By analyzing convergence error, we develop confidence in the ranking schemes
of data mining.

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science

Keywords: graphs, data analysis, numerical accuracy, katz centrality, ranking

1 Introduction

Graphs are a very popular means of representing massive amounts of relational data. One of
the most popular questions arising from the analysis of large graphs is to determine the most
important vertices in a graph. Vertex importance is referred to as centrality, and centrality
scores can be used to provide rankings on the vertices of a graph. While there exist many
such centrality measures, in this work we focus on Katz Centrality because of its analytical

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the International Conference on Computational Science
10.1016/j.procs.2017.05.021

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.05.021&domain=pdf

Eisha Nathan et al. / Procedia Computer Science 108C (2017) 68-78

tractability. Efficiently solving for the Katz centrality in a graph involves solving a linear system.
Obtaining an exact solution via direct methods is prohibitively computationally expensive, since
we are required to take the inverse of a matrix. The most accurate way to obtain the exact
solution would be by Cholesky decomposition, which costs O(n?), where n is the number of
vertices in the graph. In many real networks the amount of data is massive and n can be
as large as millions or billions of vertices, so direct methods such as these do not scale and
are impractical. Moreover, there is no technique to compute an exact solution for a general
graph in finite precision arithmetic, so in practice, iterative methods are often used to obtain an
approximate solution. Iterative methods optimally cost O(m), where m is the number of edges
in the graph, but to achieve this optimal complexity the number of iterations must be limited.
Many real-world graphs are sparse and m < n? [1]. In this paper we provide theoretical
guarantees (Theorem 1) on the accuracy of an approximate solution compared to the exact
solution to certify rankings in the approximation, and explain how they can be used to limit
the number of iterations in the iterative solver.

This work bridges the gap between the fields of numerical analysis and data mining by
understanding the effect that the error in a numerical problem has on the confidence of the
data analysis problem of ranking. We solve the data mining problem of ranking by solving
the numerical problem of obtaining a solution to a linear system. Using iterative methods to
obtain an approximate solution to this linear system inherently gives rise to some error in the
approximation. We explain how this error affects how much of the approximate solution is
accurate with respect to the unknown exact solution to the ranking problem. Additionally,
we develop practical algorithms that leverage our theory. For many application purposes it
is primarily the highly-ranked vertices that are of interest. Consider performing a web search
with Google. Typically anyone running a web search has enough human resources to examine
the top. In a Twitter graph, we might wish to identify the most influential voices in a subset of
Twitter users, or in a network modeling disease spread an analyst would be interested in finding
sites of disease origin. These queries are answered by examining the highly ranked vertices in
the graph.

In this paper, we obtain bounds on the accuracy of the approximation compared to the
exact solution using properties of error analysis on linear solvers. We validate our theoretical
guarantees of certifying the accuracy of the top ranked vertices across several real-world net-
works and show that our method is able to find these vertices in a fraction of the time compared
to the standard approach of running to machine precision. The main goal of the work is to
improve our understanding of how numerical accuracy affects data analysis accuracy.

1.1 Contributions

This paper makes the following contributions:

e A new error bound (Theorem 1) on elements of a ranking vector to provide graph ranking
guarantees to the computation of Katz Centrality.

A new stopping criterion for iterative solvers to identify top ranked vertices in a graph
that reduces runtime compared to running a solver to machine precision.

Empirical evidence of a tighter probabilistic upper bound on ||A|2 compared to deter-
ministic Gershgorin bounds for real-world graphs.

e Demonstrations that these bounds provide practical results in real datasets.

69

70

Eisha Nathan et al. / Procedia Computer Science 108C (2017) 68-78

1.2 Related Work

Many data analysis problems are answered by solving an induced numerical problem. We
present how numerical error in the approximation to the solution of a linear system affects
the solution to the original ranking problem. Several centrality measures can be expressed as
functions of the adjacency matrix of a graph [2]. Pagerank [13] is a common method for ranking
vertices in graphs, where a high score means random walks through the graph tend to visit the
highly ranked vertices. Similarly the exponential-based centrality measure weights walks of
length k by a factor of % [7]. Here, we address the ranking problem for Katz Centrality [9],
a centrality metric that measures the affinity between vertices as a weighted sum of the paths
between them.

Solving for many linear algebra based centrality measures directly is generally intractable so
iterative solvers are used to approximate them [4]. Understanding the error in the approximate
solution to the numerical problem is key to understanding the error in the data mining problem.
Ranking vertices in graphs and finding the top ranked vertices is of very practical relevance to
data analysts [6]. We focus on approximating the Katz score of the vertices in the graph to
a high enough accuracy to certify that the top of the ranking vector is accurate compared to
the exact solution. Several other methods for approximating Katz scores across the network
only examine paths up to a certain length [5] or employ low-rank approximation [12]. In [3],
the authors provide theoretical guarantees for pairwise Katz scores and provide an algorithm
to find the Katz scores from one vertex to the rest of the graph with reduced complexity. Our
work differs in that we provide confidence as to which portion of the global ranking is correct
and use the size of the residual to provide an accurate estimation of the ranking.

The main contribution of this paper is bounding the error between the approximate and
exact solutions to accurately certify top portions of the ranking with thorough experimentation
to validate our results. We derive the bound and provide error analysis in Section 2. Numerical
experiments validating the bound including analysis of both precision and performance of our
method are presented in Section 3. Finally, in Section 4, we conclude and discuss further uses
of this work.

2 Definitions and Theory

Let G = (V, E) be a graph, where V is the set of n vertices and E the set of m edges. Denote the
nxn adjacency matrix A of G with entries A(, j) = 1 if there exists an edge from vertex i to j, 0
otherwise. In this work we deal with undirected, unweighted graphs so Vi, j, A(i, j) = A(j, 1) and
all edge weights are 1, although all the theory presented in this paper can easily be generalized
to the weighted case. The matrix 2-norm ||Al|2 is given by the largest singular value, 0,4z

Katz centrality rankings quantify the ability of a vertex to initiate walks around the network.
The number of walks of length &k from vertex i to j is A*(i, j). The Katz score of vertex i counts
the number of closed walks ending at vertex ¢, while penalizing long walks through the network
by multiplying by a fixed user-chosen factor « for each edge used, where « € [0,1/]|4[|2). The
Katz centrality of vertex i is given by el S orey aF=1A*1, where e; is the ith canonical basis
vector and 1 is the n x 1 vector of all ones. In practice the Neumann formula [16] is employed
to turn this series into a linear solver and we compute the Katz Centrality of all vertices in the
graph as ¢ = Y o, o 1AM = AT — 0 A)7'1.

The iterative method we use is conjugate gradient (without a preconditioner) [14], although
the theory applies to other iterative techniques. Conjugate gradient is a popular technique to
approximate the solution x in a linear system Mx = b, given M and b. Let M = I —«aA so that
we solve the system Mx = 1 for x and c is obtained with a simple matrix vector multiplication

Eisha Nathan et al. / Procedia Computer Science 108C (2017) 68-78

as ¢ = Ax in O(m). At each step k of the iterative solver we obtain new approximations
x) and ¢® to the exact solutions x* and c* respectively. The error at each step is denoted
as the difference between the exact and approximation, [|x* — x(*)||5 and the residual norm
as r, = |1 — Mx®) ||y, where || - || denotes the 2-norm. In practice as the exact solution is
not known, typical stopping criteria for the iterative solver use the residual norm, terminating
when it hits machine precision, ry ~ 107'°. The problem is more ill-conditioned and harder
as a — 1/||All2 and typically requires more iterations to terminate and converge to machine
precision.

2.1 Error Analysis

We make the observation that if our goal is identification of the highly ranked vertices in a
graph, we ought to focus on ranking accuracy not numerical accuracy. This is because the
error in the data analysis problem of ranking is dfferent than the error in numerical problem of
solving the linear system: the relative ranking of vertices can be correct even without a fully
correct centrality vector. We theoretically guarantee the accuracy of the solution to numerical
problem needed to successfully answer the data mining question of ranking.

When M1 is approximated, there will be differences between the approximate solution and
the exact solution. We prove that these differences along with the ranking values can indicate
how far down the ranking we can go before the approximation error makes it unreliable. Define
b = 7)) where (%) is the permutation such that b*) is the vector ¢(*) ordered in
decreasing order so that bgk) > bz('i)l'

Theorem 1. Let A, M, x®), c¢®) x* c*, b®) b* and r, be as previously defined. Define
Amin(M) to be the smallest eigenvalue of the matriz M. Let 0., be any upper bound on ||A]|2.
Then for any i < j, the ranking of vertex i above j is correct if |b2(-k) — bg-k)| > 2¢; for € =

Oup

)\min (1\/—[) rk .

Proof. Using foundations of error analysis in linear solvers, we can bound the point-wise error in
the ranking, which will then provide a sufficient error gap in the elements of the approximation
to the ranking vector.

6" = b = [|c* = M| < [|c* = M|

= [Ax" — AxPly < [|A]l2[lx" —xP]5

= [All2l[M 11 = x® |y < [JAfl2| M 2] 1 — MxB|,
Al
Amin (M)

= €L

< 11— Mx®)|, < /\&m

k) - 2€k- If

> 2€, then b} — b7 > 0 meaning that the ranking of vertex ¢ above j is correct. [

Since bgk) — b < e and b — b;k) < €, this means that b} — b7 > bZ(-k) - b;
pk) _ k)
i J

We observe in practice that this bound is tight enough to produce relevant results in many
practical applications and lends itself to the development of a new stopping criterion for iterative
solvers when identifying the highly ranked vertices in a graph.

71

72

Eisha Nathan et al. / Procedia Computer Science 108C (2017) 68-78

2.2 New Stopping Criterion

Current methods for identifying the top vertices in a graph involve running an iterative solver to
machine precision to obtain an approximation of ¢*. We introduce a new stopping criterion to
find these top vertices that typically provides results much faster than existing methods, based
off of the theory developed in Theorem 1. Furthermore, our method provides theoretically
sound guarantees as to the correctness of the top vertices, unlike the common method of simply
running a solver to machine precision and blindly hoping the resulting vector is good enough
for the desired data mining task.

Suppose a user desires a set of j vertices containing the top R highly ranked vertices in a
graph, with precision ¢y. How large does j need to be before we can accurately certify that
the top vertices are in the set? We are not concerned with the internal ordering of this set, but
rather that the top R vertices are contained somewhere within the set of j vertices. We answer
this question using our theory. At each iteration of conjugate gradient, the current solution c(¥)
is ordered in decreasing order to produce the vector b(*) as described earlier. We find the first

position j > R in b®*) where we find the necessary gap of |b5§) - b;k)\ > 2¢g. The precision for
these values of R and j is defined as ¢ = j%. If for this value of j we have the desired precision
¢ then we terminate, else we iterate again using conjugate gradient to obtain a more accurate
approximation. This procedure is given in Algorithm 1, for an adjacency matrix A, upper
bound oy, on ||All2, number of top vertices R, desired precision ¢g, and maximum number of
iterations k4. Intuitively the precision shows how far past position R we must travel down
the vector to find the necessary gap to ensure we are returning the top R vertices in the graph.
Conjugate gradient can be organized to return x*), ¢(®), and the residual norm rj at each

iteration (denoted CGiteration in Algorithm 1).

Algorithm 1: Obtain top R vertices in network with precision ¢q
1 Function Top_R

Data: A, 04y, R, ¢0, kmax
Result: Set of j vertices s.t. top R vertices are contained within this set
2 k=0;j =0
3 M=1I-aA
4 while j% < g and k < kpqr do
5 x®) ¢ r; = CGiteration(M,x*~1)
6 b*) = (k) e(k)
7 € = ﬁﬁl)rk
8 j= argmim>R|b$§) — bgk)| > 2eg,
9 E+=1

2.3 Bounds on ||A];

We obtain a tight bound on €, which allows us to certify that the ranking of vertex i above j is
correct if the gap between two elements in the ranking vector is greater than our error bound,
|b§k) — b(»k)| > 2¢;. Conjugate gradient readily provides the residual norm ry at each iteration,
and A (M) can be computed provided « is chosen in the given range. To certify portions of
the ranking vector, we desire ¢, to be as small as possible to find places in the vector where the
necessary gap \bgk) - b;k)| exists. Obtaining a tight bound on ||A||2 is key to bounding ex; we
present and compare two methods of bounding || A]|2.

Eisha Nathan et al. / Procedia Computer Science 108C (2017) 68-78

The Gershgorin Circle Theorem [15] bounds the eigenvalues of the symmetric matrix A.
Let T; = 3_,; lai;|, the sum of the nondiagonal entries in row ¢. Then D(a;;, T;) is the closed
interval centered at a;; with radius 7; and every eigenvalue A € o(A) must lie within at least
one interval D(a;;,T;), where o(A) is the spectrum of A. Since the diagonal entries a;; of A are
0, the discs are all centered around the origin and Vi, T; = d; = the degree of vertex . We then
have ||Al|2 = max A\; < max T; = dpqe, Where dp,q, is the largest degree in the graph. While
this provides a basis for an upper bound of the matrix 2-norm of A, many real-world graphs
such as social networks have a scale-free distribution and thus contain vertices with a very
large degree. Therefore, this is often a non-optimal bound. By using just a few matrix-vector
multiplications applied to random vectors, one can compute tighter bounds with high certainty.

We next examine probabilistic matrix norm bounds [8] and consider replacing the true bound
Oup With an estimate of a bound with some probability. These bounds are developed using
the polynomials p, ¢ implicitly formed as a part of the Lanczos bidiagonalization process with
starting vector v1, which is chosen randomly with unit norm. The defining relations of Lanczos
bidiagonalization are stated as a,u™ = Av(™ — 3wl and g, vimt) = ATulm) —
amv(™ for By = 0, up = 0. The recurrent polynomials are: vi+1p;(t) = q;(t) — Bjpj—1(t) and
Bi+1¢j+1(t) = tp;(t) — vj1+14q;(t) where v; = u’ Av0) and Bj = u’ AvU+D for p—1(t) =0
and ¢o(t) = 1. The bound, stated in Theorem 2, is due to [8]. The result is an upper bound
oup(0) for ||All2 with probability 1-0, where 6 is the user-chosen probability of bound failure.

Define 6 =0 - 1B(— 7) where B is Euler’s Beta function, B(z,y) fo tr= (1 —t)v—Ldt.

Theorem 2. [8] Suppose we have carried out k steps of the Lanczos bidiagonalization process
with starting vector vy, and let § € (0,1). Then the largest zero of the polynomials,

Fit) = ax(t?) = 1/3, folt) = tpx(t) = 1/0
with § given above, is an upper bound oy,(0) for | All2 with probability at least 1-0.

As a result of thorough experimentation, for all bounds used in this paper, we select values
of #=0.01 and k=10. For k=10, in order to calculate ¢,,(0.01) we are required to calculate the
largest root of a tenth order polynomial. Since this does not change regardless of problem size
n, this calculation is asymptotically a fixed cost. We use Python’s Sympy package to calculate
the roots of these polynomials.

The deterministic Gershgorin bounds yield large values of ||A||2, rendering these bounds
useless. On average, these bounds return estimates of ||Al|2 that are 30.9x greater than the
true 2-norm. In contrast, the probabilistic bounds presented in Theorem 2 return estimates of
||All2 that are only on average 1.07x greater than the true 2-norm, meaning that these are able
to be used for practical purposes.

3 Results

In this section we present comparisons to existing methods for identifying the top ranked vertices
with respect to performance and experiments validating our bound with respect to precision. We
are interested in determining if our method correctly identifies the set of top vertices and if so,
how much faster we are able to certify this set. The common method of iterating to machine
precision does not theoretically certify this set but our theory can be used on the machine
precision solution as well. We conduct experiments on 39 graphs from the KONECT [10] and
SNAP [11] datasets, including social networks, autonomous systems, citation, co-authorship,
web, co-purchasing, and road graphs.

73

74

Eisha Nathan et al. / Procedia Computer Science 108C (2017) 68-78

Table 1: Graphs used in experiments. Columns are numbers of vertices (|V]), number of edges (| E|), number of
iterations using new stopping criterion (I 4), and number of iterations using old stopping criterion (Ig).

Graph [V] [|E| [Ix [Ig
blogs 1,224 19,025 14 41
USAirports 1,574 28,236 22 62
UCIrvineMessages 1,899 59,835 338 784
figeys-protein 2,239 6,452 8 32
OpenFlights 2,939 30,501 30 81
reactome 6,327 147,547 70 144
as20000102 6,474 13,233 6 23
p2p-Gnutella06 8,717 31,525 22 47
p2p-Gnutella05 8,846 31,839 15 46
oregonl_010331 10,670 22,002 6 24
p2p-Gnutella04 10,876 39,994 12 40
oregon2_010331 10,900 31,180 8 27
ca-AstroPh 18,771 198,050 159 348
cit-cora 21,201 91,500 13 43
p2p-Gnutella25 22,687 54,705 7 36
ca-CondMat 23,133 186,936 57 120
as-caida20071105 26,475 106,762 13 41
cit-HepPh 34,546 421,578 56 141
p2p-Gnutella30 36,682 88,328 13 52
email-Enron 36,692 367,662 42 102
slashdot-threads 50,835 140,778 9 32
p2p-Gnutella31 62,586 147,892 10 37
soc-Slashdot0902 82,168 948,464 10 28
recordlabel 168,268 233,286 7 24
libimseti 220,970 17,359,346 67 189
web-Stanford 281,903 2,312,497 22 44
dblp 317,080 1,049,866 108 257
web-NotreDame 325,729 1,497,134 16 56
com-amazon 334,863 925,872 10 31
cit-citseer 384,413 1,751,463 10 38
soc-twitter 465,017 834,797 37 97
stack-overflow 545,196 1,301,942 11 33
country 590,112 637,134 8 25
web-Google 875,713 5,105,039 18 41
youtube 1,134,890 2,987,624 9 28
as-skitter 1,696,415 11,095,298 27 63
flickr-links 1,715,255 15,550,782 48 106
roadNet-CA 1,965,206 2,766,607 1,332 | 2,069

livejournal 7,489,073 | 112,307,385 28 65

3.1 New Stopping Criterion

We first analyze the effect of our stopping criterion on reducing the number of iterations taken
by an iterative solver to identify the top R vertices in a network. Denote the number of
iterations taken by conjugate gradient to machine precision as Ir and the number of iterations
used with our new stopping criterion as I4. Table 1 shows basic information about each graph
used in the experiments as well as raw iteration counts using both the existing and our new
stopping criterion. Figure la plots a histogram of the reduction in iterations % for R = 100
and ¢g = 0.95. In all cases we obtain a reduction of at least 2x, an average of 3.07x reduction,
and up to a maximum reduction of 5.14x the number of iterations using our method. This
shows that we are able to identify the top R = 100 in a fraction of the time using our stopping
criterion compared to running until machine precision, while providing a theoretical guarantee
that these vertices are in the top of the ranking vector. This is especially significant because

Eisha Nathan et al. / Procedia Computer Science 108C (2017) 68-78

Reduction in # of iterations —» Residual at I, for various «

10
[7p] —
g :
1=

S 6 %3

c Q

T 4 o

5 0 ,

3+ 2 ,_04 _4 ee

0 i
2.5 3.5 4.5 5.5 0.2 04 06 0.8 1.0
Ip/1, s (fraction of 1/[|All5)

(a) Histogram of the reduction in iterations from com- (b) Correlation between a and residual obtained after
puting ranking vector to machine precision versus us- terminating at stopping criterion. Larger values of s
ing new stopping criterion. yield larger values of o and indicate harder problems.

Figure 1: Performance results using new stopping criterion for R = 100.

running to machine precision can sometimes take hundreds or thousands of iterations as seen
in Table 1. Next we investigate on what problems our method proves to be the most useful.
We know as a — m, the problem becomes more ill-conditioned. Since o € (0,1/]|A]|2), we
apply our stopping criterion to the different graphs for various « in this range. Figure 1b plots
the relationship between o and the residual norm obtained when the solver terminates using
our criterion. We use o = sm, substituting the bound o,,(0.01) obtained in Section 2 for
| All2, for s € (0,1). For each value of s, the averaged residual norm is plotted across graphs.
When running to machine precision, the residual norm upon termination is typically 7, ~ 10715,
The average residual norm across all trials using our stopping criterion is 2.89 x 10~*. We see
that we never have to iterate until machine precision using our new stopping criterion if we are
interested in only the top vertices in a graph. Regression analysis of these results (plotted as
the green line in Figure 1b) shows a strong linear correlation with a slope of 3.21 and mean
sum of squares of 0.83. The linear relationship suggests that we need less accurate approximate
solutions for harder problems as o — m to obtain the top vertices in the graph. Typically the
harder problems tend to take thousands of iterations to converge with the standard stopping
criterion of iterating until a residual norm of 107'%, but with our stopping criterion we can
converge faster at a lower tolerance to solve the desired data mining task. The low residual
norm suggests we are able to certify the top R correctly with low fidelity solutions and we
are able to use this technique to turn harder linear algebra problems into easier data mining
problems.

3.2 Accuracy of Approximation

Using the theory presented in Section 2, we show that we are able to accurately identify sets
R

of highly ranked vertices. Recall the precision ¢ is given by ¢ = g Intuitively, we calculate
the ratio of the number of returned vertices that are relevant and in the desired top to the
total number returned. A value close to 1 indicates we have obtained the top R vertices with
very few false positives. We evaluate the final precision ¢ for various values of R € [10,10000].
For example, ¢ for R = 100 represents the precision we obtain using our theory to return the
smallest set containing the top 100 ranked vertices in the graph. We find the first index j > 100
where |b§§) = b;k)\ > 2¢;. Figure 2a plots a scatterplot of ¢ values versus various values of R.
For clarity, the y-axis starts at 0.8. We evaluate the precision on the 39 real-world networks
and on each network test on values of R ranging from 10 to 10000, dependent on network size.
Each data point is averaged over all the datasets for that particular value of R. In the majority
of cases we obtain a precision very close to 1, with an average of 0.98. This means we are able

to accurately certify large portions of the ranking vector and with our theory, do so with few

75

76

Eisha Nathan et al. / Procedia Computer Science 108C (2017) 68-78

Precision vs. R Distribution of P values

1'&'.0 ® ea® ..“..‘ac'

[e)Bee]

Precision ¢
o
©
of datasets
N D

0% 2500 5000 7500 10000 B9 10t 10?2 10° 10°
Top R P
(a) Precision values on all graphs for various R. (b) Histogram of P values for different networks.

Figure 2: Qualitative results using new stopping criterion.

false positives. Note that we examine the number of top vertices in graphs instead of a top
percentage. From a data analysis standpoint, an analyst is more likely to be concerned with
the top 100 vertices, for example, across multiple graphs rather than the top 5% of vertices
(which will result in vastly different numbers of vertices dependent on graph size and in some
cases may be impossible to parse given available human resources).

3.3 Perfect Ordering of Top

We have shown that we are successfully able to efficiently identify sets of top ranked vertices in
networks for various set sizes. Experimentation shows that the theory is sound across several
real-world networks. While the previous experiments are only concerned with returning the
top set of vertices, here we impose the additional constraint of perfect ordering of this set. We
not only want the most highly ranked vertices, but we also want them in the correct ordering
as given by the exact solution. Recall the example of a web-Google graph given in Section
1. In this use case, it is important to ensure the ordering of these results is correct. We are
able to apply the theory from Theorem 1 in this application and provide a guarantee on how
many vertices we can accurately certify are in the correct ordering in the top of the ranking
vector compared to the exact solution. In this case, we look at the gaps between successive
vertices 7 and 7+ 1 to ensure each pairwise comparison of vertices has the necessary gap to prove
the correctness of the relative ordering. Running a solver to machine precision to identify top
sets in networks cannot in fact provide any theoretical guarantee of how many vertices in the
approximation are in the correct ordering compared to the exact solution. In this experiment,
we are interested in finding P such that P = argmaa:i|bl(»k) — bl(.i)1| > 2¢y, where P is the number
of vertices in the top of the vector in the correct order compared to the exact solution. We
traverse the sorted ranking vector b(®) after 10 iterations of conjugate gradient to find the first
place where the gap of 2¢; is not satisfied. When this occurs, we know that the previous vertices
are in the correct ordering since each pair-wise comparison of previous vertices satisfied the gap.

Figure 2b plots the distribution of P values for the different networks, with values of 0
omitted. Note the z-axis is on a log-scale. In most cases, we are able to accurately certify at
least hundreds of vertices, with an average across all datasets of P = 903. For cases where
we are only able to guarantee 1 or 0 vertices, we offer a possible explanation. If there are
vertices with the same ranking at the top of the exact solution, our theory will not be able to
go beyond this point because the necessary gap does not exist. Regardless, from a data analysis
standpoint, the numbers of vertices able to be accurately certified in the exact order in the top
validate our theory being used in this use case. For example, in a web-Google graph, a user will
only be concerned with the top 75-100 results, meaning that relative ordering of these results is

Eisha Nathan et al. / Procedia Computer Science 108C (2017) 68-78

very important. Therefore our ability to accurately certify hundreds of vertices in the correct
order is very applicable.

4 Conclusions

This work relates the two research areas of numerical accuracy of solvers and network analysis
by understanding how the error in a solver affects the data analysis problem of ranking. By
treating the problem of ranking vertices in a graph as understanding numerical accuracy in
a linear solver, we present how the error in the numerical problem affects the solution to the
original data analysis problem of ranking. Our aim in this work was to provide theoretical
guarantees to bound the error in an approximate solution from an iterative method to the
exact Katz Centrality scores of vertices in a network. Using this theory, we are able to identify
the most central vertices with high confidence without accurately computing the centrality
scores for every vertex and therefore reduce computation time.

The result of our analysis is a reduction in the number of iterations taken to solve the data
analysis problem of ranking in graphs while maintaining a high precision rate in identifying
top vertices. We demonstrate this on several real-world networks using conjugate gradient
as the iterative method, giving high confidence that the important portion of the ranking is
correct. We present experiments validating the theory as a stopping criterion that can be
used in conjunction with any iterative solver, leading to significant algorithmic improvements.
When using the theory to identify top ranked vertices we are able to do so with very few false
positives. Finally, we also show perfect recall of the top vertices with respect to the exact
solution is possible with our theory. The results from this paper can also be applied to any
linear solver based ranking. Identifying top ranked vertices by Katz is one example in practice
presented in this work, but the theory is generalizable to other linear algebra based ranking
metrics. This paper draws the following quantitative conclusions:

e Our stopping criteria leads to an average of 3.07x reduction in iterations with a maximum

of 5.14x reduction across several graphs when identifying the top 100 vertices.

e The average residual norm when we terminate at our stopping criterion is 10~#, which
provides a practical tolerance for iterative solvers compared to that of machine precision.

e Regression analysis of the performance of our method as a function of a shows that our
method tends to reduce cost more on harder problems.

e We obtain a 0.98 precision when identifying the top R vertices (for R € [10,10000]) in a
graph which shows that our method returns high quality results.

e Applying the theory to several real datasets shows we are able to guarantee that large
portions of the ranking vector are in the correct ordering compared to the exact solution.
Experiments show that we are able to answer the data analysis question of identifying the top
ranked vertices in the graph before needing to converge to machine precision to answer the
numerical problem. Future work will study the impact of these guarantees in a personalized
setting, specifically studying Katz scores from a specific seed set of vertices, and will extend
our theory for directed graphs.

5 Acknowledgments

Eisha Nathan is in part supported by the National Physical Science Consortium Graduate
Fellowship. This work is in part performed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 with release
number LLNL-CONF-728271.

77

78

Eisha Nathan et al. / Procedia Computer Science 108C (2017) 68-78

References

[1] Réka Albert, Hawoong Jeong, and Albert-Ldszlé6 Barabdsi. Internet: Diameter of the world-wide
web. Nature, 401(6749):130-131, 1999.

[2] Michele Benzi, Ernesto Estrada, and Christine Klymko. Ranking hubs and authorities using matrix
functions. Linear Algebra and its Applications, 438(5):2447-2474, 2013.

[3] Francesco Bonchi, Pooya Esfandiar, David F Gleich, Chen Greif, and Laks VS Lakshmanan.
Fast matrix computations for pairwise and columnwise commute times and katz scores. Internet
Mathematics, 8(1-2):73-112, 2012.

[4] Ulrik Brandes and Christian Pich. Centrality estimation in large networks. International Journal
of Bifurcation and Chaos, 17(07):2303-2318, 2007.

[5] Kurt C Foster, Stephen Q Muth, John J Potterat, and Richard B Rothenberg. A faster katz status
score algorithm. Computational & Mathematical Organization Theory, 7(4):275-285, 2001.

[6] KA Hawick and HA James. Node importance ranking and scaling properties of some complex
road networks. 2007.

[7] Nicholas J Higham. Functions of matrices: theory and computation. Siam, 2008.

[8] Michiel E Hochstenbach. Probabilistic upper bounds for the matrix two-norm. Journal of Scientific
Computing, 57(3):464-476, 2013.

[9] Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39-43,
1953.

[10] Jérome Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd International
Conference on World Wide Web, pages 1343-1350. ACM, 2013.

[11] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection, June
2014.

[12] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks. Journal
of the American society for information science and technology, 58(7):1019-1031, 2007.

[13] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation rank-
ing: bringing order to the web. 1999.

[14] Yousef Saad. Iterative methods for sparse linear systems. Siam, 2003.

[15] RS Varga. Gershgorin and his circles in springer series in computational mathematics, 36, 2004.

[16] Dirk Werner. Funktionalanalysis. Springer, 2006.

