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Abstract The edit distance under the DCJ model can be computed in linear time for
genomes with equal content or with Indels. But it becomesNP-Hard in the presence of
duplications, a problem largely unsolved especially when Indels (i.e., insertions and
deletions) are considered. In this paper, we compare two mainstream methods to deal
with duplications and associate them with Indels: one by deletion, namelyDCJ-Indel-
Exemplar distance; versus the other by gene matching, namely DCJ-Indel-Matching
distance. We design branch-and-bound algorithms with set of optimization methods
to compute exact distances for both. Furthermore, median problems are discussed in
alignment with both of these distance methods, which are to find a median genome
that minimizes distances between itself and three given genomes. Lin–Kernighan
heuristic is leveraged and powered up by sub-graph decomposition and search space
reduction technologies to handle median computation. A wide range of experiments
are conducted on synthetic data sets and real data sets to exhibit pros and cons of
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these two distance metrics per se, as well as putting them in the median computation
scenario.

Keywords Genome rearrangement · Double-cut and join (DCJ) · Lin–Kernighan
heuristic

1 Introduction

Over the last years, many distance metrics have been introduced to calculate the
dissimilarity between two genomes by genome rearrangement (Blin et al. 2004;
Bader et al. 2001; Bafna and Pevzner 1998; Yancopoulos et al. 2005). Among them,
DCJ distance is largely studied in recent years due to its capability to model var-
ious forms of rearrangement events, with a cheap cost of linear time computation.
However, when considering duplications, the distance computation becomesNP-hard
(Chauve et al. 2006) and APX-hard (Angibaud et al. 2009; Chen et al. 2012) for
various distance models. There are two approaches to treat duplications, both are tar-
geted at removing duplicated genes, so that existing linear algorithms can be utilized
subsequently.

The first approach identifies the so called exemplar genes (Sankoff 1999) in order to
retain one copy gene in each duplicated gene family, while the other assigns one-to-one
matching to every duplicated genes in each gene family (Shao and Lin 2012; Shao et al.
2014). Situated in the context of duplications, gene insertion and deletion (Indels), are
also important rearrangement events that results in unequal contents (Brewer et al.
1999). Strictly speaking, an Indel refers to both insertions and deletions either when
what event took place is unsure or all other sequence length variation events in the
genome. In this paper,we interpret Indel as one genomehas single ormultiple copy(ies)
of a given gene, but another genome has none. Pioneer works were conducted to study
the sorting and distance computation by reversals with Indels (Mabrouk 2001). Later
on, the DCJ-Indel distance metric was introduced to take advantages of the DCJ
model. Braga et al. (2010) proposed the first framework to compute the DCJ-Indel
distance; Compeau later simplified the problem with a much more elegant distance
formula (Compeau 2012). In this paper, we adapt the previous research results to
design algorithms that procure the ability to handle both duplications and Indelswhen
computing DCJ distance. To be more specific, in Sankoff (1999), a combinatorial
problem for computing exemplar distance was discussed, but a tool for analytics such
as breakpoint graphs (BPG) were not provided. With respect to paper (Shao et al.
2014), a LP method was formulated, but Indels were not considered in their solution.
In general, our method has no constraints as opposed to these two methods, and can
deal with data that is close to real world scenario.

As evolutionary analysis generally involves more than two species, it is necessary
to extend the above distances to deal with multiple genomes. Because three species
form the smallest evolutionary tree, it is critical to study the median problem, which
is to construct a genome that minimizes the sum of distances from itself to the three
input genomes (Moret et al. 2002; Bourque and Pevzner 2002). The median problem
is NP-hard under most distance metrics (Pe’er and Shamir 1998; Caprara 2003; Xu
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2009b; Bergeron et al. 2005). Several exact algorithms have been implemented to
solve the DCJ median problems on both circular (Xu and Sankoff 2008; Xu 2009b)
and linear chromosomes (Xu 2009a; Xu andMoret 2011). Some heuristics are brought
forth to improve the speed of median computation, such as linear programming (LP)
(Caprara 2003), local search (Lenne et al. 2008), evolutionary programming (Gao et al.
2013), or simply searching on one promising direction (Rajan et al. 2010). All these
algorithms are intended for solving median problems with equal content genomes,
which are highly unrealistic in nature. In this paper, we implement a Lin–Kernighan
heuristic leveraging the aforementioned distancemetric to computeDCJ medianwhen
duplications and Indels are considered.

2 Background

2.1 Genome rearrangement events and their graph representations

2.1.1 Genome rearrangement events

The ordering of a genome can be changed through rearrangement events such as
reversals and transpositions. Figure 1 shows examples of different events of a single
chromosome (1 −2 3 4 −5 6 7). In the examples, we use signed numbers to represent
different genes and their orientations. Genome rearrangement events involve multiple
combinatorial optimization problems and graph representation is common to these
problems. In this part, we will address the foundations of using the BPG to genome
rearrangement events.

2.1.2 Breakpoint graph

Given an alphabet A, two genomes � and � are represented by two strings of signed
(+ or −) numbers (representing genes) from A. Each gene a ∈ A is represented
by a pair of vertices head ah and tail at ; If a is positive ah is putted in front of at ,
otherwise at is putted in front of ah . For a, b ∈ A, if a, b ∈ � and are adjacent
to each other, their adjacent vertices will be connected by an edge. For a telomeric
gene, if it exists in a circular chromosome, two end vertices will be connected by
an edge; if it exists in a linear chromosome, two end vertices will be connected to a

Fig. 1 Example of different rearrangement events
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Fig. 2 Examples of BPG; and DCJ operations. a Example of BPG. b Example of DCJ

special vertex called CAP vertex. If we use one type of edge to represent adjacencies
of gene order � and another type of edges to represent adjacencies of gene order
�, the resulting graph with two types of edges is called a BPG. Figure 2a shows
the BPG for gene order � (1,−2,3,−6,5) (edge type: solid edges) which has one
circular chromosome and� (1,2,3,7,4) (edge type: dashed edges) which has one linear
chromosome.

2.1.3 DCJ operation

Double-cut and join (DCJ) operations are able to simulate all rearrangement events.
In a BPG, these operations cut two edges (within one genome) and rejoin them using
two possible combinations of end vertices (shown in Fig. 2b).

2.2 Distance computation

2.2.1 DCJ distance

DCJ distance of genomes with the same content can be easily calculated by enumer-
ating the number of cycles/paths in the BPG (Yancopoulos et al. 2005), which is of
linear complexity.

2.2.2 DCJ-Indel distance

When Indels are introduced in BPG, with two genomes � and �, the vertices and
edges of a closed walk form a cycle. In Fig. 2a, the walk [1t , (1t ; 2h), 2h, (2h; 3h), 3h,
(3h; 2t ), 2t , (2t ; 1t ), 1t ] is a cycle. A vertex v is π -open (γ -open) if v /∈ � (v /∈ �).
An unclosed walk in BPG is a path. Based on different kinds of ends points of paths,
we can classify paths into different types. If the two ends of a path areCAP vertices, we
simply denote this path as p0. If a path is ended by one open vertex and one CAP, we
denote it as pπ (pγ ). If a path is ended by two open vertices, we denote it by the types
of its two open vertices: for instance, pπ,γ represents a path that ends with a π -open
vertex and a γ -open vertex. In Fig. 2a, the walk [5t , (5t ; 1h), 1h, (1h;CAP),CAP]
is a pγ path and the walk [6t , (6t ; 3t ), 3t , (3t ; 7h), 7h] is a pγ,π path. A path is even
(odd), if it contains even (odd) number of edges. In Compeau (2012), if |A| = N the
DCJ distance between two genomes with Indels but without duplications is calculated
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by Eq. (1).We call this distanceDCJ-Indel distance. From this equation, we can easily
get the DCJ-Indel distance between � and � in Fig. 2a as 4.

dindel(�,�) = N −
[∣∣c∣∣ + ∣∣pπ,π

∣∣ + ∣∣pγ,γ
∣∣ + �pπ,γ �

]

+ 1

2

(∣∣p0even∣∣+min
(∣∣pπ

odd

∣∣, ∣∣pπ
even

∣∣)+min
(∣∣pγ

odd

∣∣, ∣∣pγ
even

∣∣)+δ

)
(1)

where δ = 1 only if pπ,γ is odd and either |pπ
odd | > |pγ

even|, |pγ

odd | > |pγ
even| or

|pπ
odd | < |pγ

even|, |pγ

odd | < |pγ
even|; Otherwise, δ = 0.

2.2.3 DCJ-exemplar (matching) distance

In general, there are two approaches to cope with duplicated genes. One is by remov-
ing all but one copy in a gene family to generate an exemplar pair (Sankoff 1999)
and the other is by relabeling duplicated genes to ensure that every duplicated gene
has unique number (Shao et al. 2014; Shao and Lin 2012). Both of these two dis-
tances can be computed with BPG using branch-and-bound methods. For both of the
distance metrics, the upper bound can be easily derived by assigning an arbitrary map-
ping to two genomes then computing their mutual distance. In Sankoff’s paper (1999)
regarding exemplar distance, it is proved that by removing all occurrences of unfixed
duplicated gene families, the resulting distance is monotony decreasing, hence the
resulting distance serves as a lower bound. In Chen et al.’s paper (2005) regarding
matching distance, the authors proposed a way for computing lower bounds by mea-
suring the number of breakpoints between two genomes, which might not directly
imply the lower bound between genomes with Indels. However, it is still possible to
use this method to find a ‘relaxed’ lower bound.

2.2.4 Distance estimation

Note that the mathematically optimized distance might not reflect the true number of
biological events, thus several estimationmethods such asEDE or IEBP are used to re-
scale these computed distances (Moret et al. 2001) to better fit true evolutionary history.

2.3 Median computation

If there are three given genomes, the graph constructed by pre-defined BPG rule is
called a multiple breakpoint graph (MBG). Figure 3a shows an example of MBG
with three input genomes. When genomes have equal gene content, the DCJ median
problem can be briefly described by finding a maximum matching (which is called 0-
matching) inMBG. Figure 3b shows an example of 0-matchingwhich is represented
by gray edges. In Xu and Sankoff’s paper (2008), it is proven that a type of sub-graph
called adequate sub-graph (AS) could be used to decompose the graph with edge
shrinking operations, which are shown in Fig. 3c. Unfortunately, there is no branch-
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Fig. 3 (Top) Examples of MBG with three input genomes: (1,2,3,4) (solid edges); (1,2,−3,4) (dashed
edges) and (2,3,1,−4) (dotted edges).; (middle) 0-matching operation; (bottom) edge shrinking operations.
a MBG. b 0-matching. c Adequate subgraph and edge shrinking

and-bound based median algorithm that deals with unequal content genomes. In the
following section, we will show that it is actually difficult to design such algorithm.

3 Approaches

3.1 Proposed distance metrics

We have discussedDCJ,DCJ-Indel andDCJ-Exemplar(Matching) distances, here we
formally define the DCJ-Indel-Exemplar(Matching) distances as follows:

Definition 1 An exemplar string is constructed by deleting all but one occurrence of
each gene family. Among all possible exemplar strings, the minimum distance that
one exemplar string returns is the DCJ-Indel-Exemplar distance.

Definition 2 A matching string is constructed by assigning a one-to-one mapping to
each occurrence of genes in a gene family and relabel them to distinct markers. Among
all possible matching strings, the minimum distance that one matching string returns
is the DCJ-Indel-Matching distance.

Figure 4 shows examples of BPG representation of exemplar mapping from genome
� (1, −2, 3, 2, −6, 5) and genome � (1, 2, 3, 7, 2, 4) to � (1, 3, 2, −6, 5) and genome
� (1, 3, 7, 2, 4), and a matching that mapping from genome � (1, −2, 3, 2, −6, 5) and
genome � (1, 2, 3, 7, 2, 4) to � (1, −2, 3, 2′, −6, 5) and genome � (1, 2′, 3, 7, 2, 4).

We can use branch-and-bound methods which are applied in DCJ-Exemplar
(Matching) distances to solve these two distances.
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Fig. 4 Examples of exemplar and matching distance in the form of BPG representation

3.2 Optimization methods

3.2.1 Optimal assignments

Although branch-and-bound algorithms are based on enumerating the number of
cycles/path in BPG, it is not necessary to enumerate every component in the graph, as
both Shao et al. (2014), Chen et al. (2005) indicated that there are some specific pat-
terns inBPGwhich can be fixed before the distance computation. In this paper, wewill
extend their result in our optimization methods for DCJ-Indel-Exemplar(Matching)
distances.

To beginwith,we define some terms for future explanation. There are two categories
of vertices in a BPG: one connects exactly one edge of each edge type (in this paper
edge types are expressed by such as dotted, dashed edges etc.), they are called regular
vertices; the other connects fewer or more than one edges of each edge type, they are
called irregular vertices. A subgraph in a BPG that only contains regular vertices is
defined as regular subgraph, while one that contains irregular vertices is defined as
irregular subgraph. In BPGwith two genomes� and�, vertices and edges of a closed
walk form a cycle.

Theorem 1 In a BPG, an irregular subgraph which is a cycle of length 2 can be fixed
before computation without losing accuracy.
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Proof Without loss of generality, the proof is sound for bothDCJ-Indel-Exemplar and
DCJ-Indel-Matching distances. We prove the theorem under two cases:

(1) For the subgraph in the component which only contains cycles, this is a case that
is exactly the same as mentioned in Shao et al. (2014), proof.

(2) For the subgraph in the component which contains paths, since no type of the
paths has count more than one (which is the count of a cycle), following the
similar proof strategy in Shao et al. (2014), we can get the same conclusion.

��

3.2.2 Adopting morph graph methods to condense BPG

If a gene family has multiple copies of the gene, its corresponding two vertices (head
and tail) in the BPGwill have degree of more than one. In contrary, vertex representa-
tions of those singleton genes always have degree of one or zero. Once an ‘exemplar’
or ‘matching’ is fixed, only edges incident to vertices that have degree of more than
one have been changed. We can view the computation of exemplar or matching dis-
tance as the process of morphing (or streaming) (Yin et al. 2013) the BPG in order to
find an ad hoc shape of the BPG that achieves optimality. Following this hint, we can
bridge out all vertices that are stable and just investigate these dynamically changing
vertices without losing accuracy. Suppose there are V vertices in the BPG, where Vs
are stable and Vd are dynamic, the asymptotic speedup for this morph BPG strategy
will be O( V

Vd
).

3.2.3 Harnessing the power of divide-and-conquer approach to reduce the problem
space

In the paper by Nguyen et al. (2005), the authors proposed a divide and conquer
method to quickly calculate the exemplar distance. Inspired by their idea, we propose
the following divide-and-conquer method to compute the above two distances based
on the BPG. We have the follow observation:

Theorem 2 The DCJ-Indel-Exemplar (Matching) distance is optimal iff the choices
of exemplar edges (cycle decomposition) in each connected components of BPG are
optimal.

Proof Since it’s obvious that for regular connected component of BPG, there is only
one choice of edges, the proof under this case is trivial. For irregular connected com-
ponent of BPG, we prove by contrary: suppose there is another edge selection that can
result in a better distance, based on the corresponding BPG, there must be at least one
connected component that has a better edge selection, replacing it with a better edge
selection will result in a better distance, which violates the assumption. ��

Combining three optimization methods in tandem with the branch-and-bound
framework, we can summarize our algorithm to compute DCJ-Indel-Exemplar
(Matching) distance as outlined inAlgorithm1, namedDCJIndelExem(Matc)Distance
respectively.
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Algorithm 1: DCJIndelExem(Matc)Distance
Input: G1 and G2
Output: Minimum distance d
optimization methods on G1, G2;1

G
′
1,G

′
2 ←randomly init exemplar(matching) of all duplicated genes of G1, G2;2

G∗
1,G

∗
2 ←remove all duplicated genes of G1, G2;3

min_ub ← DC J Indel(G
′
1,G

′
2) ;4

min_lb ← DC J Indel(G∗
1,G

∗
2) ;5

Init search list L of size min_ub − min_lb and insert G1,G2;6
while min_ub > min_lb do7

G+
1 ,G+

2 ← pop from L[min_lb];8

for pair ∈ all mappings of next available duplicated gene do9

G+
1 ,G+

2 ← G+
1 ,G+

2 fix the exemplar(matching) of pair ;10

G+′
1 ,G+′

2 ←randomly init exemplar(matching) of rest duplicated genes G+
1 , G

+
2 ;11

G+∗
1 ,G+∗

2 ←remove rest duplicated genes G+
1 , G

+
2 ;12

ub ← DC J Indel(G+′
1 ,G+′

2 ) ;13

lb ← DC J Indel(G+∗
1 ,G+∗

2 ) ;14

if lb > min_ub then15

discard G+
1 ,G+

216
17

if ub < min_ub then18
min_ub = ub;19

20
else if ub = max_lb then21

return d = ub ;22
else23

insert G+
1 ,G+

2 into L[lb]24
25

return d = min_lb;26

3.3 Adapting Lin–Kernighan heuristic to find the median genome

3.3.1 Problem statement

Not surprisingly, finding the median genome that minimizes theDCJ-Indel-Exemplar
(Matching) distance is challenging. To begin with, given three input genomes, there
are multiple choices of possible gene content selections for themedian; however, since
identifying gene content is simpler and there exists very accurate and fast methods
to fulfill the task (Hu et al. 2014), we are more interested on a relaxed version of the
median problem that assumes known gene content on the median genome. Which is
formally defined as:

3.3.2 Definition

Given the gene content of a median genome, and gene orders of three input genomes.
Find an adjacency of the genes of the median genome that minimize the DCJ-
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Indel-Exemplar(Matching) distance between the median genome and the three input
genomes.

TheDCJ-Indel-Exemplar(Matching)median problem is not even in the class ofNP
because there is no polynomial time algorithm to verify the results. It is hard to design
an exact branch-and-bound algorithm for theDCJ-Indel-Exemplar(Matching)median
problem mainly because the DCJ-Indel distance violates the property of triangular
inequality which is required for a distance metrics (Yancopoulos and Friedberg 2008).
Furthermore, when there are duplicated genes in a genome, it is possible that there
are multiple edges of the same type connecting to the same vertex of a 0-matching,
which leads to ambiguity in the edge shrinking step and makes the followed branch-
and-bound search process very complicated and extremely hard to implement. To
overcome these problems, we provide an adaption of Lin–Kernighan (LK) heuristic
to help solve this challenging problem.

3.3.3 Design of the Lin–Kernighan heuristic

The LK heuristic can generally be divided into two steps: initialize the 0-matching
for the median genome, and LK search to get the result.

The initialization problem can be described as: given the gene contents of three
input genomes, find the gene content of the median genome that minimizes the sum
of the number of Indels and duplications operations required to transfer the median
gene content to the gene contents of the other three genomes. In this paper, we design
a very simple rule to initialize the median gene content: given the counts of each gene
family occurred with in the three genomes, if two or three counts are the same, we
simply select this count as the number of occurrences of the gene family in the median
genome; if all three counts are different, we select the median count as the number of
occurrences of the gene family in the median genome.

After fixing the gene content for the median genome, we randomly set up the 0-
matching in theMBG. The followed LK heuristic selects two 0-matching edges on the
MBG of a given search node and performs a DCJ operation, obtaining the MBG of a
neighboring search node. We expand the search frontier by keeping all neighboring
search nodes to up until the search level L1. Then we only examine and add the
most promising neighbors to the search list until level L2. The search is continued
when there is a neighbor solution yielding a better median score. This solution is then
accepted and a new search is initialized from scratch. The search will be terminated
if there are no improvements to the result as the search level limits have been reached
and all possible neighbors have been enumerated. If L1 = L2 = K , the algorithm is
called K-OPT algorithm.

3.3.4 Adopting adequate sub-graphs to simplify problem space

By using the adequate subgraphs (Xu and Sankoff 2008; Xu 2009a), we can
prove that they are still applicable for decomposing the graph in the DCJ-Indel-
Exemplar(Matching) median problem.
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Lemma 1 As long as the irregular vertices do not involve, regular subgraphs are
applicable to decompose MBG.

Proof If there are d number of vertices that contain duplicated edges in MBG, we
can disambiguate the MBG by generating different subgraphs that contain only one
of the duplicate edge. We call these subgraphs disambiguate MBG, (d-MBG), and
there are O(

∏
i<d deg(i)) number of d-MBGs. If a regular adequate subgraph exists

in the MBG, it must also exists in every d-MBG. Based on the 0-matching solution,
we can transform every d-MBG into completed d-MBG (cd-MBG) by constructing the
optimal completion (Compeau 2012) between 0-matching and all the other three types
of edges. After this step, the adequate subgraphs in every d-MBG still exist in every
cd-MBG, thus we can use these adequate subgraphs to decompose cd-MBG for each
median problem without losing accuracy. ��

3.3.5 Search space reduction methods

The performance bottleneck with the median computation is in the exhaustive search
step, because for each search level we need to consider O(|E |2) possible number of
edge pairs, which is O(|E |2L1) in total. Unlike the well-studied traveling salesman
problem (TSP) where it is cheap to find the best neighbor, here we need to com-
pute the DCJ-Indel-Exemplar(Matching) problem,NP-hard distance, which makes
this step extremely expensive to conclude. Noticing that if we search neighbors on
edges that are on the same 0-i color altered connected component (0-i-comp), the
DCJ-Indel-Exemplar(Matching) distance for genome 0 and genome i is more likely
to reduce (Yin et al. 2013), thus we can sort each edge pair by howmany 0-i-comp they
share. Suppose the number of 0-i-comp that an edge pair x share is num_pair(x),
when the algorithm is in the exhaustive search step (current Level < L1), we set a
threshold δ and select the edge pairs that satisfy num_pair(x) > δ to add into the
search list. When it comes to the recursive deepening step, we select the edge pair
that satisfy argmax

x
num_pair(x) to add into the search list. This strategy has two

merits: (1) some non-promising neighbor solution is eliminated to reduce the search
space; (2) the expensive evaluation step which make a function call to DCJ-Indel-
Exemplar(Matching) distance is postponed to the time when a solution is retrieved
from the search list.

The LK based median computation algorithm is as Algorithm 2 shows, named
DCJIndelExem(Matc)Median respectively.

4 Experimental results

We implement our code with python and C++: the python code realized the opti-
mization methods while the C++ code is implemented on a parallel branch-and-bound
frameworkOPTKit. We conducted extensive experiments to evaluate the accuracy and
speed of our distance and median algorithms using both simulated and real biological
data. Experimental tests ran on a machine with Linux operating system configured
with 16 Gb of memory and an Intel(R) Xeon(R) CPU E5530 16 core processors, each
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Algorithm 2: DCJIndelExem(Matc)Median
Input: MBG G, Search Level L1 and L2
Output: 0-matching of G
Init search list L of size L1;1
Init 0-matching of G;2
current Level ← 0 and Improved ← true;3
while Improved = true do4

current Level ← 0 and Improved ← f alse;5
Insert G into L[0];6
while current Level < L2 do7

G′ ← pop from list L[current Level];8
if G′ improves the median score then9

G ← G′;10
Improved ← true and break ;11

if current Level < L1 then12
for x ∈ ∀ 0-matching pairs of G do13

G′ ← perform DCJ on G′ using x ;14
if num_pair(x) > δ then Insert G′ into L[current Level + 1]15

else16
G′ ← perform DCJ on G′ using x = argmax

x
num_pair(x) ;

17

if num_pair(x) > δ then Insert G′ into L[current Level + 1]18

current Level ← current Level + 1 ;19

return 0-matching of G;20

core has 2.4 GHz of speed. All the experiments ran with a single thread. We choose
to use g++−4.8.1 as our compiler.

4.1 Distance computation

To the best of our knowledge, there is no software package that can handle both
duplications and Indels. We compared ourDCJ-Indel-Exemplar (Matching) distances
with GREDO (Shao et al. 2014), a software package based on LP that can handle
duplications.

4.1.1 Simulated data

The simulated data sets are generated with genomes containing 1000 genes. The
Indels rate is set (γ ) as 5%, inline with the duplications rate (φ) as 10%. Considering
GREDO can not process Indel data, all Indels for GREDO are removed. We com-
pared the change of distance estimation with the variation of mutation rate (θ , which
grows from 10 to 100%). The experimental results for simulated data are displayed in
Fig. 5.

(1) For computational time, since the results of time spans over a range of thousands
of seconds, we display the time with log scale to construe results clearly. When
the mutation rate is <50%, all three methods perform similarly, with the fact
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Fig. 5 Experimental results for distance computation using simulated data. a Time result for simulated
data. b Distance result for simulated data

Table 1 Experimental results for distance computation with real data set

Data Distance results Time results

GREDO Exem Matc GREDO Exem Matc

brownrat_chicken 1678 24546 24704 3604.28 172.73 7.45

brownrat_gorilla 1274 17922 17966 5707.13 12.64 12.10

brownrat_human 1083 17858 17900 3725.76 12.14 12.19

brownrat_mouse 790 15433 15445 3725.66 14.51 15.06

chicken_gorilla 1491 16379 16421 3725.62 7.54 7.57

chicken_human 1521 16231 16276 3725.65 7.74 7.47

chicken_mouse 1528 15712 15745 3726.03 9.82 8.16

gorilla_human 486 17798 17798 3607.63 13.94 13.81

gorilla_mouse 860 18914 18935 4816.31 12.60 12.13

human_mouse 749 18126 18144 94.64 12.45 12.61

that GREDO is faster than both of our branch-and-bound methods. However,
GREDO slows down dramatically when the mutation rate is increased, while our
branch-and-bound based method takes less increased time to finish.

(2) For computational accuracy, we show the distance results corrected by EDE
approach which is one of the best true distance estimator. As for simulated data,
we can see that when the mutation rate is small (<50%)GREDO under estimates
the distance as opposed to our two branch-and-bound methods; but it will over
estimate the distance with the growth of mutation rate.
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4.1.2 Real data

Weprepare the real data sets using genomes downloaded fromEnsenble and processed
them following the instructions in Shao et al. (2014). The real data set contains
5 species: brown-rat, chicken, human, mouse and gorilla. For DCJ-Indel-Exemplar
(Matching) distance, we only convert the Ensenmble format to adapt the data to our
program. Meanwhile, just as the simulated data, all Indels in real data set for GREDO
are removed. The results for real data are shown in Table 1.

(1) For computational time, the branch-and-bound method shows orders of magni-
tudes of speed up compared with GREDO. We analyze the data, the reason can
be construed as the existence of multiple connected component in BPG. So that
our method can divide the graph into much smaller size, versus GREDO which
doesn’t have this mechanism.

(2) For computational accuracy, the distance results of the real data gives us a taste
of how frequently Indels happened in the genome evolution. We can see orders
of magnitude of difference between our distance results and GREDO, which is
mainly due to the large amount of Indels in the real data set. Note that we did
not change the way GREDO compute its distance as in paper (Shao et al. 2014),
in the real distance computation, we should consider Indels in alignment with
duplications.

4.2 Median computation

Wesimulate themedian data of three genomes using the same strategy as in the distance
simulation. In our experiments, each genome is “evolved” from a seed genome, which
is identity, and they all evolve with the same evolution rate (θ, γ and φ). The sequence
length in the median experiments are reduced to 50, due to performance issues.

4.2.1 DCJ-Indel-Exemplar median

We analyze the result of using LK algorithm with L1 = 2 and L2 = 3, and theK-OPT
algorithm of K = 2. Search space reduction methods are used, with δ = 2 and δ = 3
respectively.

(1) To begin with, we compared our result along with equal content data, because
there are already benchmark programs to help us to perform analysis. We run the
exact DCJ median solver [we use the one in Yin et al. (2013)] to compare our
heuristic with the exact median results. In Fig. 6a, it shows the accuracy of our
heuristic versus the exact result. It is shown that when θ ≤ 60%, all results of
the LK and K-OPT methods are quite close to the exact solver. For parameter of
δ = 2, both LK and K-OPT methods can generate exactly the same results for
most of the cases.

(2) As for the median results for unequal contents, we set both γ and φ to 5% and
increase the mutation (inversion) rate θ from 10 to 60%. We compare our results
with the accumulated distance of the three genomes to their simulation seed.
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Fig. 6 Experimental results for median computation applying DCJ-Indel-Exemplar distance. a γ = φ =
0% and θ varies from 10 to 100%. b γ = φ = 5% and θ varies from 10 to 60%

Fig. 7 Experimental results for median computation applying DCJ-Indel-Matching distance. a γ = φ =
5% and θ varies from 10 to 100%. b γ = φ = 10% and θ varies from 10 to 100%

Although it can not show the accuracy of our method (since we do not have an
exact solver), it can be used as an indicator of how close that our method is to
the real evolution. Figure 6b shows that when δ = 3, both the LK and K-OPT
algorithms get results quite close to the real evolutionary distance.

4.2.2 DCJ-Indel-matching median

Because the DCJ-Indel-Exemplar median has already given us the result of how LK
performs against exact solver, and how different parameters of LK performs. With
these things in mind, we choose to use LK with L1 = 2 and L2 = 3 having δ = 2 as
the configuration for our DCJ-Indel-Matching median solver. We use the same data
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as in the previous experiments, and the experimental results are shown in Fig. 7a and
b. We can see that in general, the new implementation is quite close to the real result
when γ = 5% and φ = 5% and slightly worse than real result when γ = 10% and
φ = 10%.

5 Conclusion

In this paper, we proposed a newmethod to compute the distance and median between
genomes with unequal contents (with Indels and duplications). Our distance method
can handle Indels which is ubiquitous in the real data set, and is proved to be more
efficient as opposed toGREDO. We designed a Lin–Kernighan based method to com-
pute median, which can get close to optimal results in alignment with the exact median
solver, and our methods can handle duplications and Indels as well.
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