Hindawi Publishing Corporation
Scientific Programming

Volume 2016, Article ID 2360492, 14 pages
http://dx.doi.org/10.1155/2016/2360492

Research Article

Hindawi

A New Parallel Method for Binary Black Hole Simulations

Quan Yang,' Zhihui Du,' Zhoujian Cao,’ Jian Tao,’ and David A. Bader*

"Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China
*Institute of Applied Mathematics, Academy of Mathematics and Systems Science Chinese Academy of Sciences, Beijing 100190, China
?Center for Computation & Technology, Louisiana State University, Baton Rouge, LA 70803, USA
*School of Computational Science and Engineering, College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA

Correspondence should be addressed to Zhihui Du; duzh@tsinghua.edu.cn
Received 1 January 2016; Revised 25 May 2016; Accepted 6 June 2016
Academic Editor: Bormin Huang

Copyright © 2016 Quan Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Simulating binary black hole (BBH) systems are a computationally intensive problem and it can lead to great scientific discovery.
How to explore more parallelism to take advantage of the large number of computing resources of modern supercomputers is the
key to achieve high performance for BBH simulations. In this paper, we propose a scalable MPM (Mesh based Parallel Method)
which can explore both the inter- and intramesh level parallelism to improve the performance of BBH simulation. At the same time,
we also leverage GPU to accelerate the performance. Different kinds of performance tests are conducted on Blue Waters. Compared
with the existing method, our MPM can improve the performance from 5x speedup (compared with the normalized speed of 32
MPI processes) to 8x speedup. For the GPU accelerated version, our MPM can improve the performance from 12x speedup to 28x
speedup. Experimental results also show that when only enough CPU computing resource or limited GPU computing resource
is available, our MPM can employ two special scheduling mechanisms to achieve better performance. Furthermore, our scalable
GPU acceleration MPM can achieve almost ideal weak scaling up to 2048 GPU computing nodes which enables our software to

handle even larger BBH simulations efficiently.

1. Introduction

The latest supercomputers [1] have significantly increasing
number of computing nodes/cores, but many practical appli-
cations cannot achieve better performance on more comput-
ing resources because enough parallelism in the applications
has not been explored. At the same time, many applications
cannot take advantage of supercomputers equipped with
accelerator such as GPU [2, 3] because the existing codes
cannot run on GPU directly. We focus on the two problems
and propose an efficient method to improve the performance
of one kind of challenging scientific application (binary black
hole simulations) on one typical large scale supercomputer,
Blue Waters.

A binary black hole (BBH) system has two black holes in
close orbit around each other. For the inspiralling BBH, the
two black holes will move around each other. The number of
orbits means the number of circles the black holes move. Mass
ratio means the ratio of the mass of small black hole to

the mass of the big black hole. BBH systems are important
because they would be the strongest known gravitational
wave [4] source in the universe. The most challenging and
important subject in numerical relativity now is the simula-
tion of these BBH systems. For gravitational wave detection,
theoretical model for gravitational wave sources is essential
for experimental data analysis. As an example, the theoretical
model for BBH played an important role in GW150914 detec-
tion [5]. For ground based detectors of gravitational wave,
such as LIGO, VERGO, GEO600, and KAGRA [6], the almost
equal mass BBHs are the most important gravitational wave
sources. For the space-based detectors, such as eLISA [7], the
gravitational wave sources will include many large mass ratio
BBH systems. When the mass ratio of BBH increases, the
computational cost increases dramatically, roughly propor-
tional to the fourth power of the mass ratio. Currently, the
upper limit for the mass ratio of BBH which can be simulated
by numerical relativity is 100. So, for the future space-based

detection of gravitational wave, improving the computational
ability is quite important.

Adaptive mesh refinement (AMR) [8] is widely used in
BBH simulation because of its simplicity and great reduction
in total computing work. It is a natural method to divide each
mesh into many submeshes and execute the submeshes of the
same level in parallel to improve the simulation speed. We call
it Submesh based Parallel Method (SPM) in this paper. Halo
zones are needed for each submesh to keep the data from its
neighbors. SPM can really achieve very good parallel perfor-
mance when it only uses limited computing resources. But if
the time saving by parallel executing the smaller submeshes
cannot compensate the communication overhead to fill the
halo zones, SPM cannot scale to more computing resources
to achieve better performance. The size of submeshes cannot
be too small because of the increasing communication
overhead and the size of refined mesh cannot be very large
because of the significant increase in total computation, so
the number of parallel submeshes (MeshSize/SubmeshSize)
cannot be too large. The latest supercomputers have more
and more computing nodes/cores, but the SPM cannot take
advantage of more computing resources to further improve
its performance. When we try to handle some challenging
BBH simulations with more orbits (>20) and larger mass ratio
(>400), more parallelism must be explored to significantly
improve the simulation performance to conduct the simula-
tions in reasonable time.

We propose a novel Mesh based Parallel Method (MPM)
to explore both the inter- and intramesh parallelism in BBH
simulations. MPM will explore the parallelism among differ-
ent mesh levels first (intermesh parallelism). Then, it employs
SPM to explore the parallelism in each mesh (intramesh
parallelism). MPM has two advantages. On one hand, for
given submesh size, MPM can provide much more paral-
lelism than SPM does. On the other hand, for given number
of parallel tasks, MPM can assign more data and computation
to each parallel task than SPM does. In other words, the
computation-to-communication ratio of MPM can be larger
than the SPM. So MPM has higher parallel efficiency than the
SPM does.

We develop a new mesh partitioning algorithm to opti-
mize the load and communication among all the parallel
tasks. Our mesh partitioning algorithm is employed into our
MPM to achieve balanced load and reduce communication as
much as possible. In order to take advantage of the GPU capa-
bility to improve the performance, we rewrite the most com-
putationally intensive solver codes in BBH simulations on
GPU and employ different kind of GPU codes optimization
methods (employing coalesced memory access and shared
memory, reducing data copy between CPU and GPU, and
removing unnecessary synchronization) to improve its per-
formance.

Different kinds of experiments on performance evalu-
ation have been conducted on the large scale Blue Waters
supercomputer at National Center for Supercomputing
Applications (NCSA). The experimental results show that
significant performance improvement can be achieved with
our scalable MPM. Because the sequential code is too slow,
we select the performance of 32 MPI processes with SPM

Scientific Programming

algorithm as the baseline. The existing method can achieve at
most 5x speedup; our MPM can achieve 8x speedup. After we
port and optimize the code on GPU, the existing method can
achieve at most 12x speedup; our scalable MPM can achieve
about 28x speedup. Furthermore, our scalable MPM + GPU
acceleration method can achieve almost ideal weak scaling up
to 2048 GPU computing nodes. This means that our method
can handle very large problem on large number of computing
resources efficiently.

The major contribution of our work lies in two aspects:
First, the proposed MPM can enable the BBH simulation to
take advantage of more computing resources of supercom-
puters to achieve better performance. Second, the proposed
MPM has been enabled by GPU to further improve the per-
formance of BBH simulation.

2. Problem Description

We will briefly introduce the BBH simulation problem and
the numerical method used to solve the problem first. Then,
a special mesh refinement method used in BBH simulation is
given.

2.1. Equations for the Problem. In order to simulate BBH
systems in general relativity, the basic idea is to solve Einstein’s
equations [9]. We adopt BSSN (Baumgarte-Shapiro-Shibata-
Nakamura) [10] formalism which is widely accepted by the
numerical relativity community. The BSSN formalism is
a conformal-traceless “3 + 1” formulation of the Einstein
equations. In this formalism, the space-time is decomposed
into three-dimensional spacelike slices, described by three-
metric y;; its embedding in the four-dimensional space-time
is specified by extrinsic curvature K;; and the variables, lapse

«, and shift vector ', which specify a coordinate system. G
is the gravitational constant, and c is the speed of light. In
numerical relativity, geometrical units are usually adopted
which lead G = ¢ = 1. In this paper, we follow the notations
of [11]. The related equation description about the problem is
as follows:

o= ﬁi‘l’,i - éocK + éﬁi,i’
0y = /3k7ij,k - Z“Zij + 27k(iﬁk,j) - %T@jﬁk,k’
3K =pK, - Da+a [ZUZU + %Kz] ,
9, = B Ay +e[aR; - DD
+a (K& - 28,47 + 2K B° o
- 2A8
oF = T~ 2Aa,

2 .

~i ~kj i ~ij =j i
+2a (ijA - gy']K,j +6A (/)]) -TB

Qi 1~k‘ . ki ni
J 1] 73t
+§F/3,j+§y Ty Bl

Scientific Programming

<— Syn —> &— Syn —>

<— Syn—>
T/2 T
T/4
— |
Mesh 1 Mesh 2

FIGURE 1: An example to show how different mesh levels are created to cover the black hole and how the different mesh levels are evolved
with different time steps. Synchronization is necessary for neighbor mesh levels to exchange data.

Here, p, s, 5;, and s;; are source terms which come from matter.
For a vacuum space-time, p = s = s; = s;; = 0. In the above
evolution equations, D is the covariant derivative associated
with three-metric y,;, and “TF” indicates the trace-free part
of tensor objects. For the time evolution, we use 4th-order
Runge-Kutta (for short “RK” in the following parts) method.
Spatial derivatives are computed using 4th-order finite dif-
ferencing. The advection terms are approximated with an
upwind finite differencing stencil, and other derivative terms
are approximated with a centered stencil. More details
regarding the equations and implementations can be found
in [12, 13].

2.2. Mesh Refinement Method. Mesh refinement is a tech-
nique which allows a simulation to spend more time on the
parts of the domain which are more interesting. The Berger-
Oliger mesh refinement (or AMR) algorithm [8] is widely
used in BBH simulations. We use Fixed Mesh Refinement
(FMR) in this work instead of AMR because of the following
two facts: (1) FMR will not introduce more computation than
AMR in BBH simulations with the same accuracy; (2) FMR
is easy to achieve load balancing and it is very critical to
improve the performance in large scale parallel computing.
The subcycling technology is also introduced because it can
further reduce the total simulation steps significantly. For our
FMR method with subcycling, the closer to the black hole, the
finer the mesh, and the smaller the time step (typical in half),
the more the evolution steps, but all the meshes at different
levels will have the same grid points.

Figure 1 is an example of our FMR method with subcy-
cling. For simplicity, we only show three mesh levels. They are
the coarsest Mesh 0, the refined Mesh 1, and the finest Mesh
2. The finer mesh level will be closer to the black hole, but
the coarser mesh level will cover larger region. All the mesh
levels will have the same number of grid points. When Mesh
0 executes one simulation step with time step T', Mesh 1 will
need to execute two simulation steps to catch up with Mesh

0 because its time step (7'/2) is half of Mesh 0 and so on for
the following finer mesh levels. After each simulation step,
the mesh should synchronize with its neighbor mesh levels to
exchange the boundary data or get the updated data covered
by the refined mesh level.

Our FMR method with subcycling can achieve enough
accuracy with significantly reduced total simulation steps
because it only simulates the BBH evolution procedure
with higher space and time resolution (more space points
and smaller time step) when it is closer to the black hole
area. In the following sections, we will introduce how we
can accelerate its simulation performance on large scale
supercomputers.

3. A Scalable Parallel Method

We first explain the pros and cons of the existing SPM parallel
method. Then, the basic idea and the algorithm design of
our new parallel are given to show how it can overcome the
weaknesses of SPM by exploring more parallelism to improve
the performance of BBH simulations.

3.1. Analysis of the Existing Method. The existing method
divides each mesh level into submeshes and executes these
submeshes of the same mesh level in parallel, but the
calculation in different meshes will be executed in sequential
order. This is the existing Submesh based Parallel Method
(SPM).

Algorithm 1 is the pseudocode of the SPM; line (4)
shows that when the total mesh levels is more than 1, it will
call the recursive_step procedure to execute all the other
mesh levels. The SPM is a very simple and natural way to
simulate the BBH evolution. At the same time, it can achieve
high parallel efficiency when only small or even moderate
number of parallel tasks are employed (the computation-to-
communication ratio is high because the size of submeshes
can be big enough for limited number of parallel tasks).

(1) procedure SPM_Evolution

(2) Input: meshes and boundary conditions
(3) evolve one step on current level

(4) if (total_level > 1) call recursive_step(1)

(5) analyze the results

(6) regrid if needed

7) Output: values on all the mesh grid points
(8) end procedure

(9) procedure recursive_step(level)

(10) for (i=0;i<2;i++) do

11) evolve one step on current level

(12) if (level < total_level — 1) then

(13) call recursive_step(level + 1)

(14) end if

(15) exchange data with related processes

(16) end for
(17) end procedure

ALGORITHM 1: Submesh based Parallel Method.

When larger scale supercomputers are available and we
hope to further improve the BBH simulation performance
with more computing resources, SPM often cannot achieve
better performance on the latest supercomputers because it
can only explore limited parallelism. SPM cannot achieve
good parallel efficiency when the size of the submesh is
very small. The halo zone is necessary for each submesh to
exchange data with its neighbor submeshes and the overhead
of communication to fill halo zone will increase quickly when
the size of submesh is very small. So the number of parallel
submeshes will be limited and this is the essential bottleneck
which limits the SPM to achieve better scalability.

Figure 2(a) shows how different mesh levels in SMP
method are evolved one by one in order. The green blocks
are the calculation steps of different mesh level. The SPM
will execute the Runge-Kutta calculation steps from RKI1 to
RK7 in sequential order even though some of them can be
parallelized.

Another weakness of SPM is that when we employ GPU
to accelerate the computationally intensive part of each
parallel process, the computation time will be significantly
reduced but the communication time will not change. This
will lead to the quick decrease in parallel efficiency. The SPM
can really employ GPU to improve the performance of each
single parallel process, but it prevents the application from
scaling onto more computing resources as well.

So the SPM only performs well in small or mediate
scale parallel computing. It cannot scale to larger scale
computing resources. When GPU computing resources are
employed, the absolute performance can be improved at first
but its scalability will become worse because of the lower
computation-to-communication ratio. Another weakness of
the SPM is that it cannot work together with GPU well. This
is why we must design new scalable parallel algorithm for the
challenging BBH simulations on larger scale supercomputers.

Scientific Programming

3.2. Mesh Based Parallel Method. The basic idea of our new
parallel method is exploring the high level parallelism among
all the mesh levels first. This means that we will remove all the
control dependence among different mesh levels introduced
by the recursive execution of SPM and allow all the meshes
to evolve in parallel if only the necessary data is ready. Then,
we will explore the low level parallelism in each mesh level
if more parallelism is needed. We call this parallel method as
Mesh based Parallel Method (MPM).

Figure 2(b) shows how the different Runge-Kutta cal-
culations in Figure 2(a) can be executed in parallel way.
For one big physical step T, Mesh 0, Mesh 1, and Mesh 2
have to execute Runge-Kutta calculation {RK1}, {RK2, RK5},
and {RK3, RK4, RK6, RK7}, respectively, based on our FMR
method. All the evolution steps of the same mesh level must
be executed in sequence because of the data dependence,
but the evolution steps from different mesh levels can be
executed in parallel. This is very different from the SPM. So
our MPM will execute the steps as follows: parallel executing
calculation {RKI, RK2, RK3} — syn — parallel executing
calculation {RK4} — syn — parallel executing calcula-
tion {RK5, RK6} — syn — parallel executing calculation
{RK7} — syn. But SPM has to execute calculation from RK1
to RK7 one by one in sequential order as follows: parallel exe-
cuting calculation {RK1} — syn — parallel executing calcu-
lation {RK2} — syn — --- — parallel executing calculation
{RK7} — syn. In this way, the MPM can save about half the
simulation time by executing more meshes in parallel.

Although the intermesh level parallel method was really
employed alone in some package without subcycling tech-
nology, such as in [14], the inter- and intramesh level
parallel methods together have never been used in pack-
ages/applications with subcycling technology. The subcycling
technology can significantly reduce the total simulation steps
without losing simulation accuracy, but it will make the
parallel execution among different mesh levels very difficult
because the communication and synchronization features
among different mesh levels are very different from the
features in the same mesh level.

To solve this problem, we design a general and highly
efficient mechanism to implement both inter- and intramesh
level communication. In our MPI [15] code implementation,
all the data needed by the same MPI process will be collected
first, then packed into one buffer, and sent to the corre-
sponding process with nonblocking MPI communication
function. At the same time, the corresponding MPI process
will receive and unpack the data to get the halo zone data
or prolongation/restriction data. In this way, we can combine
the two communication patterns into one, reduce the total
number of MPI operations, and allow MPI communication
to overlap with computation.

Another problem is that, for large scale parallel comput-
ing, the unbalanced load can significantly harm the parallel
effect. Our test also shows that the mesh partition method
can greatly affect the performance of BBH simulations. So
we design a new three-dimensional (3D) mesh partitioning
algorithm to achieve two objects: load balancing and less
communication.

Scientific Programming

%

>£> 5@ ---->
-»g-—-;l] -

-l

Execution time

|

1

1
|
I
I

Execution time

Mesh 0 Mesh 1

levels one by one

Mesh 2
(a) SPM executes different mesh

Mesh 0 Mesh1 Mesh2

(b) MPM executes different
mesh levels in parallel

FIGURE 2: An example to show the difference between SPM and MPM. The red line is control flow and blue line is communication flow.
The green blocks are the calculation steps with Runge-Kutta (RK) method and the yellow cycles are the communication operations between

neighbor mesh levels.

(8) end while

(11) end for
(12) Output: SubMesh
(13) end procedure

(1) procedure Mesh_Partition (Mesh, Procs, MinMesh)
(2) Input: Mesh, Procs, MinMesh

(3) tmpl[] =1

(4) while (tmp[0] x tmp[1] x tmp[2] < Procs) do

(5) select d to maximize [Mesh[d]/tmp(d]]

(6) if ([Mesh[d]/(tmpl[d] + 1)] < MinMesh[d]) break
(7) tmpld] + +

9 for (d=0;d <2;d++) do
(10) SubMesh[d] = [Mesh[d]/tmp[d]]

ALGORITHM 2: 3D mesh partition algorithm.

Algorithm 2 is our method on how to divide a three-
dimensional Mesh with given number of parallel processes
Procs and minimum submesh size MinMesh as input param-
eters. The partition result SubMesh will be returned as the
output result. The basic idea of our method is that the size
of submeshes should be close to each other to keep load
balancing. At the same time, we will try to make the shape
of the submesh as cubic as possible to reduce the size of halo
zone (so less data will be transferred). From line (3) to line
(7), we calculate the maximum number of processors which
will be used to divide the given Mesh in each dimension. The
total number of processors cannot be larger than the given
value Procs and the submesh size in each dimension cannot
be smaller than MinMesh. Line (4) shows that we will divide

the dimension with the largest submesh size first, so the shape
of submesh cannot be far away from cube. Finally, we can
get the size of the submesh which can meet all requirements
(from line (8) to line (10)). It is easy to check that our 3D mesh
partitioning algorithm can really find submeshes whose sizes
are close to each other and whose shapes are close to cube
enough.

After the mesh at different levels has been partitioned,
Algorithm 3 provides the SPMD (Single Program Multiple
Data) pseudocode of our MPM. In line (3), we first calculate
the total number of evolution steps of the current mesh level.
Then, from line (4) to line (9), all the evolution steps of the
current level are executed. After each evolution step, line
(6) shows that the related processes have to exchange data

(1) procedure MPM_Evolution (Mylevel)

(2) Input: meshes and boundary conditions
3) NSteps = 2™ fevel

(4) for (k = 0; k < NSteps; k + +) do

(5) evolve one step on current level

(6) exchange data with related processes
(7) analyze the results

(8) regrid if needed

9) end for

(10) Output: values on all the mesh grid points
(11) end procedure

ALGORITHM 3: Mesh based Parallel Method.

with each other. It will include two kinds of communication
patterns: (1) updating the halo zone area; (2) prolonga-
tion/restriction with neighbor mesh level. We will analyze the
result after each simulation step (line (7)). If the black hole
changed its position, we need to regenerate the mesh (line

(8)).

4. Experimental Results

In this section, we first introduce the BBH simulation soft-
ware which has integrated our MPM algorithm. Then, we
describe the configuration of our hardware platforms and
the default BBH simulation setup in our experiments. Next,
we evaluate our GPU implementation to show that its result
is correct and can match with the CPU result well. Finally,
we show how our novel MPM can improve the performance
of BBH simulations with or without GPU acceleration. Two
special scheduling mechanisms are given to show that our
MPM algorithm can work together with them to improve
the performance of BBH simulations under two practical
scenarios: (1) enough CPU resources are available, but no
GPU resources are available; (2) only limited GPUs resources
are available.

4.1. Simulation Software. All of the methods presented in this
paper have been implemented in a practical BBH simulation
software AMSS-NCKU [12, 16]. Figure 3 shows the structure
of the AMSS-NCKU software system. It is an MPI program
and its function can be divided into two parts, controler and
solver. The control part is written in C++ and the solver is
in CUDA. For a multicore cluster node, it may have one or
multiple CPUs/GPUs. The user can decide how many MPI
processes can be allocated for each cluster nodes. Multiple
MPI processes in one node can share one GPU (we export
CRAY _CUDA_MPS = 1 to enable multiple MPI processes
on a single node to share one GPU on Blue Waters) or
run exclusively on multiple GPUs. We redesign the mesh
partitioning algorithm to enable the simulation control flow
and the MPI communication mechanism to implement our
MPM. At the same time, the new mesh partitioning algorithm
can achieve load balancing and less communication cost.
Nonblocking MPI communication is employed to overlap
the computation and communication so better performance

Scientific Programming

MPI program

) 1)

Many
MPI MPI MPI cluster
Pprocesses processes processes nodes
e N
One MPI process One MPI process
| Control | | Solver | Control Solver One

k—— cluster
omen] [omema],

FIGURE 3: The software structure of our GPU enabled BBH simula-
tion with proposed MPM.

can be achieved. The solver of AMSS-NCKU is the most
computationally intensive part and it has hundreds of Fortran
functions. We port the hundreds of Fortran functions to
GPU in CUDA and then a great effort is taken to optimize
the large amount of CUDA codes on GPU to achieve better
performance. The total source codes of AMSS-NCKU are
more than 100 K lines.

4.2. Experimental Setup

4.2.1. Hardware Platforms. Most the experimental results
provided in this paper are from Blue Waters supercomputer
(https://bluewaters.ncsa.illinois.edu). Blue Waters is a Cray
XE6/XK7 system consisting of more than 22,500 XE6 com-
pute nodes (each containing two AMD Interlagos 16-core
processors) augmented by more than 4200 XK7 compute
nodes (each containing one AMD Interlagos 16-core proces-
sor and one NVIDIA GKI110 “Kepler” accelerator) in a single
Gemini interconnection fabric.

At the same time, we also test our program on other large
GPU clusters, such as Mole-8.5 (http://www.top500.0rg/
system/176899) which contains 362 compute nodes; each
node has two Intel® Xeon® E5520 processors and 6 NVIDIA
2050 GPUs and SuperMike-1II (https://www.cct.Isu.edu/super-
mike-ii) which contains 440 compute nodes; each node has
two Intel Sandy Bridge Xeon® E5-2670 octacore processors
and fifty nodes are equipped with two NVIDIA Tesla M2090
GPUs. Both of them use InfiniBand network.

4.2.2. Scheduling Methods. We employ three scheduling
mechanisms to evaluate the different parallel methods. The
first is Default Scheduling. For CPU jobs, it means that one
MPI process is assigned to one CPU core so that one CPU
computing node with K cores will be assigned to K MPI
processes. For GPU jobs, it means that one MPI process is
assigned to one GPU computing node so that one computing
node with multiple CPU cores will have only one MPI pro-
cess. For CPU jobs, the resource contention among different

Scientific Programming

MPI processes cannot be avoided and this will lead to perfor-
mance reduction using Default Scheduling. For GPU jobs, the
Default Scheduling will lead to low CPU and GPU utilization
because it cannot fully explore the capability of all hardware
resources. So we design and implement another two special
scheduling mechanisms. They are Exclusive Scheduling for
CPU jobs and GPU-Shared Scheduling for GPU jobs (we
export CRAY _CUDA_MPS = 1 to enable multiple MPT tasks
on a single node to share one GPU on Blue Waters or Titan
supercomputer). Exclusive Scheduling means that one MPI
process will be assigned to one independent computing node
no matter how many cores it has. GPU-shared Scheduling
means that more than one MPI process will share one GPU.
In practical scenarios, sometimes the system is not equipped
with GPU (or GPUs are not available temporarily), but it has
many CPU computing nodes. Sometimes the system only has
limited GPUs. We implement the Exclusive Scheduling and
GPU-Shared Scheduling to do experiments under the two
practical scenarios.

4.2.3. Default Application Configuration. The default config-
uration for all the experiments is as follows. A typical mesh
size (128 x 128 x 64) which is widely used in the current BBH
simulations is selected. The total number of mesh levels is 8.
The execution time is the accumulated time of 5 big physical
time steps.

4.3. Correctness Evaluation. The precision is very important
for scientific applications. To evaluate the correctness of our
GPU code, we do the following two kinds of evaluation
tests. The first is directly comparing the difference of RHS
calculation between CPU results and GPU results. Figure 4
shows how we conduct the experiments. We not only use
the real data as inputs but also generate randomly hundreds
of arrays as different inputs. For the same input, we will
execute both the original CPU codes and the corresponding
GPU CUDA codes. We develop a tool which can dump all
the intermediate results at different position of both CPU
and GPU codes. In this way, we can compare the difference
between the CPU result and the GPU result. For all the
different inputs, the maximal difference of the intermediate
results between CPU and GPU is less than 10™"*. So the GPU
results are very close to the CPU results for different inputs.

The second evaluation is using a typical application for
binary black hole collision calculations (see Figure 5). Here,
we use two spinless identical black holes head on to each
other along y-axis. Initially, these two black holes separate
2.303M, with M being the total mass of the two black
holes. This configuration has been used for code testing
by many numerical relativity groups. First, we compare the
evolved dynamical variables to fourth-order Runge-Kutta
time integration. The difference between CPU results and
GPU results is less than 107> for the whole simulation
process. Figure 5(a) gives an example of such comparison for
evolved variable y,, on z = 0 plane at time ¢ = 140M. These
plots are from SuperMike-II.

Gravitational wave form is one of the most important
physical quantities for numerical relativity study. In this work,
we use Newman-Penrose scalar ¥ to represent gravitational

Input arrays

A v
CPU code module 1 GPU code module 1

¢ ¢

v

E <
CPU code module 2 E GPU code module 2

'._g
)
8
=

CPU code module i b GPU code module i
=
g
3
k=

CPU code module n g GPU code module n
Q

FIGURE 4: Different kinds of synthetic inputs are generated for the
CPU and corresponding GPU codes. We can dump and compare the
calculation results of CPU and GPU at different stages. In this way,
we can analyze the numerical difference between CPU and GPU
calculation for the same input.

wave. This numerical technique is widely used in numerical
relativity community. Here, we have compared the gravi-
tational wave form generated by CPU and GPU. The test
simulation time is 120 M. In Figure 5(b), we can see that the
gravitational waveforms generated from GPU and CPU BBH
simulation on Blue Waters, SuperMike-II, and Mole-8.5 are
almost identical to each other. All of these tests confirm the
correctness of our GPU implementation for the numerical
relativity code.

4.4. Performance Improvement with Our Scalable MPM Algo-
rithm. In this section, we will investigate how our MPM
algorithm can replace the existing SPM algorithm to achieve
better performance with both CPU and GPU codes. The
performance of two special scheduling mechanisms for prac-
tical scenario can be improved with our MPM algorithm too.
Because the performance of sequential code is unacceptable,
we use the execution time of 32 MPI processes of CPU-SPM
code as the baseline (5718 s) to calculate the speedup. In this
section, we will show the performance curve till the best
performance is achieved.

4.4.1. Employing MPM Algorithm in CPU Version. Figure 6
shows how our MPM algorithm can use more parallel
processes to improve the performance of BBH simulation.
The new CPU version MPM algorithm is marked as CPU-
MPM and the existing one is marked as CPU-SPM.

Figure 6(a) shows that the performance of CPU-SPM
is even better than the performance of CPU-MPM when
the number of parallel MPI processes is no more than
512. The reason is that MPM algorithm can explore more
parallelism with the cost of some idle computing resources.
SPM algorithm cannot scale to more MPI processes, but it

8 Scientific Programming

0.15 6e — 014
0.1 4e - 014
0.05 2e - 014
0 0
-0.05 —2e-014
-0.1 —4e - 014

-0.15 —6e — 014

X (M)
— CPU-GPU

(a) Dynamic variables comparison shows that the CPU results are very close to GPU results

0.015 T T T T T
0.01
’2‘ 0.005
g 0
<+
B
&
& -0.005
-0.01
-0.015 : : - ' '
0 20 40 60 80 100 120
t (M)
—— Mike-CPU BW-GPU
- -~ Mike-GPU Mole-CPU
...... BW-CPU -—.- Mole-GPU

(b) The waveform comparison shows that the CPU results and GPU results
from different platforms are very close to each other

FIGURE 5: Correctness evaluation.

will keep all the computing resources busy. At first, when
the number of MPI processes is small, SPM algorithm can
fully take advantage of the given parallel resources and
achieve higher performance. Since MPM algorithm will lead
some computing resources to be idle when not all the mesh
levels can be executed in parallel, the performance of MPM
algorithm is lower than SPM. However, when more than
512 MPI processes are used, the parallel efficiency of SPM
algorithm will become lower and lower because the total
computation for each MPI process will become smaller and
smaller. This is why the performance of SPM will become
worse when more MPI processes are used. Compared with
SPM algorithm, MPM algorithm can use more MPI processes
to execute different mesh levels in parallel without signif-
icantly decreasing the computation for each MPI process.
So the parallel efficiency of MPM is much better than SPM
when more and more MPI processes are used. This is why the
performance of SPM is better than the performance of MPM
at first and finally MPM can scale to larger number of MPI

processes to improve the performance of BBH simulation.
The best performance of CPU-SMP with 512 MPI processes
is 1096 s. The best performance of CPU-MPM with 2048 MPI
processes is 707 s.

Figure 6(b) shows that CPU-SPM can achieve about
5x speedup, but CPU-MPM can achieve about 8x speedup
compared with the baseline.

4.4.2. Employing MPM Algorithm in GPU Version. After we
verify the effect of the MPM algorithm in CPU codes, we
port and optimize the CPU codes onto GPU, replace the
SPM algorithm in our GPU codes, and get the scalable GPU
acceleration version. Figure 7 shows how our MPM algorithm
can further improve the performance of our GPU codes. The
GPU codes with MPM algorithm and SPM algorithm are
marked as GPU-MPM and GPU-SMBP, respectively.

Figure 7(a) shows that the performance of all our opti-
mized GPU codes is significantly better than the performance

Scientific Programming

16384

8192 |

4096 +

Time (s)

2048 +

1024 +

512

32 64 128 256 512 1024

Num of MPI processes

2048

-o- CPU-SPM
—=— CPU-MPM

(a) Absolute execution time

9
sl
g6}
b=
b
&
=t
S
5 4t
g
5
Z
2
O L L L L L
32 64 128 256 512 1024 2048
Num of MPI processes
-6- CPU-SPM

—=- CPU-MPM
(b) Normalized speedup

FIGURE 6: The strong scaling results of MPM algorithm and SPM algorithm in the CPU implementations.

of CPU-SPM. At the same time, the performance of GPU-
SPM is also better than the performance of GPU-MPM when
the number of parallel MPI processes is no more than 256
(the reason is similar to that in the CPU codes). The best
GPU-SPM performance is 479 s with 256 MPI processes.
Beyond 256 MPI processes, GPU-SPM cannot use more MPI
processes to achieve better performance, but GPU-MPM can
scale up to 1024 MPI processes (1024 GPUs) to achieve its best
performance (203 s). The results show that employing GPU
and the scalable MPM algorithm are the two major reasons
to achieve the performance improvement.

Figure 6(b) shows that GPU-SPM can achieve about 12x
speedup but GPU-MPM can achieve about 28x speedup. The
MPM algorithm can achieve about 479/203 = 2.36x speedup
for GPU codes but only about 1096/707 = 1.55x speedup
for CPU codes (see Section 4.4.1). This result shows that our
MPM algorithm can work together with GPU codes better to
achieve more significant performance improvement.

4.4.3. Employing MPM Algorithm in Two Special Scheduling
Mechanisms. In this section, we will show how our MPM
algorithm can work together with two special schedul-
ing mechanisms, Exclusive Scheduling and GPU-Shared
Scheduling, to improve their performance.

Exclusive Scheduling. Here each XE computing node will be
assigned with only one MPI process and the results are shown
in Figure 8. Figure 8(a) shows the execution time of the Exclu-
sive Scheduling with the existing SPM algorithm (marked as
CPU-SMP-Ex) and our MPM algorithm (marked as CPU-
MPM-Ex). CPU-SPM-Ex can scale up to 512 XE computing
nodes to achieve the best performance 807 s. CPU-MPM-Ex
can even scale up to 2048 XE computing nodes to achieve
its best performance 510 s. Exclusive Scheduling can really
achieve better performance than the corresponding Default

Scheduling for both SPM (1.36x speedup) and MPM (1.39x
speedup) algorithm by avoiding resource contention.

Figure 8(b) shows that CPU-SPM-Ex and CPU-MPM-
Ex can achieve about 7x and 11x speedup, respectively. The
best performance of CPU-MPM-Ex with 512 MPI processes
is very close to the best performance of GPU-SPM with 256
MPI processes (256 XK computing nodes). It shows that,
with enough CPU computing resources, our MPM algorithm
can achieve about the same performance improvement as
the GPU acceleration version with exiting SPM algorithm.
Considering the major problem for large scale applications is
that they cannot take advantage of more computing resources
to improve their performance, MPM + Exclusive Scheduling
is a feasible way to improve the simulation performance.

GPU-Shared Scheduling. When only limited GPU resources
are available, we can employ GPU-Shared Scheduling to
improve the performance of GPU jobs. Figure 9(a) shows the
execution time of GPU-Shared Scheduling with the existing
SPM algorithm (marked as GPU-SMP-S8) and the MPM
algorithm (marked as GPU-MPM-S8) when one GPU (one
XK computing node) is shared by 8 MPI processes here.
The results show that when GPU-Shared Scheduling works
together with the existing SPM algorithm, the performance
will be even worse than the CPU codes with Default Schedul-
ing because of its low computation-to-computation ratio.
However, when GPU-Shared Scheduling works together with
our MPM algorithm, GPU-MPM-S8 can execute 2048 MPI
processes on 256 XK computing nodes (256 GPUs) using
476 s. Compared with 717s of GPU-MPM’s performance
with 256 MPI processes (they have the same number of XK
computing nodes but different number of MPI processes),
about 717/476 = 1.5x performance improvement can be
achieved.

10

Scientific Programming

Normalized speedup

e
- O -
______ @ " ; ; ;
32 64 128 256 512 1024
Num of MPI processes
-o- CPU-SPM
-6- GPU-SPM

—&- GPU-MPM
(b) Normalized speedup

FIGURE 7: The strong scaling results of MPM algorithm and SPM algorithm in the GPU implementations.

8192
4096 +
2048 +
= i
L
g 1024
H
512 +
256 +
128 s s s s
32 64 128 256 512 1024
Num of MPI processes
-o- CPU-SPM
-©- GPU-SPM
—&- GPU-MPM
(a) Absolute execution time
16384
8192 +
4096 +
L L
E 2048
H

1024 +

512 +

256 L L L L
128 256 512 1024
Num of MPI processes

32 64 2048

-©- CPU-SPM
—&- CPU-MPM

-©- CPU-SPM-Ex
—8— CPU-MPM-Ex

(a) Absolute execution time

12

Normalized speedup

128 256 512 1024

32 64 2048
Num of processes
-6- CPU-SPM -©- CPU-SPM-Ex

—= CPU-MPM —8- CPU-MPM-Ex

(b) Normalized speedup

FIGURE 8: The strong scaling results of MPM algorithm and SPM algorithm with Exclusive Scheduling.

Figure 9(b) shows that the GPU-MPM-S8 version can
achieve about 12x speedup with 2048 MPI processes (256 XK
computing nodes or 256 GPUs). This is better than the GPU-
MPM version’s 8x speedup with 256 MPI processes on 256
XK computing nodes. The results show that when the number
of available GPUs is limited, our MPM algorithm can work
together with GPU-Shared Scheduling to fully explore the
capability of powerful GPU to improve the performance BBH
simulations.

4.5. Weak Scaling of Our MPM Algorithm. To evaluate the
weak scalability of our method, we start from mesh size 320
x 320 x 160 and use 32 MPI processes to solve the problem.
When we double the number of MPI processes, we also
double the mesh size. Only two mesh levels are employed to
reduce the total experimental time. The total simulation time
is 5 big physical time steps.

Figure 10(a) shows when the number of MPI processes is
not large, the weak scaling results of SPM are good. But SPM

Scientific Programming

8192

1

Normalized speedup

128 256 512 1024

Num of MPI processes

2048

-e- CPU-SPM
-©- GPU-SPM-S8
—— GPU-MPM-S8

(b) Normalized speedup

FIGURE 9: The strong scaling results of MPM algorithm and SPM algorithm with GPU-Shared Scheduling.

4096 +
2048
o
£
T 1024 |
512
256 1 1 1 L 1
32 64 128 256 512 1024 2048
Num of MPI processes
-o- CPU-SPM
-©- GPU-SPM-S8
—=— GPU-MPM-S8
(a) Absolute execution time
4
B o
—— e ————— o -
4504 -==---°-"--°-- o-TTTTY .
g
E
5 300 |
g
5
3
%
[24]
150 _4
-l
b———== O===========0=====F " _ __ ________
0 1 1 1 1 1
32 64 128 256 512 1024 2048
Num of MPI processes
-o- CPU-SPM -6- GPU-SPM
-~ Ideal scaling - -~ Ideal scaling
(a) SPM

450 +

300 ¢

Executing time (s)

128 256 512 1024

Num of MPI processes

0 .
32 64

2048

-e- CPU-MPM
-~ Ideal scaling

-6- GPU-MPM
- -~ Ideal scaling

(b) MPM

FIGURE 10: The weak scaling results of MPM algorithm and SPM algorithm.

cannot achieve good weak scaling result when more MPI
processes are used. Figure 10(b) shows that the execution time
of CPU-MPM has very little increase when the number of
MPI processes increases from 32 to 2048. For the GPU-MPM
curve, it is even flat and very close to the ideal weak scaling
line. The good strong scaling result of our MPM is shown
in Sections 4.4.1 and 4.4.2. This section shows that MPM
especially the GPU-MPM version can achieve almost ideal
weak scaling results. So our GPU-MPM can not only reduce
significantly the execution time but also solve very large

BBH simulation problem with more computing resources
efficiently.

5. Related Work

5.1. BBH Simulation and the Related Codes. The first direct
detection of gravitational wave [5] shows that the BBH
simulation is essential for gravitational wave data analysis
and the parameter estimation of the gravitational wave
source. The matched filtering technique requires the accurate

12

gravitational waveforms, which can only be generated by
BBH simulation to find the weak gravitional wave signal.
The parameter estimation based on BBH simulation can tell
us detailed information about the detected gravational wave.
However, BBH simulation is very computationally intensive.
Large mass ratio BBH simulation which is necessary for
future space-based detectors is even challenging because the
computational cost is about propotional to the fourth power
of the mass ratio. Furthermore, delevoping a practical BBH
simulation application is also a very challenging work because
of its complexity.

Till now, there are only about 10 independent numerical
relativity codes for binary black hole simulations [17] in the
world. CCATIE, Einsetein Toolkit, LazEv, Lean, MayaKranc,
and UIUC are based on Cactus platform. AMSS-NCKU,
BAM, Hahndol, PU, SACRA, SpEC, and GRChombo [18] are
based on different independent package. These codes employ
different methods to handle two key problems, the numer-
ical accuracy and computing efficiency. Since the computer
hardware increases much faster, how to take advantage of
the large scale compuer resources to significantly improve
the performance of BBH simulation has become a critical
problem for all the BBH simulation applications. The early
work of Cao et al. 2008 [12] reinvestigation shows that AMSS-
NCKU is in the state of art, so we select it as the baseline of
our method.

5.2. Mesh Refinement Methods. Dubey et al. [19] give a
detailed comparison on six publicly available, active, and
existing at least half a decade adaptive mesh refinement
(AMR) packages, BoxLib, Cactus, Chombo, Enzo, FLASH,
and Uintah. They can be very different in the refine factor,
time step ratio, language, and so forth because of the diverse
requirements in specific domain areas and general function-
ality. Subcycling is often used to reduce the total amount
of calculation when the grid points of coarse mesh level is
not large. For structured AMR with subcycling, executing
the submeshes of the same mesh level in parallel is a very
genral and widely adopted idea to improve the performance,
such as the method provided by Diachin et al. [20]. However,
the SPM liked parallel method cannot scale to large scale
computing resources because the communication among the
submeshes will be too costly when the size of submesh is
too small. Nonsubcycling will lead to an easy way to execute
all the different mesh levels in parallel, such as PARAMESH
[14]. However, this parallel method is too expensive if the
number of grid points in finer mesh level is large. The two
parallel methods have been developed independently and we
have not seen the work to combine them together because
they are used in very different scenarios. In this paper, we
propose our MPM, which can explore the parallelism among
the different mesh levels and the submeshes of one mesh level
in BBH simulation. The advantage of the proposed MPM
lies in that it can take advantage of the large scale powerful
supercomputers to improve its performance.

5.3. GPU Optimization Methods. In general relativity studies,
GPU has been used in solving the Teukolsky equation [21]
and post-Newtonian evolution [22]. For numerically solving

Scientific Programming

3D Einstein’s equations, some groups are trying to apply GPU
to numerical relativity code [23]. Zink [24] implements a
general relativistic evolution CUDA code on GPU and more
than 20x speedup can be achieved. However, it can only run
on one GPU with single precision. So it can not handle large
scale problem and single precision is often unacceptable for
many applications. There are also ongoing efforts from Cactus
group. There are many cases to employ GPU to improve the
performance of different applications [25-29]. Even though,
for large applications, porting their CPU codes to GPU is an
error-prone task, at the same time it is hard and tedious. So
some compilers, such as [30, 31], are developed to transform
CPU codes into GPU CUDA codes automatically. Lutz et
al. work [32] can transform stencil computation onto multi-
GPU automatically. Yang et al. [33] optimize the memory
access of existing CUDA code. Considering thousands of
Fortran codes will be rewritten in CUDA, we borrow those
ideas and develop some compiler-like tool to make some
regular code porting from CPU to GPU efficiently and
automatically. This can really reduce the total work and avoid
errors.

Optimization methods are very important for practical
applications to achieve significant performance improve-
ment on GPUs. There are excellent general suggestions
and principals on GPU code optimization. From the view
of hardware, NVIDIAs suggestions [34] are improving the
hardware utilization and the throughput of both memory
and instruction. For different applications, the performance
bottleneck maybe different. Ryoo et al. work has great impact
on GPU optimization [35] and they give three basic principles
based on their work on optimizing different applications on
GPU: improving the percentage of floating point instructions,
reducing/overlapping the global memory access latency, and
releasing the pressure of global memory bandwidth. Study
on GPU speedup [36] indicates that the magic number of
GPU speedup often has no meaning if the CPU codes are
not optimized or parallelized. Only the optimized results can
show the real difference between CPU and GPU codes. This
is why we compare the best performance of CPU and GPU
results.

6. Conclusion and Future Work

How to take advantage of the latest supercomputer to signif-
icantly reduce the execution time of large scale applications
such as BBH simulations is a real challenging problem. In
this paper, we propose a novel scalable parallel method
(MPM) which can explore both the inter- and intramesh
parallelism to gain more parallelism. So our MPM can take
advantage of more computer resources efficiently to improve
the performance of BBH simulations. The proposed MPM
can improve the performance of both CPU and GPU BBH
simulation codes. At the same time, it can work together
with two practical scenarios to improve the real application’s
performance.

Our experimental results show that the existing SPM can
only achieve 5x speedup for CPU codes and 12x speedup for
GPU codes. But our MPM can achieve 8x speedup for CPU
codes and 28x speedup for GPU codes. This results show

Scientific Programming

that it is necessary for us to take advantage of both hardware
resources and the well designed algorithm to achieve better
performance.

We are working together with the Cactus group and
trying to integrate our method into their package to the
whole community. Currently, our parallel mesh refinement
method supports the maximum parallelism among all the
meshes, but some computing resources will be idle during
some simulation stages. In the next step, we will improve
our method which can support the average parallelism of
the meshes to improve the resource utilization. Furthermore,
with smaller computing resources providing the same average
parallelism, the communication overhead can obviously be
reduced.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This research is supported in part by National Natural Science
Foundation of China (nos. 61440057, 61272087, 61363019, and
61073008), Beijing Natural Science Foundation (nos. 4082016
and 4122039), the Sci-Tech Interdisciplinary Innovation and
Cooperation Team Program of the Chinese Academy of
Sciences, the Specialized Research Fund for State Key Lab-
oratories, and NSF Awards ACI-1265434 and ACI-1339745.
Parts of experiments are conducted on HPC System Mole-
8.5 constructed by Institute of Process Engineering, Chinese
Academy of Sciences.

References

(1] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon, Top500
supercomputing sites, 2015.

[2] J. D. Owens, D. Luebke, N. Govindaraju et al., “A survey of

general-purpose computation on graphics hardware,” Computer
Graphics Forum, vol. 26, no. 1, pp. 80-113, 2007.

[3] J. Nickolls and W. J. Dally, “The GPU computing era,” IEEE
Micro, vol. 30, no. 2, pp. 56-69, 2010.

[4] R. Cowen, “Telescope captures view of gravitational waves,
Nature, vol. 507, no. 7492, pp. 281-283, 2014.

[5] B. Abbott, R. Abbott, T. Abbott et al., “Observation of gravita-
tional waves from a binary black hole merger,” Physical Review
Letters, vol. 116, no. 6, Article ID 061102, 2016.

[6] D. Blair, L. Ju, C. Zhao et al., “Gravitational wave astronomy:
the current status,” Science China: Physics, Mechanics and
Astronomy, vol. 58, no. 12, Article ID 120402, pp. 1-41, 2015.

[7] P. Amaro-Seoane, S. Aoudia, S. Babak et al., “Low-frequency
gravitational-wave science with eLISA/NGO,” Classical and
Quantum Gravity, vol. 29, no. 12, Article ID 124016, 2012.

[8] M.]J. Berger and J. Oliger, “Adaptive mesh refinement for hyper-
bolic partial differential equations;” Journal of Computational
Physics, vol. 53, no. 3, pp. 484-512, 1984.

[9] A.Einstein, “The foundation of the general theory of relativity;’
Annalen der Physik, vol. 354, no. 7, pp. 769-922, 1916.

[10] M. Campanelli, C. O. Lousto, P. Marronetti, and Y. Zlochower,
“Accurate evolutions of orbiting black-hole binaries without

13

excision,” Physical Review Letters, vol. 96, no. 11, Article ID
111101, 2006.

[11] T. W. Baumgarte and S. L. Shapiro, Numerical Relativity: Solving
Einsteins Equations on the Computer, Cambridge University
Press, 2010.

[12] Z. Cao, H.-]. Yo, and J.-P. Yu, “Reinvestigation of moving
punctured black holes with a new code,” Physical Review D—
Particles, Fields, Gravitation and Cosmology, vol. 78, no. 12,
Article ID 124011, 2008.

D. Hilditch, S. Bernuzzi, M. Thierfelder, Z. Cao, W. Tichy, and
B. Briigmann, “Compact binary evolutions with the z4c for-
mulation,” Physical Review D— Particles, Fields, Gravitation and
Cosmology, vol. 88, no. 8, Article ID 084057, 2013.

(14] P. MacNeice, K. M. Olson, C. Mobarry, R. de Fainchtein, and
C. Packer, “PARAMESH: a parallel adaptive mesh refinement
community toolkit,;” Computer Physics Communications, vol.
126, no. 3, pp. 330-354, 2000.

[15] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, vol. 1, MIT
Press, 1999.

[16] P. Galaviz, B. Briigmann, and Z. Cao, “Numerical evolution of
multiple black holes with accurate initial data,” Physical Review
D—Particles, Fields, Gravitation and Cosmology, vol. 82, no. 2,
Article ID 024005, 2010.

[17] B. Aylott, J. G. Baker, W. D. Boggs et al., “Testing gravitational-
wave searches with numerical relativity waveforms: results from
the first numerical injection analysis (ninja) project,” Classical
and Quantum Gravity, vol. 26, no. 16, Article ID 165008, 2009.

[18] K. Clough, P. Figueras, H. Finkel, M. Kunesch, E. A. Lim,
and S. Tunyasuvunakool, “Grchombo: numerical relativity with
adaptive mesh refinement,” Classical and Quantum Gravity, vol.
32, no. 24, Article ID 245011, 2015.

(19] A. Dubey, A. Almgren, J. Bell et al., “A survey of high level
frameworks in block-structured adaptive mesh refinement
packages,” Journal of Parallel and Distributed Computing, vol.
74, no. 12, pp. 3217-3227, 2014.

[20] L. E Diachin, R. Hornung, P. Plassmann, and A. Wissink,
Parallel Adaptive Mesh Refinement, vol. 143 of Parallel Processing
for Scientific Computing, 2006.

[21] G.Khanna and J. McKennon, “Numerical modeling of gravita-
tional wave sources accelerated by OpenCL;” Computer Physics
Communications, vol. 181, no. 9, pp- 1605-1611, 2010.

[22] E Herrmann, J. Silberholz, M. Bellone, G. Guerberoff, and
M. Tiglio, “Integrating post-Newtonian equations on graphics
processing units,” Classical and Quantum Gravity, vol. 27, no. 3,
Article ID 032001, 2010.

[23] B. Briigmann, “A pseudospectral matrix method for time-
dependent tensor fields on a spherical shell,” Journal of Com-
putational Physics, vol. 235, pp. 216-240, 2013.

[24] B. Zink, “A general relativistic evolution code on cuda archi-
tectures,” in Proceedings of the LCI Conference on High-Per-
formance Clustered Computing, Champaign, I, USA, 2008.

[25] Y. Liu, Z. Du, S. K. Chung, S. Hooper, D. Blair, and L. Wen,
“Gpu-accelerated low-latency real-time searches for gravita-
tional waves from compact binary coalescence,” Classical and
Quantum Gravity, vol. 29, no. 23, Article ID 235018, 2012.

[26] J. Michalakes and M. Vachharajani, “Gpu acceleration of
numerical weather prediction,” in Proceedings of the IEEE Inter-
national Symposium on Parallel and Distributed Processing
(IPDPS °08), pp. 1-7, Miami, Fla, USA, April 2008.

(13

14

(27]

(31]

(32

[36]

R. S. Oliveira, B. M. Rocha, D. Burgarelli, W. Meira Jr., and R.
W. dos Santos, “Simulations of cardiac electrophysiology com-
bining gpu and adaptive mesh refinement algorithms,” in Bioin-
formatics and Biomedical Engineering, pp. 322-334, Springer,
2016.

H. Y. Schive, Y. C. Tsai, and T. Chiueh, “Gamer: a graphic
processing unit accelerated adaptive-mesh-refinement code for
astrophysics,” The Astrophysical Journal Supplement Series, vol.
186, no. 2, 2010.

M. Schwarz and M. Stamminger, “Fast gpu-based adaptive
tessellation with cuda,” in Computer Graphics Forum, vol. 28,
pp. 365-374, Wiley Online Library, 2009.

S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio, C. Tenl-
lado, and E Catthoor, “Polyhedral parallel code generation for
CUDA,” ACM Transactions on Architecture and Code Optimiza-
tion (TACO), vol. 9, no. 4, article 54, 2013.

M. Khan, P. Basu, G. Rudy, M. Hall, C. Chen, and J. Chame,
“A script-based autotuning compiler system to generate high-
performance CUDA code,” Transactions on Architecture and
Code Optimization, vol. 9, no. 4, article 31, 2013.

T. Lutz, C. Fensch, and M. Cole, “PARTANS: an autotuning
framework for stencil computation on multi-GPU systems,”
Transactions on Architecture and Code Optimization, vol. 9, no.
4, article 59, 2013.

Y. Yang, P. Xiang, J. Kong, M. Mantor, and H. Zhou, “A Unified
optimizing compiler framework for different GPGPU architec-
tures,” Transactions on Architecture and Code Optimization, vol.
9, no. 2, article 9, 2012.

NVIDIA, Cuda ¢ programming guide, http://docs.nvidia.com/
cuda/cuda-c-programming-guide/.

S. Ryoo, C. 1. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W.-M. W. Hwu, “Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA,”
in Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP *08), pp.
73-82, ACM, Salt Lake City, Utah, USA, February 2008.

V. W. Lee, C. Kim, J. Chhugani et al., “Debunking the 100X GPU
vs. CPU Myth: An evaluation of throughput computing on CPU
and GPU; in Proceedings of the 37th International Symposium
on Computer Architecture (ISCA 2010), pp. 451-460, Saint-Malo,
France, June 2010.

Scientific Programming

= _'A'. ' N - -
Advances in b ,“ . e industal Engineering
iR, ARINE - -
L& s S . Applied
. - o Computational

Intelligence and Soft
Ep/mputing—'

The Scientific ISR —
World Journal Sensor Networks

Advances in

Fuzzy

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications P eEsl

Artificial
Intelligence

Advances in
iomedical Imaging. M Artificial
‘ol Neural Systems

s

International Journal of
Computer Games 5 in
Technology oy re Engineering

Reconfigurable
Computing

Computational o
Journal of ¢ Hu;jja[)TCOrjj|3L|tey‘ \ntengence and 2 Electrical and Computer
Robotics Interaction Neuroscience Engineering

SN

