l‘)

Check for
updates

Approximating Personalized Katz
Centrality in Dynamic Graphs

Eisha Nathan®) and David A. Bader

School of Computational Science and Engineering,
Georgia Institute of Technology, Atlanta, GA 30363, USA
enathan3@gatech.edu, bader@cc.gatech.edu

Abstract. Dynamic graphs can capture changing relationships in many
real datasets that evolve over time. One of the most basic questions
about networks is the identification of the “most important” vertices
in a network. Measures of vertex importance called centrality measures
are used to rank vertices in a graph. In this work, we focus on Katz
Centrality. Typically, scores are calculated through linear algebra but
in this paper we present an new alternative, agglomerative method of
calculating Katz scores and extend it for dynamic graphs. We show that
our static algorithm is several orders of magnitude faster than the typical
linear algebra approach while maintaining good quality of the scores.
Furthermore, our dynamic graph algorithm is faster than pure static
recomputation every time the graph changes and maintains high recall
of the highly ranked vertices on both synthetic and real graphs.

Keywords: Katz Centrality - Dynamic graphs
Approximate centrality + Personalized centrality

1 Introduction

Graphs are used to represent relationships between entities, whether in web
traffic, financial transactions, or society [1]. In real-world networks, new data
is constantly being produced, leading to the notion of dynamic graphs. The
identification of central vertices in an evolving network is a fundamental problem
in network analysis [2]. Centrality measures provide a score for each vertex in the
graph and the scores can be turned into rankings on the vertices. While in many
applications, centrality scores are used to measure global importance in the entire
network, there are also several applications that require the use of personalized
centrality scores, or scores calculated with respect to specific seed vertices of
interest. Consider performing a web search in Google. Typically the user desires
a set of webpages most relevant to a specific search query (or personalized w.r.t.
the search query), not a set of the most highly visited pages in general. However,
as the size of the network increases and more and more data gets added to the
graph, calculating exact centrality scores becomes increasingly computationally
intensive, and we therefore seek alternative methods of estimating the scores.

© Springer International Publishing AG, part of Springer Nature 2018
R. Wyrzykowski et al. (Eds.): PPAM 2017, LNCS 10777, pp. 290-302, 2018.
https://doi.org/10.1007/978-3-319-78024-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78024-5_26&domain=pdf

Approximating Personalized Katz Centrality in Dynamic Graphs 291

In this paper we focus on Katz Centrality, a centrality metric that measures the
affinity between vertices as a weighted sum of the number of walks between them
[3]. We present a new algorithm for approximating personalized Katz Centrality
scores and extend our algorithm for use on dynamic graphs.

1.1 Contributions

We present a new algorithm for approximating personalized Katz Centrality
(StaTic_KATZ) and extend our algorithm for dynamic graphs (DYNAMIC_KATZ).
We show STATIC_KATZ provides good quality approximations and is several
orders of magnitude faster when compared to the conventional linear algebraic
method of computing Katz scores. DYNAMIC_KATZ is faster when compared to
a pure static recomputation and preserves the ranking of vertices in evolving
networks. We present results on both synthetic and real-world graphs.

1.2 Related Work

There exist many centrality measures in the literature to calculate vertex impor-
tance. Betwenness centrality is a very popular metric where a high betweenness
centrality for a vertex indicates that removal of this vertex will cause a large num-
ber of shortest paths to not exist anymore in the network [4]. An incremental algo-
rithm to update betweenness centrality values in dynamic graphs by maintaining
additional data structures to store previously computed values is proposed in [5].
PageRank is the most similar metric to Katz Centrality and was first introduced
to rank webpages in a web search [6]. Vertices with a high PageRank scores indi-
cate that random walks through the graph tend to visit these vertices. The authors
in [7] analyze the efficiency of Monte Carlo methods for incremental computation
of PageRank in dynamic graphs by maintaining a small number of short random
walk segments starting at each vertex in the graph, and are able to provide highly
accurate estimations of the values for the top R vertices. [8] proposes a method
to update the eigenvalue formulation of PageRank to update the corresponding
ranking vector. They use the power method to do so but the method eventu-
ally ends up requiring access to the entire graph which becomes very memory
intensive. In [9], an algorithm for updating PageRank values in dynamic graphs
through sparse updates to the residual is presented.

In this work we develop agglomerative algorithms to compute Katz Cen-
trality. Typically Katz Centrality scores are calculated using linear algebraic
computations. There has been some prior work in approximating Katz scores in
static graphs using linear algebraic techniques. Several methods have only exam-
ined walks up to a certain length [10] or employ low-rank approximation [11].
However, as far as the authors are aware, there is no prior work in developing a
dynamic agglomerative algorithm for updating Katz scores in graphs.

The main contribution of this paper is the development of new agglomerative
algorithms for calculating approximate personalized Katz scores in static and
dynamic graphs. We present our algorithms in Sect. 2. Section 3 evaluates our
methods with respect to performance and quality, and in Sect.4 we conclude.

292 E. Nathan and D. A. Bader

2 Algorithms

Here we present our static (STATIC_KATZ) and dynamic (DyNAMIC_KATZ) algo-
rithm for computing personalized Katz scores of the vertices in a graph.

2.1 Definitions

Let G = (V, E) be a graph, where V is the set of n vertices and E the set of
m edges. Denote the n x n adjacency matrix A of G as A(i,j) = 1 if there is
an edge (i,7) € E and A(4,j) = 0 otherwise. We use undirected, unweighted
graphs so Vi,7, A(i,j) = A(j,i) and all edge weights are 1. A dynamic graph
changes over time due to edge insertions and deletions and vertex additions and
deletions. As a graph changes, we can take snapshots of its current state and
denote the current snapshot of the dynamic graph G at time ¢ by Gy = (V4, Ey).
In this work, we focus only on edge insertions to the graph, and the vertex set
stays the same over time so V¢, V; = V.

Katz Centrality scores (¢) count the number of weighted walks in a graph
starting at vertex ¢, penalizing longer walks with a user-chosen parameter «,
where o € (0,1/]|A||2) and || A||2 is the matrix 2-norm of A. A walk in a graph
traverses edges between a series of vertices vi,vs, -+ ,vg, where vertices and
edges are allowed to repeat. It is a well-known fact in graph theory that powers
of the adjacency matrix represent walks of different lengths between vertices in
the graph. Specifically, A (i, j) gives the number of walks of length k from vertex
1 to vertex j [12]. To count weighted walks of different lengths in the graph, we
can sum powers of the adjacency matrix using the infinite series

oo
ZakAk:I+aA+a2A2+a3A3+...+akAk+....
k=0

Provided « is chosen to be within the appropriate range, this infinite series
converges to the matrix resolvent (I — aA)~!. When Katz Centrality was first
introduced in 1953, Katz used the row sums to calculate vertex importance to
obtain centrality scores as (I —aA) ™11, where 1 is the nx 1 vector of all 1s. These
are referred to as global Katz scores and count the total sum of the number of
weighted walks of different length starting at each vertex. We extrapolate from
this definition personalized Katz scores, where the ith column of the matrix
(I — aA)~! represents the personalized scores with respect to vertex i, or the
weighted counts of the number of walks from vertex ¢ to all other vertices in the
graph. Mathematically, we can write the personalized Katz scores with respect
to vertex i as (I — aA)_leZ-, where e; is the ith canonical basis vector, the vector
of all 0s except a 1 in the ith position. We set o = 0.85/||Al|2 as in [13].
Typically Katz Centrality scores are calculated using linear algebra by solving
the linear system ¢ = (I —aA)~11 for the global scores or ¢ = (I — aA)~te; for
the personalized scores [14]. If the system is fairly small (meaning the nxn matrix
I — aA is not very large), we can solve for c* exactly in O(n?) using Cholesky
decomposition. In many cases since n may be very large, we use iterative solvers

Approximating Personalized Katz Centrality in Dynamic Graphs 293

to obtain an approximation in optimally O(m) time, provided the number of
iterations is not very large. An iterative method approximates the solution x in
a linear system Mx = b given a matrix M and vector b by starting with an initial
guess xg and iteratively improving the current guess until reaching some sort of
terminating criterion [15]. Usually this criterion is based off of correctness of
the current guess X and the iterative solver terminates when ||M%x — bl2 < tol,
where tol is some predetermined tolerance (usually ~107'°). By setting up a
linear system for Katz scores as Mc = b where b is either 1 (global) or e;
(personalized) and M = I — @A, we can use iterative methods to solve for c.

While solving the linear system works fairly well for the global scores, in the
personalized case many of the vertices have scores close to 0 if they are very far
away from the seed vertex i. Therefore, solving the linear system above for person-
alized scores becomes increasingly computationally intensive because it requires
many iterations to converge. For this reason, in this paper we present an agglom-
erative algorithm as an alternative to the typical linear algebra approach to calcu-
late approximate personalized Katz scores. We calculate scores by examining the
actual network structure itself to count walks without using linear algebra. Our
algorithm assumes a single seed vertex but can be extended to allow for multiple
seed vertices. Henceforth, we use seed to denote the seed vertex (so we are com-
puting personalized Katz scores with respect to vertex seed).

2.2 Static Algorithm

Since walks in graphs allow for repeats of vertices and edges, calculating exact
Katz Centrality scores involves counting walks up til infinite lengths. In practice
this is not feasible and so the algorithm we present calculates only approximate
Katz Centrality scores. To approximate scores, we count walks only up to length k.
We denote the vector of personalized Katz scores obtained by only counting walks
up til length k w.r.t. seed as ¢ = (I + aA +a?A% + - + o AF)e,eeq-

In STATIC_KATZ, we maintain three separate data structures:

— an n X k array walks to count the number of walks in the graph. The (4, j)th
entry in this array indicates how many walks of length j exist from seed to
vertex 1.

— a queue map to indicate what vertices are reachable at the current iteration.
At each iteration j, the value of map[vtz] indicates how many walks of length
j exist from seed to vertex vix.

— an n X 1 array visited, where visited[i] gives the iteration at which vertex 4
was initially reached from seed. This array is primarily used in our dynamic
algorithm.

The overarching static algorithm is given in Algorithm 1 and is split into two
subroutines. The first subroutine in Algorithm 2, COMPUTE_WALKS, counts the
number of walks. To do so, we implement a variant of breadth-first search. The
queue map is initialized with the source vertex seed. At each iteration j, we
perform the following main steps:

294 E. Nathan and D. A. Bader

1. Tterate through all vertices v in map (line 7)

2. If we haven’t already visited vertex v, we set the value of visited[v] to the
current iteration j (line 9)

3. This is the key step in calculating the number of walks. Here, N (v) indicates
the set of neighbors of vertex v. For each neighbor vertex, we propagate the
number of walks from v. If there are count number of walks from seed to v
of length j — 1, then for each neighbor dest of v, there are count number of
walks from seed to dest of length j going through v (line 11)

4. Finally, we set the values in the walks array for the current iteration j to
indicate how many total number of walks are possible from the source vertex
seed to all vertices reachable in the current iteration (line 13)

The second subroutine in Algorithm 3, CALCULATE_SCORES, calculates the per-
sonalized Katz scores using the walks array. The Katz score for vertex i is the
weighted (by powers of «) sum of walks of all lengths up to k from seed to .

Algorithm 1. Static algorithm to compute Katz scores from source vertex seed
up to walks of length k.
1: procedure STATIC_.KATZ(G, seed, k, o)

2 walks = COMPUTE_WALKS(G,seed,k)
3: ¢ = CALCULATE_SCORES(walks,c)
4: return c

Algorithm 2. Static algorithm to recompute counts of walks up to length k
from source vertex seed.
1: procedure COMPUTE_WALKS(G, seed, k)

2: walks = n X k array initialized to 0

3: visited = n x 1 array initialized to -1

4: map[seed] = 1 > Initialize map
5 j=0

6: while j < k do

7 for v in map do

8: count = map|v]

9: if visited[v]==-1 then

10: visited[v] = j

11: for nbr in N(v) do

12: map[nbr] + = count

13: for v in map do > Count walks of length j in current iteration
14: walks[v][j] = map[v]

15: j+=1

return walks

Approximating Personalized Katz Centrality in Dynamic Graphs 295

Algorithm 3. Calculate Katz scores from walk counts.
1: procedure CALCULATE_SCORES(walks, o)

2: c = n x 1 array initialized to 0

3 fori=1:ndo

4: for j=1:kdo

5 cfi] += o1 - walks[i][k]
return c

Denote the result of STATIC_.KATZ as cj and the exact solution (obtained
through linear algebra) as c.. We can bound the pointwise error between our
approximation c; and the exact solution c* by ¢, as follows:

0 k
le* = crlloe = | D aPAP = " aP 4|,
p=0 p=0
[eS)

=l Y aP4?|y

p=k+1

oo
= ||ak+1Ak:+1 Z aP AP ||y

p=0
< [P AR o[— ad) 72

k+1
Copn AT

Momin(l —ad) — F*

Note that this proof means that the scores provided from our approximation
will never be greater than ¢; away from the exact scores. We will see in Sect. 3
that this bound not only provides reasonable results but our approximation
empirically produces scores also several orders of magnitude closer than what is
theoretically guaranteed.

While results in Sect.3 only examine starting at a single seed vertex, our
algorithm can easily be adapted to the case where we allow multiple seed vertices.
Instead of initializing the map with only the single seed vertex in Line 4 in
Algorithm 2, we simply initialize the map with all desired seed vertices. The rest
of the algorithm can remain the same as we will then count walks from all seed
vertices. The complexity of our static algorithm is O(km). This is because at
each iteration we can touch at most m edges and we run our algorithm a total
of k times to count walks up to length k.

2.3 Dynamic Algorithm

The overall dynamic algorithm DyYNAMIC_KATZ for updating personalized Katz
scores is given Algorithm 4 and uses a helper function UPDATE_WALKS, described
in Algorithm 5. For our dynamic algorithm we consider the case where we insert
a single edge e into the graph between vertices src and dest. Instead of a com-
plete static recomputation, we can avoid unnecessary computation by using the
previously described wvisited array. If we insert an edge between vertices src and

296 E. Nathan and D. A. Bader

dest, we only need to update counts of walks for vertices that have been vis-
ited after vertices src and dest. Furthermore, we only need to update counts
for walks that use the newly added edge. Given a starting vertex curr_vtx and
integer j, the function UPDATE_WALKS propagates the updated counts of walks
from curr_vtx to the remaining vertices starting at walks of length j. We do this
by maintaining a queue of walk counts for each vertex visited using a variant
of breadth-first search, similar to the static algorithm described earlier. The key
step is in line 8, where we only traverse walks and update the walk count if we
are using the newly added edge. This effectively prunes the amount of work done
compared to a pure static recomputation.

In Algorithm 4, DYNAMIC_KATZ, for an inserted edge e = (sre, dest) we cal-
culate which vertex has been visited first (lines 2-6). Without loss of generality,
suppose src had originally been visited first. In line 7, we update the visited
value of dest because we can now get to dest from src using the newly added
edge. Accordingly, we increment by one the number of walks possible for dest
as a direct result of the new edge in line 8. For the inserted edge e, the function
DyNamiCc_KATZ calls the helper function UPDATE_WALKS for both affected ver-
tices src and dest to update the walk counts. For vertex src, we start updating
walks of length visited[src] + 1 and similarly for vertex dest for walks of length
visited|dest] + 1. Adding these updated counts to the existing array walks effec-
tively propagates the effect of adding the new edge and then in line 11 we
calculate the updated Katz scores. Once we have the updated walks, we can
calculate the scores using Algorithm 3 as we did in the static recomputation.

Note that our dynamic algorithm is an approximation to the static recomputa-
tion. While updating the walk counts for src and dest using the new edge accounts
for much of the effect of the added edge, it is possible there are walks originating
from other vertices in the network that go through the added edge that need to
be updated. However, the effect of these extra walks will be minimal compared
to the effect from the src and dest vertices, and we show that our dynamic algo-
rithm maintains good quality compared to a static recomputation when concerned
about recall of the highly ranked vertices in Sect. 3. The worst-case complexity of
our dynamic algorithm is still the same as the static algorithm, O(km), because
in the worst-case we can still have to touch m edges at each iteration. However
empirically we see that we still obtain significant speedups compared to the static
algorithm in Sect. 3 because in practice our dynamic algorithm only traverses an
edge if the walk in question uses the newly added edge.

We illustrate our dynamic algorithm on a small toy network. Figure 1 depicts
the initial graph and the corresponding walk counts of length & up til £ = 3 for
seed = 0. In Fig.2, we add an edge between vertices 2 and 5 and show the
updated walk counts desired in red. The visited array is updated accordingly,
since we can now reach vertex 5 through vertex 2. When we update the walk
counts from vertex 5 starting at walks of length visited[5]+1=23, we obtain a
new walk of length 3 to vertex 2 that uses the new edge (0 — 2 — 5 — 2). When
we update the walk counts from vertex 2, we obtain a new walk of length 3 to
vertex 4 using the new edge (0 — 2 — 5 — 4).

Approximating Personalized Katz Centrality in Dynamic Graphs 297

Algorithm 4. Update Katz scores using dynamic algorithm given edge update
edge from vertex src to dest

1: procedure DYNAMIC_KATZ(G, seed, k, walks, visited, edge)
2: mazx_visited = MAX(visited[src|,visited|[dest])

3: if visited[src]==maz_visited then

4: max_vtr = src; min_vtx = dest

5: else

6: max_vtr = dest; min_vtx = src

7 visited[maz_vtz] = visitedmin_vtz] + 1

8: walks[mazx_vtz][visited[maz_vtz]] += 1

9: UPDATE_WALKS(G, max vtz, edge, k, visited[max_vtz]+1, walks)
10: UPDATE_-WALKS(G, min_vtz, edge, k, visited[min_vtz]+1, walks)
11: ¢ = CALCULATE_SCORES(walks,c)

12: return c

Algorithm 5. Helper function for dynamic algorithm to update walks
1: procedure UPDATE_WALKS(G, curr_vtz, edge, k, starting_val, walks)
2: maplcurr_vtz] = 1
3: j = starting_val > Start updating walks of length starting_val
4 while j < k do
5: for v in map do

6: count = map(v]

7.

8

for nbr in N(v) do
if v==src AND nbr==dest then > Only update if using new edge

9: map[nbr] + = count
10: for v in map do

11: walks[v][j] = map[v]

12: j+=1

return walks

3 Results

We evaluate STATIC_.KATZ and DYNAMIC_KATZ on synthetic and real-world
graphs. For synthetic networks, we use Erdos-Renyi graphs (ER) [16] and
R-MAT graphs [17]. In the Erdos-Renyi model, all edges have the same proba-
bility for existing in the graph. R-MAT graphs are scale-free networks designed
to simulate real-world graphs. For real-world networks, we use four networks
from the KONECT collection [18]. Graph information is given in Tablel. For
all results, five vertices from each graph are chosen randomly as seed vertices
and results shown are averaged over these five seeds. Finally, many real graphs
are small-world networks [19], meaning the graph diameter is on the order of
O(log(n)), where n is again the number of vertices in the graph. Our algorithm
therefore sets k = [log(n)], so by counting walks up to length ~log(n), we can
touch most vertices in the graph.

298 E. Nathan and D. A. Bader

Vertex|k=1 k=2 k=3 Vertex|visited
° a 0 |0 3 0 0 0
1 1 0 3 1 1
°.° ° 2 1 0 5 2 1
3 1 0 5 3 1
° 4 0 2 0 4 2
5 0 0 2 5 3

Fig. 1. Initial graph, walk counts of length k, and visited values at time ¢;.

Vertex|k=1 k=2 k=3 Vertex|visited
0 0 3 0 0 0
1 1 0 3 1 1
2 1 0 6 2 1
3 1 0 5 3 1
4 0 2 1 4 2
5 0 1 2 5 2

Fig. 2. Updated graph, walk counts of length k, and visited values at time ¢s.

3.1 Static Results

For StATIC_.KATZ, we present compar-
isons to the conventional linear algebraic
method of computing Katz scores of solv-
ing the linear sytem (I — aA) te;. Recall
we denote the exact solution given by
linear algebra as c* and ci to repre-
sent the personalized Katz scores from
STATIC_KATZ. Figure 3 plots the absolute
error from our algorithm between c¢* and
¢ in the dotted blue line while the theo-
retically guaranteed error ¢ is plotted in
the solid green line. Both errors are plot-
ted as a function of k and results are aver-

Error

3 4 5 6
k (walk length)

Fig.3. Error between approximate
scores c¢; and exact solution c*.

aged over all graphs. We see that the actual experimental error is always several
orders of magnitude below the theoretically guaranteed error, meaning our algo-

rithm performs better than expected.

In Table 1 we summarize the relative speedup obtained from counting walks
versus calculating the exact scores using linear algebra for all the real-world
graphs by giving the raw times taken by both methods. Let 77, denote the time
taken by the linear algebraic method and T the time taken by STATIC_KATZ.
We note that counting walks using our method is several orders of magnitude
faster than linear algebraically computing personalized Katz scores.

Approximating Personalized Katz Centrality in Dynamic Graphs 299

Table 1. Speedup for real-world networks used in experiments.

Graph V] |E| T Ts
Manufacturing | 167 82,927 0.74s | 0.0059s
Facebook 42,390 876,993 | 132.96s|0.0947s
Slashdot 51,083 | 140,778 |241.21s|0.058s
Digg 279,630 | 1,731,653 | 62.585 | 0.053 s

3.2 Dynamic Results

We test our method of updating Katz Centrality scores in dynamic graphs on
the synthetic ER and R-MAT graphs and on the three largest real-world net-
works from Table 1. Dynamic results are given as comparisons to a pure static
recomputation (comparing the performance and quality of DyNaMIC_KATZ to
StaTic_KATZ). To have a baseline for comparison, every time we update the
centrality scores using DYNAMIC_KATZ, we recompute the centrality vector stat-
ically using STATIC_KATZ. Denote the vector of scores obtained by static recom-
putation as cg and the scores obtained by the dynamic algorithm as cp. We
create an initial graph G using the first half of edges, which provides a starting
point for both the dynamic and static algorithms. To simulate a stream of edges
in a dynamic graph, we insert the remaining edges sequentially and apply both
STATIC_KATZ and DYNAMIC_KATZ.

10
n=2%

Speedup
5
Speedup

10°

10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Average degree Average degree
(a) Erdos-Renyi graphs. (b) R-MAT graphs.

Fig. 4. Speedup vs average degree for synthetic graphs tested.

For both ER and R-MAT graphs, we generate graphs with the number of
vertices n as a power of 2, ranging from 2!3 to 215. We vary the average degree of
the graphs from 10 to 50. Denote the time taken by static recomputation and our
dynamic algorithm as T's and Tp respectively. We calculate speedup as Ts/Tp.
Figure 4 shows the average speedup obtained over time versus the average degree
in the graph. For both types of graphs we see the greatest speedup for sparser
graphs (smaller average degree). For R-MAT graphs, we also observe greater
speedups overall for larger graphs (larger values of n).

300 E. Nathan and D. A. Bader

For real graphs, we evaluate
our algorithm on the three largest e /'M
graphs from Table 1. Let Sg(R) and 0.99

Sp(R) be the sets of top R highly

. VB 008
ranked vertices produced by static g

. .
recomputation and our dynamic 0.97

- . —— R=10
algorithm respectively. We evalu- 0.6 1
ate the quality of our algorithm T R=1000
based on two metrics: (1) error 0.95
0 10 20 30 40 50

= |lcs — cpll2, and (2) recall of Time Stens
the top R vertices = [Ss(ROSp (R P

We V&{ant low values of the error, Fig. 5. Ranking accuracy over time for top
meaning DYNAMIC_KATZ produces R =10,100,1000 vertices for the SLASHDOT
Katz scores similar to that of graph.

STATIC_KATZ, and values of recall

close to 1, meaning DYNAMIC_KATZ identifies the same highly ranked vertices as
STATIC_KATZ. We consider values of R = 10, 100, and 1000. For many applica-
tion purposes it is primarily the highly-ranked vertices that are of interest [20].
For example, these may be the most influential voices in a Twitter network, or
sites of disease origin in a network modeling disease spread. Showing that our
algorithm maintains good recall on the highly ranked vertices has many practical
applications.

Table 2 gives averages over time of the performance and quality of our algo-
rithm. For the three graphs tested, our dynamic algorithm is several thousand
times faster than static recomputation. Average recall of the top R vertices is
very high in all cases (greater than 0.99), showing that our approximation of
Katz scores is accurate enough in dynamic graphs to preserve the top highly
ranked vertices in the graph. The values of the error, although relatively small,
indicate that our dynamic algorithm does not find exactly the same scores as
a static recomputation. Therefore, our dynamic algorithm should be used if a
user’s primary purpose is recall of highly ranked vertices without concern of the
exact values of the scores.

Table 2. Averages over time for real-world graphs for dynamic algorithm compared
to static recomputation. Columns are graph name, speedup, absolute error, and recall
for R = 10, 100 and 1000.

Graph Speedup Average recall Error
R=10| R=100| R = 1000
Facebook | 27,674.50x | 1.00 0.997 0.999 0.081
Slashdot |47,278.82x | 1.00 0.995 0.996 0.013
Digg 60,073.81x | 1.00 0.996 0.991 0.037

Approximating Personalized Katz Centrality in Dynamic Graphs 301

Furthermore, we observe that the quality of our algorithm does not suffer
over time and is therefore robust to many edge insertions. Figure5 plots the
recall over time (sampled at 50 evenly spaced timepoints) for the SLASHDOT
graph for the top R = 10, 100 and 1000 vertices. Note that the y-axis starts at
0.95. We are able to maintain a high recall of the top ranked vertices with little
to no decrease over time. The results for other graphs tested are similar.

4 Conclusions

In this paper we have presented a new algorithm, STATIC_KATZ to approximate
personalized Katz scores of vertices in a graph. We have shown that our approx-
imate algorithm produces scores numerically close to, and is several orders of
magnitude faster than, that of a conventional linear algebraic computation. We
extended STATIC_KATZ and developed an incremental algorithm DYNAMIC_KATZ
that calculated updated counts of walks to provide approximate Katz scores
in dynamic graphs. Our dynamic graph algorithm is faster than a pure static
recomputation and maintains high values of recall of the top ranked vertices
returned. Adapting our algorithms to work in parallel is a topic for future work.
For instance in our dynamic graph algorithm, updating the scores for both the
source and destination vertex of the newly added edge can be done in parallel.

Acknowledgments. Eisha Nathan is in part supported by the National Physical Sci-
ence Consortium Graduate Fellowship. The work depicted in this paper was sponsored
in part by the National Science Foundation under award #1339745. Any opinions,
findings and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect those of the National Science Foundation.

References

1. Caldarelli, G.: Scale-Free Networks: Complex Webs in Nature and Technology.
Oxford University Press, Oxford (2007)

2. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex net-
works: structure and dynamics. Phys. Rep. 424(4), 175-308 (2006)

3. Katz, L.: A new status index derived from sociometric analysis. Psychometrika
18(1), 39-43 (1953)

4. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry
40(1), 35-41 (1977)

5. Green, O., McColl, R., Bader, D.A.: A fast algorithm for streaming betweenness
centrality. In: 2012 International Conference on and 2012 International Conference
on Social Computing (SocialCom), Privacy, Security, Risk and Trust (PASSAT),
pp. 11-20. IEEE (2012)

6. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
bringing order to the web (1999)

7. Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized pager-
ank. Proc. VLDB Endow. 4(3), 173-184 (2010)

302

10.

11.

12.
13.

14.

15.
16.

17.

18.

19.

20.

E. Nathan and D. A. Bader

Langville, A.N., Meyer, C.D.: Updating pagerank with iterative aggregation. In:
Proceedings of the 13th International World Wide Web Conference on Alternate
Track Papers and Posters, pp. 392-393. ACM (2004)

Riedy, J.: Updating pagerank for streaming graphs. In: 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops, pp. 877-884. IEEE
(2016)

Foster, K.C., Muth, S.Q., Potterat, J.J., Rothenberg, R.B.: A faster katz status
score algorithm. Comput. Math. Organ. Theory 7(4), 275-285 (2001)
Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks.
J. Assoc. Inf. Sci. Technol. 58(7), 1019-1031 (2007)

Newman, M.: Networks: An Introduction. Oxford University Press, Oxford (2010)
Benzi, M., Klymko, C.: Total communicability as a centrality measure. J. Complex
Netw. 1(2), 124-149 (2013)

Benzi, M., Klymko, C.: A matrix analysis of different centrality measures. arXiv
preprint arXiv:1312.6722 (2014)

Saad, Y.: Iterative Methods for Sparse Linear Systems. STAM, Philadelphia (2003)
Erdos, P., Rényi, A.: On random graphs, i. Publicationes Mathematicae (Debrecen)
6, 290-297 (1959)

Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-mat: a recursive model for graph min-
ing. In: SDM, vol. 4, pp. 442-446. SIAM (2004)

Kunegis, J.: KONECT: the koblenz network collection. In: Proceedings of the 22nd
International Conference on World Wide Web, pp. 1343-1350. ACM (2013)
Albert, R., Jeong, H., Barabasi, A.-L.: Internet: diameter of the world-wide web.
Nature 401(6749), 130-131 (1999)

Hawick, K., James, H.: Node importance ranking and scaling properties of some
complex road networks (2007)

http://arxiv.org/abs/1312.6722

	Approximating Personalized Katz Centrality in Dynamic Graphs
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Algorithms
	2.1 Definitions
	2.2 Static Algorithm
	2.3 Dynamic Algorithm

	3 Results
	3.1 Static Results
	3.2 Dynamic Results

	4 Conclusions
	References

