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Abstract— Triangle counting is an important building block
for finding key players in a graph. It is an integral part of
the popular clustering coefficient analytic and can be used
for pattern matching in social networks. A triangle, which is
also a 3-clique, represents a strong connection between three
players that are all connected. While counting triangles is not
overly expensive from a computational standpoint, especially in
comparison to centrality metrics (such as betweenness centrality
and closeness centrality), it can still prove to be prohibitive
for large scale networks, especially for those with a power-law
distribution. This problem only deepens for dynamic graphs
where the network is constantly changing, requiring constant
updating of the graph and the analytic. In this paper, we
present a new dynamic graph algorithm for counting triangles
that is based on an inclusion-exclusion formulation. While
our algorithm is independent of the computing platform, we
show performance results on an NVIDIA GPU. Our approach
handles 32 million updates per second, or up to 11 million
updates per second if the graph data structure is also updated.
In past approaches, when a vertex was affected due to an edge
insertion or deletion, it was necessary to find the triangles from
scratch for that given vertex. Our new formulation does not
need this and only requires considering the affected edges. As
such our algorithm is typically several hundred times faster
than the past approach - in some cases up to 819X faster.

I. INTRODUCTION

Dynamic graphs are ubiquitous and used to represent

evolving data sets in numerous applications. This can include

representing transactions between entities in a financial net-

work, players in a social network, or message passing in

a communication network. Constant changes to the graph

require that the graph data structure be mutable. A dynamic

graph data structure is only one out of two components

needed for updating an analytic. The second component

is the dynamic graph algorithm which is responsible for

updating the metric of interest. Ideally, the dynamic graph

algorithm should be computationally inexpensive in compar-

ison with its static graph counterpart (which typically starts

the computation from scratch). In some cases, approximation

are a viable solution, yet there are also applications where

the exact result is necessary. Thus, it is expected that the

dynamic graph algorithm produce the same result as that

of a static graph algorithm.

In this work we show a new parallel and computationally

efficient algorithm for finding the exact number of trian-

gles in a graph in a dynamic setting. This new algorithm

uses an inclusion-exclusion formulation, introduced later in

this paper, to ensure that triangles are counted accurately.

Furthermore, our algorithm can process batches of edge

updates, including when a triangle is either formed (in the

case of edge insertion) or removed (in the case of edge

deletions) within the batch. This requires special attention.

The inclusion-exclusion formulations helps reduce the com-

putational requirements in comparison to past solutions.

There are numerous approaches and algorithms to count

triangles in the static setting (Sec. II); however, most of these

approaches can be grouped into a small number of computa-

tional approaches [37]: iterating through node triplets, using

linear algebra operations, and intersecting the adjacency lists

of two connected vertices. Our new dynamic graph algorithm

uses the latter. A dynamic graph analytic can start its execu-

tion from an empty graph or from some initial snapshot. For

the latter case, typically, a static graph algorithm is executed

and is then followed by the dynamic graph algorithm after

each update. The new algorithms supports both insertions

and deletions. In the literature, these updates might be called

incremental and decremental operations.

Contributions

While the new algorithm in this paper is hardware inde-

pendent, our implementation is on an NVIDIA GPU using

the cuSTINGER [16] dynamic graph library. cuSTINGER

is a scalable dynamic graph data structure for the GPU (a

necessary feature for our dynamic graph algorithm). Our

reasons for selecting cuSTINGER are as follows: 1) the

data layout of cuSTINGER enables efficient adjacency list

intersections, 2) the GPU is a massively multi-threaded

system with high memory bandwidth allowing to test the

scalability of our new algorithm, and 3) it is open-source.

In summary, the contributions of this paper are:

• We present a new dynamic graph algorithm for triangle

counting based on an inclusion-exclusion formulation. Our

new algorithm has better complexity bounds than prior

approaches (Sec. IV).

• Our algorithm handles very high update rates, tens of

millions of updates per second (Sec. V).

• Unlike the update process in [16], which does not ensure

that the adjacency lists are sorted, our update process does

ensure this. We show an efficient edge update processes that

ensures this (Sec. III).

• All the source code of our algorithm and the modifications

made to the dynamic graph data structure are open-source.

While the implementation and performance analysis of
our new algorithm are presented for the GPU, we em-
phasize that the new algorithm can be implemented for
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additional systems (CPU included) given an appropriate
dynamic graph data structure.

Lastly, we note that the new algorithm is significantly

faster than prior dynamic triangle counting algorithms. We

typically see speedups of well over 100X and in some cases

as much as 819X over past algorithms.

II. RELATED WORK

The applications in which triangle counting and triangle

listing are used is broad, though its adoption by data sci-

entists as an important metric came after the introduction

of the clustering coefficients [42] metric. Triangle counting

was also part of the HPEC Graph Challenge [33]. Other

applications for triangle counting are: finding transitivity

[29], spam detection in email networks [4], finding tightly

knit communities [32], finding trusses k-trusses [7], [39],

[17] , and evaluating the quality of different community

detection algorithms [26], [45]. An extended discussion of

triangle counting applications can also be found in [6].

a) Computational Approaches: Given a graph, G =
(V,E), where V are the vertices and E are the edges in the

graph, the three simplest and mostly widely used approaches

for counting triangles in a graph [37]; enumerating over all

node triplets O(V 3), using linear algebra operations O(V w)
(where w < 2.376), and adjacency list intersection (this can

also be done using hash tables). The time complexity for

the adjacency list intersection is implementation dependent.

Using a set intersection operation for all edges in the graph

gives an upper-bound time complexity of O(|E| · dmax)
where dmax is the degree of the largest vertex in the graph.

A similar time complexity can be found for hash-table based

intersections. Hash tables can be used when the adjacency

lists are not sorted; however these tend to incur additional

runtime and storage overheads. List intersections can also be

completed in the Gather-Apply-Scatter (GAS) programming

models [14], [27], [44]. While the GAS model enables

good scalability, in practice performance and utilization tend

to be relatively low due to communications overheads. A

comparison of triangle counting in a vertex centric setting

using sorted adjacency lists and a GAS implementation can

be found in [9]. In this work, it was shown that the vertex

centric approach is approximately 10X faster than its GAS

counterpart. This performance difference is only likely to

increase for a distributed system, as the GAS model requires

more communication.

The applicability of triangle counting and clustering coeffi-

cients has lead to a proliferation of algorithms and unique im-

plementations. Static graph implementations can be found in

GraphX [44], GraphLab [27], Gunrock [41], and STINGER

[2], [11]. Dynamic graph implementations can be found in

STINGER and GraphIn [34].

b) Algorithmic Optimization: Numerous computational

optimizations can be applied to triangle counting algorithms

for static graphs to help reduce the overall execution time.

For example, [15], presents a combinatorial optimization that

reduces the number of necessary intersections - offering

a better complexity bound. Parallelization is another ap-

proach for increasing performance. Ediger et al. [10] evaluate

the performance of two algorithms on the Cray XMT (a

massively multi-threaded system). One algorithm gives the

exact number of triangles while the other algorithms give an

approximation using Bloom Filters. Green et al. [19] show

a scalable technique for load-balancing the triangle counting

on shared-memory systems. Leist et al. [24] show the first

GPU algorithm for triangle counting. In this approach each

GPU thread is responsible for a different intersection. In con-

trast, Green et al. [20] offer a different parallelization scheme

for the GPU that uses numerous GPU threads for each adja-

cency intersection based on the Merge-Path formulation [30],

[18]. This improves the performance over [24] by an order

of magnitude. Wang et al. [40] compare several different

strategies for implementing triangle counting on the GPU.

Shun & Tangwongsan [35] and Polak [31] explore vertex

re-ordering to reduce the number of intersections. This re-

ordering also creates an improved memory access pattern and

reduces the number of cache misses. Lastly, the Doulion [38]

framework shows an approximation technique for finding the

number of triangles in the graph by sparsifying the network

before running a static graph triangle counting algorithm.

c) Streaming and Dynamic Graph Triangle Counting:
There are numerous streaming1 graph algorithms for triangle

counting. Most streaming graph algorithms limit the permit-

ted number of memory accesses per update. This usually

requires approximating the number of triangles in the graph

rather than outputting the exact count. There are numerous

applications where these approximations are still not accurate

enough [4]. In [5] two variations of a streaming graph

algorithm are given: one algorithm assumes nothing about

the edge stream; while the other assumes the stream of edges

is partially sorted (based on the source vertex). In addition

to this, some algorithms may only support edge insertions,

where edge deletions are not considered due to storage or

computational requirements [23].

In [10] an exact (accurate) dynamic graph algorithm is

shown. This algorithm makes use of STINGER and modifies

the edges in the graph using the batch update followed by

an execution of the analytic. A similar approach can be

found in GraphIn [34]. It’s worth noting that the dynamic

triangle counting algorithm in GraphIn [34] does not explain

how the triangles are updated given the fact that the graph

updates are stored in separate data structure than the input

graph. For batch updates consisting of one edge the update

process is simple. However, for larger batches a situation can

arise where numerous edges in a batch will create a triangle.

Without the inclusion-exclusion formulation presented in our

work which can find triangles within the batch update, it

could very well be necessary to recompute the intersections

for all the edges of an affected source vertex (as is done in

1We distinguish between the classic streaming graph model and dynamic
graph models such that the streaming graph model refers to the fact that the
graph evolves one edge at time with a limited number of memory operations
per update and the dynamic graph model refers to the fact that the graph
can simply change over time.
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[10]). This increases the computational requirements of these

algorithm. Our new algorithm can be hundreds of times faster

than these.

A recent framework by Ediger and Fairbanks [12] shows

how to formulate a dynamic graph problems using linear

algebra operations. Specifically, they outline how to update

triangle counts in a dynamic graph.

d) Graph Frameworks: The need for scalable streaming

graph data structures has brought a plethora of data-structures

and data-bases that enable graph updates. Each of these graph

data structures supports different features and programming

models. Some work only on shared-memory systems while

others work with distributed memory systems. Some are

memory based while others are disk based. Some support

transactional memory operation and are fault tolerant. An

extended discussion of these graph data structures and graph

databases can be found in [28]. We briefly discuss some of

the key findings of [28]: many (though not all) of the graph

data bases, such as Pegasus [8], Giraph [21], GraphLab [27],

and Boost [36], support updates. In practice the STINGER

data structure [11] has the highest update rate. Further,

STINGER also has the smallest memory footprint. In some

cases the difference is orders of magnitude smaller than other

frameworks systems. Furthermore, several different analytics,

page-rank and connected components, were implemented for

each of these systems. Once again, STINGER usually was

the best performer.

e) STINGER: The STINGER data structure was first

introduced in [2] as a high performance extensible data

structure for dynamic graphs. STINGER uses blocked linked-

lists to store the adjacency lists of vertices. This allows for

vertices to grow and shrink in size. This means 1) STINGER

is more flexible than Compressed Sparse Row (CSR) which

does not support update operations, 2) has better locality than

a linked-list which stores only one edge per element, and 3)

has lower storage bounds than an adjacency matrix. However,

the blocked linked-list representation makes efficient list

intersection challenging and their respective sorting even

more challenging. A distributed version of STINGER, called

DISTINGER can be found in [13], though it seems that the

source code for DISTINGER is not open-source and that no

analytics have been implemented for this version.

III. DYNAMIC GRAPH DATA STRUCTURES

Table I summarizes the symbols and notations used

throughout the update process.

The cuSTINGER data structure is an extension of

STINGER for the GPU [16]. While cuSTINGER supports

much of the same functionality as STINGER, the internal

data structure has been modified to better target the GPU’s

architecture. cuSTINGER uses dynamically growing arrays

rather than blocked linked-lists for the adjacency arrays. This

allows for improved locality and increased parallel scalabil-

ity. cuSTINGER is a key component of our algorithm. The

original version of cuSTINGER did not support sorted batch

updates. This is a requirement of our algorithm. As such

we add sorted batch updates to the data structure. In this

section, we present the sorting update process that we added

to cuSTINGER. This gives cuSTINGER an unique feature

that is not in other dynamic graph data structures such as

STINGER [2], DISTINGER [13], AIMS [43], and GraphIN

[34], just to name a few.

Lastly, note, that as part of the new sorted graph update

we construct a temporary graph called the update-graph. The

update-graph is used for two different roles in our algorithm.

The first role is straightforward - updating the graph. The

second role is for updating the triangle count and is discussed

in the next section.

Sorted Graph Updates

In many real world applications the need to modify the

graph with multiple edge updates arises. These are known

as batches2. Batches can increase scalability by dealing with

multiple edges within a batch in concurrent manner. The

adjacency list intersection approach for triangle counting

requires that the adjacency lists be sorted. This also means

that after a batch has been processed (edge insertions or

deletions), all the adjacency arrays in the graph also have

to be sorted to allow using adjacency list intersections.

While the sorting operations increase the time complexity

of the algorithm, most of these sorts are for relatively

small arrays; therefore, they can be done in parallel (as

they are independent of each other). We outline an efficient

algorithm for this and present its complexity. In practice, our

implementation can use different sorting algorithms, if these

prove to be more efficient.

First of all, we assume that all the adjacency lists in the

graph are sorted prior to the batch update. By default, if the

graph is empty all the adjacency lists are trivially sorted.

We separate the update process for edge insertions and edge

deletions as these require slightly different assumptions from

the dynamic graph data structure. Given a batch update, the

update-graph G′ = (V,E′) is created, where E′ are the

edges in the batch update and V are the vertices in the graph.

The symbols used for this new graph can be found in Table

I. The update graph itself is also a sparse network and as

such can be represented by a CSR graph.

a) Update-Graph construction: the following outlines

a simple and practical way to construct G′. First, given all

edges in the update e = 〈src, dst〉 ∈ E′, count the number of

times src appears (O(|E′|)). Using this information, create a

CSR representation of G′ using a parallel prefix summation

[22] (time complexity of O(log|V |) and work complexity of

O(|V |)). Note, these complexities are dependent on V rather

than V ′ has the update-graph includes all the vertices in the

original graph (even if they are empty in the update-graph).

The edge array contains all the destination points in the

graph while the offset array points to a location in the edge

array. Lastly, the adjacency lists in G′ also need to be sorted.

This can be done either by sorting each list an separate

fashion or by using two radix sorts on the batch-update itself

(which is also an edge list). The sorted batch-update is then

2A batch can also consist of a single edge
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Algorithm 1 Sorting processing for batch insertion and

deletions. The insertion algorithm uses an in-place (into

adj(u,G)) merging algorithm where the elements are copied

from the end to beginning. See Fig 1 for additional examples.

Require: Graph G(V,E), G′(V,E′)
1: procedure INSERTION

2: parallel for u ∈ V do
3: i← dG

u � degree of u in G

4: j ← dG′
u � degree of u in G′

5: while i ≥ 0 ∧ j ≥ 0 do
6: diff ← adj(u,G)[i]− adj(u,G′)[j]
7: if diff > 0 then � Copy from original.
8: adj(u,G)[i + j + 1]← adj(u,G′)[i]
9: i← i− 1

10: else � Copy from batch graph.
11: adj(u,G)[i + j + 1]← adj(u,G′)[j]
12: j ← j − 1
13: end if
14: end while
15: while j ≥ 0 do
16: adj(u,G)[i + j + 1]← adj(u,G′)[j]
17: j ← j − 1
18: end while
19: end procedure
20: procedure DELETION

21: parallel for u ∈ V do
22: i← dG

u

23: j ← dG′
u

24: while i ≥ 0 ∧ j ≥ 0 do
25: diff ← adj(u,G)[i]− adj(u,G′)[j]
26: if diff = 0 then adj(u,G)[i]← NULL
27: end if
28: if diff ≥ 0 then i← i− 1
29: end if
30: if diff ≤ 0 then j ← j − 1
31: end if
32: end while
33: i← 0
34: j ← 0
35: while i < du do � Stream compaction
36: if adj(u,G)[i] �= NULL then
37: adj(u,G)[i]← adj(u,G)[j]; j ← j + 1
38: end if
39: i← i + 1
40: end while
41: du ← j

42: end procedure

copied into the edge array of the CSR data structure. The

time complexity of this radix sort is O(|E′|). Pseudo code

for the update-graph construction can be found in Alg. 1.

Lastly, the work complexity for update-graph construction

is O(|V |+|E′|). Usually, the O(|V |) is the dominant factor in

the work complexity. Fortunately, most phases in the update-

graph construction process are scalable, allowing for a time

complexity of O( |V |+|E
′|

P ), where P denotes the number of

available processors. In most cases |V | << P .

b) Sorting a batch of edge insertions: given the update

graph G′ and the input graph G, the adjacency lists of both

these graphs need to be merged (in a sorted fashion) into the

final output graph, Ĝ. Given a batch consisting of multiple

edges, the merging of each adjacency list can be done in

parallel by allocating a single thread for each merge. For

vertices in G′ that do not have any edges, meaning no edges

have been added to that vertex, the merging process is not

required and is not executed. Thus, given a vertex u ∈ V , the

time and storage complexity for merging the two adjacency

lists is O(dGu + dG
′

u ). The number of affected vertices, such

that dG
′

u > 0 is dependent on the incoming batch. The total

1 2 4 5 6

3 7
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1 2 3 4 5 6 7
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Fig. 1. Adjacency array before and after (a) insertion and (b) deletions.
Inserted edges are denoted in green and deleted edges are denoted in red.

time complexity for this entire process is:∑
(u,v)∈E′

O(dGu + dG
′

u ) (1)

Implementation Detail - merging two sorted arrays into

a single array can be done both in or out of place. Many

merging algorithms will use a third array to store the results

of the merged array. Using a third array requires allocating

additional memory to store the output and is also costly in

time. As the number of active vertices in batch can be high,

this can be undesirable. Instead, an inplace merging can be

done by starting at the tail of merge (Fig 1); recall, we

know the final number of elements that need to be merged.

Given this number we can ensure that the adjacency array of

the vertex has enough elements to store the merged results.

Recall, that in the cuSTINGER data structure additional

edges are allocated per vertex to enable growth. For some

vertices, the extra space will be enough to add merge the

arrays. For other vertices, cuSTINGER has functionality to

allocate additional storage to ensure that the merging can

proceed. Note, the time complexity of the merging operation

is linear to the size of the adjacency array.

c) Sorting a batch of edge deletions: unlike the edge

insertion process, which had vertices that required additional

storage due to an increase in the adjacency array sizes. the

opposite can happen with edge deletions. A large number of

edges might be removed such that the number of used edges

versus allocated edges is so small that the memory is being

under-utilized. For such cases, a new, yet smaller, adjacency

block will be allocated for the update edge block. Similar to

the edge insertion process, the edge deletion process is also

done in place using a two phase process. The post deletion

graph is denoted as ĜD = G \G′. E′v denotes all the edges

in the batch update. Phase 1: all edges e ∈ E′v edges are

found and marked as being deleted, this requires O(dGu +dG
′

u )
steps. Phase 2: the edge list is compacted by moving edges

forward one at a time in a sequential fashion and can be done

within O(dGu ) steps. For vertices that have allocated a new

adjacency array, the compacted array is copied into the new

memory and the older array can be reclamated (to improve
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TABLE I

LIST OF SYMBOLS AND NOTATIONS.

Symbol Description

G Input graph.
G′ Update-graph constructed from batch update.
̂GI Post insertion-graph ̂GI = G ∪G′.
̂GD Post deletion-graph ̂GD = G \G′.
V Vertices in input graph.
E Edges in input graph.
E′ Set of edges in batch update.

adj(u, g) Adjacency of u in graph g.
dg
u Degree of u in graph g. |adj(u, g)|

Tn Per vertex triangle array.

Unique symbols for insertions

Δi
1 Triangles consisting of 1 new edge and 2 old edges.

Δi
2 Triangles consisting of 2 new edges and 1 old edge.

Δi
3 Triangles with 3 new edges.

Unique symbols for Deletions

Δr
1 Open triangle with 1 deleted and 2 remaining edges.

Δr
2 Open triangle with 2 deleted and 1 remaining edge.

Δr
3 A former triangle with 3 edges deleted.

storage utilization). Based on the performance analysis in

Section V, the fact that only a single thread is used for both

phases does not seem to be a problem.

IV. DYNAMIC TRIANGLE COUNTING

In this section, we present our new algorithm for triangle

counting in dynamic graphs. The new algorithm uses the

sorted batch update functionality discussed in the previous

section. We use the following example to highlight key

challenges of finding triangles in a batch. Consider the toy

input graph in Fig 2 (a). There is a single triangle consisting

of the triplet 〈1, 2, 7〉. Note, all the edges in the input graph

are shown with solid black lines. Fig 2 (b) depicts the graph

after a batch of edges has been inserted into the graph. The

new edges, (E′), are denoted with a dashed orange line. As

a result of the edge insertion, new edges triangles have been

created in the graph. Three new triangles, marked with blue

dashed lines, are depicted in Fig 2 (c): 〈1, 4, 5〉, 〈1, 2, 3〉,
and 〈1, 3, 4〉. Note, the following differences between these

triangles: 〈1, 4, 5〉 has two edges from the original graph

and one newly inserted edge, 〈1, 2, 3〉 consists of two newly

inserted edges and one original edges, and 〈1, 3, 4〉 is made

up of three newly inserted edges. The difference between

these types of triangles plays a role in the counting process

and is discussed below.

A. Insertions

We start off by highlighting the types of triangles formed

by the insertion. We then show a counting correction mecha-

nism that is based on an inclusion-exclusion formulation that

correctly counts the number of triangles in the graph. The

counting correction is necessary as not all intersection are

computed in practice - this allows to significantly reduce the

computational overhead.

First of all, we use the terms “new edge” and “old edge”

to differentiate between newly inserted edges in the graph

and an existing edges in the graph, respectively. There are

three types of triangles that can be created following an
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Fig. 2. Phases in new dynamic triangle counting algorithms for a small
example graph. (a) Input graph. (b) Update graph after edge insertion - new
edges denoted with dashed orange lines. (c) Affected vertices and edges are
marked in dashed orange lines. Subplots (d), (e) and (f) show the triangles
counted using the phases of our inclusion-exclusion formulation: S1, S2

and S3 respectively.

edge insertion (each of these types of triangles is computed

separately): 1) Δi
1 - triangles with 1 new edge and 2 old

edges, 2) Δi
2 - triangles with 2 new edges and 1 old edge,

and 3) Δi
3 - triangles with 3 new edges.

The number of new and unique triangles that need to be

counted, due to edge insertions, is:

NewTriangles = |Δi
1|+ |Δi

2|+ |Δi
3| (2)

Recall, triangles are found by adjacency lists intersec-

tion. Each triangle can be represented by six unique or-

dered triplets. Give three vertices (u, v, w) of a triangle,

this triangle can be represented by the following ordered

triplets: 〈u, v, w〉,〈u,w, v〉, 〈v, w, u〉, 〈v, u, w〉, 〈w, u, v〉, and

〈w, v, u〉. Many static graph algorithm can avoid counting

the same triangle multiple times. This is more challenging

for dynamic graphs. One challenge is that some of vertices

in the formed triangle might be in the batch update and

other vertices may not. Alg. 2 presents pseudo code for the

dynamic triangle counting. In this algorithm triangle may be

counted multiple times. In practice, we avoid counting some

triangles multiple times and discuss this in Sec. IV-D.

Fig 2 (c) depicts the vertices and edges that have been

affected and require recounting due to the graph update -

this approach was taken in prior algorithm. In contrast, our

algorithm only requires recounting triangles for the edges in

the update batch, Fig 2 (b).

a) Δi
1: initially we find the triangles consisting of one

new edge and two old edges. For each edge in the batch

update, e = 〈u, v〉 ∈ E′, intersect the two adjacency lists in

the post insertion-graph , ĜI
3:

se,1 = adj(u, ĜI) ∩ adj(v, ĜI) (3)

3In Sec. IV-D we show how to avoid doing both the intersection of u
with v as well as the intersection of v with u.
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Triangles found through this intersection includes at least
one new edge, but might also consist of multiple new edges.

We define Si
1 to be the total number of triangles found for

all the intersections of E′:

Si
1 =

∑
e∈E′

|se,1| (4)

Consider once again the three new triangles Fig 2 (c).

While there are only three triangles, in practice we find

six triangles: 1) the intersection of the adjacencies of 〈1, 4〉
will find the triangles: 〈1, 4, 5〉 ∈ Δi

1 and 〈1, 3, 4〉Δi
3, 2) the

intersection of the adjacencies of 〈1, 3〉 will find the triangles:

〈1, 2, 3〉 ∈ Δi
2 and 〈1, 3, 4〉 ∈ Δi

3. 3) the intersection of the

adjacencies of 〈2, 3〉 will find the triangle: 〈1, 2, 3〉 ∈ Δi
2.

4) the intersection of the adjacencies of 〈3, 4〉 will find the

triangle: 〈1, 3, 4〉 ∈ Δi
3.

Note, the number of times a triangle is found is based on

the number of new edges it has. As such (4) can be rewritten

as follows (counting duplications due to the undirected nature

of the graph):

Si
1 = 2 · |Δi

1|+ 4 · |Δi
2|+ 6 · |Δi

3| (5)

b) Δi
2: , next we find triangles with two new edges.

These triangles must share a single end-point, otherwise,

they will not form a triangle. We denote this end-point as

p. We know that 〈p, u〉, 〈p, v〉 ∈ E′. Unfortunately, when

looking for these triangles, triangles made up of three new

edges might be found as well. We show a counting correction

scheme for this. Given an edge e = 〈u, v〉 ∈ E′, we denote

the triangles found in this intersection as:

se,2 = adj(u, ĜI) ∩ adj(v,G′) (6)

To find these triangles, the following four intersections will

be computed4 : 〈p, u〉, 〈u, p〉, 〈p, v〉, 〈v, p〉. However, only the

following intersections will find new triangles (causing a

single triangle to be counted twice): adj(u, ĜI)∩adj(p,G′)
and adj(v, ĜI) ∩ adj(p,G′). Ideally, the other two intersec-

tions can be avoided; however, in practice we don’t know

the identity of p and need to compute all intersections.

c) Δi
3: lastly we find triangles made up of three new

edges. An example of this can be found in Fig 2 (e) and (f)

where 〈1, 2, 3〉 is counted twice and 〈1, 3, 4〉 is counted six

times (due to the edge ordering). This over-counting is true

for all triangles made up of three new edges. Given the above

we can formulate the total number of triangles counted here

as:

Si
2 =

∑
e∈E′

|se,2| = 2 · |Δi
2|+ 6 · |Δi

3| (7)

These triangles are found by intersecting all the edges in

the update graph G′. This gives:

Si
3 = 6 · |Δi

3| (8)

4The ordering of these edges is important as the adjacency lists are taken

from two different graphs G′ (update-graph) and ̂GI (post insertion graph)

- one adjacency is taken from G′ and the other from ̂GI .

Algorithm 2 Algorithm to compute and update triangle

counts - updates both the global and local triangle count.

Tn denotes the local triangle count. Each intersection can be

done in parallel [20].

Require: ̂GI , ̂GD, G′, E′, Tn

1: function COUNT(g1, g2, E
′, Tn,m)

2: totalcount← 0
� Intersect adjacency lists for all edges E′

3: parallel for 〈u, v〉 ∈ E′ do
4: count ← 0
5: i← 0; j ← 0

� Individual intersections can also be done in parallel
6: while i < du ∧ j < dv do
7: diff ← adj(u, g1)[i]− adj(v, g2)[j]
8: if diff = 0 then
9: count← count + 1

10: w ← adj(u, g1)[i]
11: Tw ← Tw + m
12: end if
13: if diff ≤ 0 then i← i + 1
14: end if
15: if diff ≥ 0 then j ← j + 1
16: end if
17: end while
18: Tu ← Tu + m ∗ count
19: Tv ← Tv + m ∗ count
20: totalcount← totalcount + 3 · count
21: end parallel forreturn totalcount
22: end function
23: procedure INSERTIONCOUNT

24: Si
1 ← COUNT(̂GI , ̂GI , E

′, Tn, 1/2) � Count Si
1

25: Si
2 ← COUNT(̂GI , G

′, E′, Tn,−1/2) � Count Si
2

26: Si
3 ← COUNT(G′, G′, E′, Tn, 1/6) � Count Si

3

27: return 1
2 (S

i
1 − Si

2 +
Si
3
3 )

28: end procedure
29: procedure DELETIONCOUNT

30: Sd
1 ← COUNT(̂GD, ̂GD, E′, Tn,−1/2) � Count Sd

1

31: Sd
2 ← COUNT(̂GD, G′, E′, Tn,−1/2) � Count Sd

2

32: Sd
3 ← COUNT(G′, G′, E′, Tn,−1/2) � Count Sd

3

33: return 1
2 (S

i
1 + Si

2 + Si
3)

34: end procedure

Note, triangles from Δi
1 and Δi

2 cannot and will not be found

in this intersection as these require information from the post-

update graph. This is shown in Fig 2 (f) where only triangle

〈1, 3, 4〉 is found.

d) All Triangles: Finally, using an inclusion-exclusion

formula that takes into account how the different stages of

the algorithm over count the number of triangles we show

that the final number of new triangles is:

|Δi
1|+ |Δi

2|+ |Δi
3| =

1

2

(
Si
1 − Si

2 +
Si
3

3

)
(9)

The pseudo-code for our new algorithm can be found in Alg.

2 where both the insertion and deletion processes are shown.

B. Deletions

Deletions are conceptually similar to insertions, however

the final triangle count does not require the inclusion-

exclusion formulation as there is no over counting. Counting

triangles after edge deletions can be computed using a

simple formula, which is outlined below. We use the terms

“remaining edges” and “deleted edges” for the edges left in

the modified graph and the edges deleted in the batch update,

respectively. This leads to the following classifications of

deleted triangles: 1)Δd
1 - Open triangle with 1 deleted edge

and 2 remaining edges, 2)Δd
2 - Open triangle with 2 deleted

7



edges and 1 remaining edge, and 3)Δd
3 - A former triangle

with 3 edges deleted.

For deletions, rather than looking for triangles after the

update, we need to detect triangles that existed before their

removals. This means that if a triangle with 2 deleted edges

is removed, it won’t be detected in the intersections done in

Sd
1 . Also, if a triangle with 3 deleted edges is removed, then

it won’t be found in Sd
1 or Sd

2 . This means that the formula

to compute deleted triangle is considerably simpler than the

formula for inserted triangles.

By calculating Sd
1 , Sd

2 and Sd
3 in the same fashion and

using a slightly different formulation, we find that no over-

counting occurs. Thus,

Sd
1 = 2 · |Δd

1| (10)

Sd
2 = 2 · |Δd

2| (11)

Sd
3 = 2 · |Δd

3| (12)

And from (10) + (11) + (12) we get

|Δd
1|+ |Δd

2|+ |Δd
3| =

1

2
(Sd

1 + Sd
2 + Sd

3 ) (13)

which is our final required deleted triangle count.

The pseudo-code for deletions can be found in Alg. 2.

Note, that the key difference between insertions and deletions

are the multipliers used. Negative constants state that trian-

gles are being removed from the count and positive constants

imply that triangles are being added.

C. Complexity Analysis

Each of the intersections in the triangle counting algo-

rithms requires O(dg1u + dg2v ) time where dgx is degree of

vertex x in graph g. There is a total of E′ edges that are

processed and for each there are three different intersections

that are computed as part of the inclusion-exclusion formu-

lation: (ĜI , ĜI), (ĜI , G
′) and (G′, G′). The largest of these

intersections will be (ĜI , ĜI), as ∀u ∈ ĜI , adj(u,G
′) ⊆

adj(u, ĜI). The time complexity, dominated by the largest

intersection, is therefore:

O(|E′| · (d̂GI
max + d

̂GI
max)) = O(|E′| · d̂GI

max)

Where d
̂GI
max is the vertex with the largest degree within the

graph. The deletions time complexity is similar. Note, our

algorithm does not require additional space as we reuse the

update-graph, G′, during the graph update.

D. Additional Algorithmic Optimizations

Lastly, we discuss a few algorithmic optimizations that

make the new dynamic triangle counting algorithm more

efficient. First of all, the vertex reordering scheme used

by Shun & Tangwongsan [35] can also be adopted to the

dynamic graph algorithm. Our objective is to find each

triangle only once in a fixed order. Therefore, corresponding

to a triangle consisting of u, v, w, only the ordered triplet

〈w, v, u〉 (where w > v > u) should be found in an

intersection and not the remaining combinations.

To do this, we create two arrays of size |V | each. Each

vertex, u ∈ V stores a reduced adjacency vertex degree: dru.

This degree, dru, represents the number of neighbors u has

with have a vertex ID less than u. Since the adjacency arrays

are sorted, splitting the adjacency array from 0 to dru gives

us a reduced adjacency array adjr(u, g) without modifying

the original. For a triplet 〈w, v, u〉 such that w > v > u, u
and v are found in adjr(w, g), u is in adjr(v, g) but w is

not and, neither v nor w are in adjr(u, g). The two arrays

contain these dru values for graphs ĜI (or ĜD for deletions)

and G′.
This optimization is applied slightly differently in each

of the three phase. For counting S
i/d
1 we use the reduced

adjacency lists for G′. However, we do not use these reduced

degree lists for ĜI (or ĜD). In practice, this means that size

of E′ is reduced by half, as edges where the source ID is

smaller than the destination ID are ignored. For counting

S
i/d
2 we use the reduced adjacency lists for ĜI (or ĜD) but

not for G′. Lastly, counting S
i/d
3 does not involve the use of

ĜI (or ĜD). By using the above optimizations, we reduce

the previous formulations for Si to and the new and final

formulation:

|Δi
1|+ |Δi

2|+ |Δi
3| = (Si

1 − Si
2 + Si

3) (14)

For deletions, each of Sd is reduced by a factor of 2 (in

comparison with Eq. (13):

|Δd
1|+ |Δd

2|+ |Δd
3| = (Sd

1 + Sd
2 + Sd

3 ) (15)

V. PERFORMANCE ANALYSIS

A. Experiment Setup

Our experiments are conducted on an NVIDIA K40 GPU

which has 15 SMs and 192 SPs per SM, for a total of 2880

SPs and has 12GB of GDDR5 memory. The CPU is a quad-

core Intel i7-4770K, which is a Haswell based processor,

running at 3.5 GHz with 8MB L3 cache. This system has

32GB of DDR3-1600 memory. To test the algorithm we

use real world graphs and networks taken from the 10th

DIMACS Graph Implementation Challenge and [25]. Details

of these graphs can be found in Table II. In the case of

directed graphs, all edges have been duplicated to ensure

that the graph is undirected.

B. Batch Creation

To test the throughput rate of our analytic, we check its

ability to handle different batch update sizes. For each graph,

the largest batch size is no larger than the original graph. All

batch sizes are in powers of ten. The edges in the batches are

taken from the original input graph - as such real edges are

inserted into the graph. For edge deletions, prior to loading

the graph to the GPU a subset of existing edges are sampled

into a batch. Note that the batch sizes refer to undirected

edges. In practice, both directions of the edge update appear

8



TABLE II

NETWORKS USED IN OUR EXPERIMENTS. |E| REFERS TO DIRECTED EDGES. NETWORKS ARE SORTED BASED ON THE NUMBER OF VERTICES.

Name Network |V | |E| Ref. Static Insertion (sec) Deletion (sec)
Type (sec.) 100k 1M 10M 100k 1M 10M

coPapersDBLP Social 540k 30M [3] 1.032 0.053 0.452 - 0.025 0.098 -

in-2004 Webcrawl 1.38M 27M [3] 18.176 0.213 2.208 - 0.117 1.805 -

com-orkut Social 3M 234M [25] 90.164 0.242 1.107 10.440 0.218 0.807 8.451

com-LiveJournal Social 4M 69M [25] 8.975 0.168 0.765 - 0.067 0.191 -

cage15 Matrix 5.15M 94M [3] 1.638 0.132 0.651 - 0.043 0.091 -

nlpkkt160 Matrix 8.3M 221M [3] 1.778 0.192 0.329 7.537 0.089 0.156 0.332

road central Road 14M 33M [3] 1.348 0.288 0.348 - 0.029 0.057 -

nlpkkt200 Matrix 16.2M 432M [3] 3.460 0.910 1.081 2.016 0.164 0.238 0.732

uk-2002 Webcrawl 18.52M 523M [3] 522.586 1.653 10.875 12.416 0.629 1.170 5.981

road usa Road 24M 58M [3] 2.188 0.480 0.550 - 0.046 0.074 -

(a) Insertions (b) Deletions

Fig. 3. This figure depicts the update rate, number of edges per second, at which we can update the graph and analytic. This shown for both edge
insertions (a) and deletions (b). For each operation, the update rate is plotted for different phases of the algorithm: (top) graph modification, (middle)
dynamic graph triangle counting using new algorithms, and (bottom) the update rate for entire process from start to end.

in the batch. The batch update rates reported in this paper

refer to undirected edges5.

Each graph is tested with five different batches for each

batch size. For each benchmark the original input graph is

used. Note, that the batches are not stored in the GPUs

main memory, rather they are stored in the CPU memory.

The batches are transfered to the GPU as part of the update

process. The time spent transferring the batch is included in

our timing. Its worth noting that all the batches are created in

advance and as such they do not reside in the CPU’s cache.

5As such, the effective update rate supported by the data structure is
essentially twice the reported rate as both directions are added.

C. Update Rates

Recall that updating the dynamic triangle counts consists

of three stages: 1) constructing the update graph G′ from the

batch update edge list (including sorting the batch update),

2) modifying the cuSTINGER graph, and 3) updating the

triangle count. Creating the graph G′ actually serves two

purposes: 1) preparing the batch update to be inserted/deleted

from the graph in a sorted fashion and 2) updating the

triangle count.

Fig. 3 depicts the update rates for both edge insertions

(a) and deletions (b). The abscissa represents the size of the

batch update size. The following update rates are shown in

Fig. 3: (top) just modifying the graph, (middle) updating the

triangle counts using the dynamic algorithm, and (bottom)

9



(a) Insertions (b) Deletions

Fig. 4. This figure depicts the execution breakdown (in percentage) for the three stages in the execution: 1) creating the update graph G′ from the batch
update, 2) inserting (or deleting) the batches into the graph (modification of cuSTINGER ), and 3) running the dynamic graph triangle counting.

(a) Insertions (b) Deletions

Fig. 5. This figure depicts the execution breakdown (in percentage) of only the dynamic triangle counting analytic using the inclusion-exclusion formulation.
For both the insertion (a) and deletions (b) there are three phases. The execution time of the triangle counting accounts for the purple bars in Fig. 4.

the overall rate combining both updating the graph and the

analytic.

For small batch sizes, especially up to to 1000 edges, there

are numerous large overheads that limit the update rate; we

highlight two of these. 1) Building and sorting G′ - requires

a parallel prefix summation operation and is dependent on

the number of vertices in the graph. While this operation can

be highly optimized for the GPU, it still can take a several

milliseconds, which is relatively high in comparison to the

update process. 2) Memory re-allocation - this problem was

reported in cuSTINGER [16] and is also problematic here6.

These overheads explain the performance restrictions of the

sorting and update process (Fig. 3 top left and top right). For

batch sizes greater than 10k edges, this overhead becomes

negligible. Insertions can be processed at a rate well over one

million per second and the deletions can be processed at well

over 30 million updates per second. Table II shows the update

times for both insertions and deletions for several different

batch sizes. Recall, the key difference between insertions and

deletions is the additional memory re-allocations phase in the

6The cuSTINGER data structure has been replaced by the Hornet data
structure [1]. Hornet no longer has the aforementioned problems and is
about 4X-10X faster for mid-size and large batches. At time of publication
this algorithm has not been ported into Hornet.

insertion process.

The middle subplots in Fig. 3 depict the update rate for

counting triangles as a function of the batch size. For small

batch sizes the GPU is under-utilized. As the batch size

increases there is more work to keep the GPU saturated -

this is true for both insertions and deletions. The analytic can

be updated at rates of over ten million updates per second.

Further performance factors include the graph structure and

the number of vertices affected by the updates. The graphs

with the slowest updates, uk-2002 and com-orkut are denser

than the other graphs leading to slower intersections.

The bottom subplot Fig. 3 depicts the overall update rate.

Note, for insertions the top and bottom most plots are similar

due to the overhead of the memory allocation phase. For

deletions, this is not the case.

D. Execution Time Analysis

Fig. 4 and Fig. 5 depict the percentage of time spent in

the various phases of the algorithm for three different batch

sizes7: 0.1M, 1M, and 10M. Fig. 4 depicts the three main

phases of the algorithm: graph G′ creation (blue), updating

7A missing bar implies that the algorithm was not tested with a specific
configuration. For example numerous 10M bars are missing as there were
not enough edges in the original graph to remove.
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Fig. 6. Speedup of our new algorithm over the previous algorithm which
required recounting all triangles for vertices affected by an update. In all
cases, our new algorithm is faster than the past case as would be expected
given the reduced time complexity of our approach.

the graph data structure (red), and analytic execution time

(purple). For edge insertions, a minority of the execution is

spent in the analytic update. For deletions, the percentage

of time spent in updating the triangle counts is significantly

larger. Yet, the actual execution times of the analytic update

is similar. Once again, this has to do with the various

overheads, including that of cuSTINGER.

Fig. 5 shows the execution time breakdown of only the

analytic for the three different phases, discussed in Section

IV. Finding new triangles that are entirely within the update

graph (green bars) - uses only the adjacency lists within G′.
These adjacency lists are a smaller subset than the ones found

in the updated graph Ĝ. This explains why the other two

types of triangles account for a larger amount of the analytic

execution time.

E. Speedup Over Previous Approaches

Since our exact and dynamic algorithm is also the first for

the GPU, we do not have any other algorithms to benchmark.

While it is be possible to compare our GPU implementation

with a CPU implementation, this would require us to com-

pare: implementations, dynamic graph data structures, and

architectures. To avoid this we implement the approach taken

in [10] on the GPU. Fig. 6 depicts the speedup of our new

algorithm over prior approaches. Given that our algorithm

requires far less work than past approaches, it is perhaps not

surprising that our new algorithm is faster in all cases.

For small batch sizes, the amount of work is small. This

means that the GPU is under-utilized leading to relative lower

speedups of our algorithm. For batch sizes of 100 edges and

up to batches of 1M edges, the new algorithm is almost

always 100X faster than the past approach and as much

as 819X faster. For batch sizes of 10M edges, it seems

that execution time is being dominated by the larger list

intersection executed by both algorithms. Nonetheless, the

new algorithm is still anywhere from 10X−80X faster than

the prior approach.

VI. CONCLUSIONS

In this paper we provide a new algorithm for finding

triangles in dynamic graphs using an inclusion-exclusion for-

mulation. Our algorithm gives the exact number of triangles

in the graph (global triangle count) and also updates the

number of triangles each vertex belongs to (local triangle

count). Our algorithm is computationally more efficient than

prior algorithms which required “re-finding” all triangles for

vertices affected by an edge update. For large batches, this

typically meant going over all vertices and edges to find the

accurate number of triangles. In contrast, we only need to

access the affected edges. This results in significant speedups

- for most cases over 100X faster and as much as 819X
faster.

While we implemented our algorithm for the GPU, it is ar-

chitecture independent and can be implemented on additional

parallel programming platforms, with the constraint that a

dynamic graph data structure be used. Our new algorithm

supports tens of millions of updates per second on a single

GPU. When the overhead of updating the graph is also

considered, we are able to update both the graph and analytic

at several millions of updates per second for insertions and

tens of millions of updates per second for deletions.

While the cuSTINGER data structure was modified as

part of this work (namely, we added sorted updates), we

continued to use its internal memory allocation process.

Given the overhead it added to our algorithm, we will

investigate more efficients ways to reduce the time spent in

the graph update phase. We are able to support graph update

rates that are sufficient for many real world applications.
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