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Abstract—Contemporary microprocessors use relaxed mem-
ory consistency models to allow for aggressive optimizations
in hardware. This enhancement in performance comes at the
cost of design complexity and verification effort. In particular,
verifying an execution of a program against its system’s
memory consistency model is an NP-complete problem. Several
graph-based approximations to this problem based on carefully
constructed randomized test programs have been proposed in
the literature; however, such approaches are sequential and
execute slowly on large graphs of interest. Unfortunately, the
ability to execute larger tests is tremendously important, since
such tests enable one to expose bugs more quickly. Successfully
executing more tests per unit time is also desirable, since it
allows for one to check for a greater variety of errors in the
memory subsystem by utilizing a more diverse set of tests.

This paper improves upon existing work by introducing
an algorithm that not only reduces the time complexity of
the verification process, but also facilitates the development of
parallel algorithms for solving these problems. We first show
performance improvements from a sequential approach and
gain further performance from parallel implementations in
OpenMP and CUDA. For large tests of interest, our GPU
implementation achieves an average application speedup of
26.36x over existing techniques in use at NVIDIA.

Keywords-Memory Consistency Verification; Relaxed Mem-
ory Models; Graph Algorithms; Parallel Algorithms

I. INTRODUCTION

Modern architectures use memory reordering techniques
to obtain better performance and energy efficiency. For
instance, high latencies to memory can be hidden by overlap-
ping memory accesses with computation. Allowing for the
reordering of memory instructions comes at the cost of de-
sign complexity, verification effort, and programmer burden
[3]. On today’s shared memory multiprocessor systems these
problems are exacerbated by an increasing number of cores.
Although techniques such as speculative execution, shared
caches, coherence mechanisms, and instruction pipelining
all have well-known benefits, an improper implementation
of these techniques can lead to subtle memory errors such as
data corruption or illegal instruction ordering [10]. Further-
more, the use of these techniques are visible to programmers,
especially those concerned with the low-level performance-
sensitive details of the system [1].
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Shared memory multiprocessor systems have a memory
consistency model that is essentially a contract between
hardware and software regarding the semantics of memory
operations [21]. The simplest memory consistency model is
the Sequential Consistency (SC) model. Under this model,
all processors observe the same ordering of operations ser-
viced by memory. Processors execute instructions precisely
in the order specified by the program, or program order. A
read from a particular location in memory is guaranteed to
return the value of the last write to that location under the SC
model. Although this model is intuitive, it restricts the use
of performance optimizations commonly used by hardware
and compiler designers [1].

In contrast, the ARM processors considered in this
work have a significantly more relaxed memory model [5].
Weakly-ordered ARM processors allow speculative execu-
tion and reordering of a thread’s reads and writes. Ad-
ditionally, writes are not guaranteed to be simultaneously
visible to other cores. A consequence of these relaxations
is that, the order in which instructions access memory (e.g.,
the memory order) on such processors is distinct from the
program order. In comparison to the SC model, many more
outcomes satisfying relaxed memory models exist, which
makes direct verification a challenging process.

The verification process affects a processor’s time to
market: verification plays an important role in discovering
defects early during the design process when remediation
is less costly. As such, the problem of verifying that a
multiprocessor complies with its memory consistency model
has seen significant attention in the literature [10], [4],
[15], [2], [16]. Formal approaches attempt to exhaustively
check a design using proof methodologies, but cannot scale
to the size of current microprocessor designs that require
millions of lines of RTL code [14], [6]. Furthermore, formal
approaches tend to employ a high-level abstraction of a
microarchitecture design, neglecting the details of its im-
plementation. Unfortunately, the implementation itself is a
significant source of bugs in large designs [6].

The verification of an execution against its system’s
memory consistency model is an NP-complete problem [4],
[21]. Contemporary solutions thus trade time for accuracy,
providing polynomial time approaches that are incomplete:
they may miss violations of the memory model, but viola-
tions that are found are legitimate. We present our work in
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the context of TSOtool, a software package that employs
a graph-based approach for verifying the Total Store Order
(TSO) model [10]. TSOtool easily extends to other relaxed
memory models, can evaluate specific processor implemen-
tations as well as generic protocols, and has been used to
find subtle bugs in commercial products [10], [15].

Despite the usage of polynomial time verification al-
gorithms, consistency verification is typically limited by
both strong and weak scalability. Since these techniques
are incomplete, test coverage is dictated by the number of
program traces that can be evaluated. Practical scalability
with respect to trace size is also important: it is desirable
for instruction traces to comprise very long periods of
race conditions and asynchronous behavior among parallel
processors [16]. The bugs that existing tools are designed
to find are deep corner cases that slip through pre-silicon
verification. Longer tests put caches and supporting logic in
more interesting states that are likely to trigger such bugs, if
they exist. A high-performance approach additionally allows
verification engineers to tailor their tests to specific issues
much more rapidly given results from prior tests. Hence it
is desirable to execute larger tests as well as to execute a
single test as fast as possible.

This paper addresses these challenges and presents the
following contributions and results:

« We improve existing iterative, graph-based approaches
for memory consistency verification by diminishing
how frequently data structures need to be updated.
This refinement reduces the work complexity of the
algorithm from O(n?p?d,nq.) to O(n?p) per iteration
for a program execution graph with n vertices, p virtual
processors, and maximum vertex outdegree d,,q,. We
prove that this reduction of work converges to the same
result that would be computed by prior techniques.

o In addition to sequential speedups over existing ap-
proaches, our approach is more amenable to paralleliza-
tion because it performs batched graph updates with
less frequency. We implement parallel versions of our
sequential approach in both OpenMP and CUDA and
for sufficiently large test instances of interest, our GPU
approach can achieve over an order of magnitude speed
increase over our sequential approach.

o Although our optimizations are focused on a subset
of the overall consistency verification problem, for
large test cases our GPU approach achieves an average
application speedup of 26.36x over a modified version
of TSOtool used to verify ARM-based processors that
we have been experimenting with at NVIDIA.

II. BACKGROUND

The goal of our application is to verify the correctness
of the memory subsystem as it is being designed, which
implies that we need to ensure that the processor’s memory
consistency model is not violated. Based on dependencies

52

between instructions of a program that are required to be
satisfied by the rules of the architecture (such as read
after write hazards), we can construct a partial ordering of
memory instructions, which we model as a directed graph.
Given the outcome of a specific execution of our program,
we can infer additional edges that are required to be satisfied
by the rules of the consistency model (such as ensuring that a
load reads the most recently written data to memory). These
inferred edges densify the graph representation, creating
a more complete (but not necessarily total) ordering of
memory instructions. If a cycle manifests from this process
then we have a contradiction in the memory order and thus
the memory model was violated or is invalid.

The remainder of this section provides more detail re-
garding the memory consistency verification process as
implemented by TSOtool [10].

A. Constraint Graph

Let a graph G = (V, E) consist of a set V of n = |V|
vertices and a set £ of m = |E| edges. A directed edge
(u,v) € E originates from vertex w and terminates at
vertex v. A cycle is a sequence ug, U1, - - . , U, Ug of vertices
starting and ending at the same vertex (ug) such that there
exists an edge in G between each consecutive pair of vertices
in the sequence. The diameter of a graph is the length of
the longest shortest path between any pair of vertices.

Our method of consistency verification is concerned with
constraint graphs [3], [13], partially-ordered directed graphs
that model the memory semantics of a given program
execution. The vertices of the graph represent dynamic
processor instructions and the edges represent dependence
relationships. Instructions have several key attributes:

« Instruction type (Load, Store, or Barrier)

o Address (Memory location accessed by the instruction)

o Data (Value read by loads or written by stores)

e Processor (A numerical identifier of the core that issued
this instruction)

Of course, traces of programs can have other types of in-
structions, such as floating-point arithmetic (FADD, FSUB,
FMUL, FDIV, etc.); however, these instructions do not
access memory and can safely be ignored for the consistency
verification process.

Edges of the graph represent memory ordering between
dynamic instructions. That is, an edge from instruction w to
instruction v signifies that instruction u accessed memory
before instruction v. Note that memory order is distinct from
instruction execution order because in-flight reordering is
allowed by the ARM architecture. Indeed, an edge from w
to v in the same processor does not imply that u preceded
v in the instruction stream.

B. TSOtool Workflow

Figure 1 illustrates the consistency verification process
employed by the work from Hangal et al. on TSOtool. The
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Figure 1. Design flow for memory consistency verification

process begins with a randomly generated test program. Test
programs can be generated using parameters such as the
total number of instructions per core, the number of unique
store locations, the ratio of loads to stores, and the types of
memory instructions to target various subsets of the memory
system. The generated test program is carefully constructed
such that each store in the graph writes a unique value to
memory [21]. The uniqueness of store values provides a
trivial mapping of a load to the store that wrote its data,
which simplifies the algorithms for analyzing the ensuing
graph. Since the data written and read from memory is
independent from the behavior of the protocol, using unique
store data does not limit the diversity of test cases that can
be generated.

Once the test program is generated, it is executed (on
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a simulator, RTL, or silicon) to obtain the actual data
values observed by each load instruction. This information,
combined with the rules of the underlying architectural and
consistency models allows one to create the initial directed
graph for analysis. This graph comprises two classes of
edges:

o Static edges. These relationships are enforced by the
architecture in the presence of data hazards. For in-
stance, the ARM architecture specifies that operations
issued prior to a memory barrier must execute before
operations after the memory barrier. The architecture
also prevents reordering of loads and stores in the
presence of data hazards.

o Observed edges. These relationships are enforced by
the data read by load instructions during a particular
execution of the test program. For example, if a load
L on processor pg reads the (globally unique) value =
from address A and we know that store .S on processor
p1 wrote the value of x to A, we can add a directed
edge from S to L in the graph, because the consistency
model requires that loads read data from the store that
most recently wrote to memory.

Once the initial graph is constructed, the existing relation-
ships (edges) in the graph can be used to infer additional
relationships according to the consistency model. Any such
new edges may lead to further relationship inferences, and
edges are inferred iteratively until the graph has reached a
fixed point. At this point, the graph is checked for cycles
in linear time using a technique known as trimming [18].
If the graph contains one or more cycles then we are
certain that the consistency model was violated. If the graph
has no cycles the execution of the program appears to
be consistent. Consistency is not guaranteed because these
static and observed relationships are not complete: there are
further (mutually exclusive) sets of plausible relationships
that could be established in accordance with the memory
model to provide a total ordering of memory instructions and
thus a perfectly accurate verification. However, determining
whether there exist any such plausible sets that do not
induce dependence cycles is NP-complete [16]. For more
information regarding static, observed, and inferred edges,
we refer the reader to [14].

This iterative process corresponds to the gray boxes in
the center of Figure 1, which represent a substantial portion
of the overall consistency verification process and thus our
focus for optimization and parallelization.

C. Inferred Edge Insertions

There are two types of inferred edge insertions made by
TSOtool, referred to as rule 6 and 7 insertions' (using the
TSOtool notation [10] and shown in Figures 2 and 3, respec-
tively). Notationally, ST[A] — 1 means that this instruction

Rules 1-3 cover static edges and rules 4-5 cover observed edges.
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Figure 2. Example of a Rule 6 inferred edge insertion
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Figure 3. Example of Rule 7 inferred edge insertions

wrote the value 1 to location A. Similarly, LD[A] + 2
means that this instruction read the value 2 from location
A. The edges drawn with dotted lines in the Figures denote
reachability, meaning that the head of the edge can reach the
tail of the edge either directly or transitively. In contrast, the
edges drawn with solid lines denote the stronger notion of
direct neighbors in the graph.

An example of a Rule 6 insertion is shown in Figure 2.
We can see from Figure 2a that the store writing the value
1 can reach a load to the same address that reads the value
2. Since the load reads a different value than the store that
can reach it and since store values are unique, there must
be another store that writes 2 to location A before the load
occurs. Furthermore, this store must have accessed memory
after the store that wrote 1 because otherwise the load would
have read the value 1. Therefore, we can insert an edge from
the store that wrote 1 to the store that wrote 2, as shown in
Figure 2b.

Figure 3 shows an example of Rule 7 edge insertions. In
this case, a series of loads read the value 1, as shown in
Figure 3a. Since store values are unique, these loads must
all be reading a value written by the same store. If that
store can reach another store in the graph that accesses the
same location in memory (and, as it must by design, writes
different data), we know that the series of loads must all
precede the later store since otherwise the loads would have
read the value from that store instead (i.e., the value 2).
Hence, we can insert edges from each of these loads to the
later store, as shown in Figure 3b.
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III. SEQUENTIAL METHODOLOGY

This section describes several approaches for inferring
edges from a constraint graph to solve the memory con-
sistency verification problem. We give an overview of the
algorithm used by NVIDIA’s application of TSOtool to
verify the memory consistency of ARM processors (which
have a weaker memory model than TSO). Next, we explain
several key performance optimizations to TSOtool [15] that
we leverage for our parallel implementation.

A. Initial Algorithm

Algorithm 1: Simple Sequential Approach for Inferring
Edges

1 for {S €V | S.type = ST} do

for (X eV |S <X} do

if S.location = X.location then

if X.type = LD A S.data # X.data then
//Add Rule 6 edge from S to the parent
store of X

6 else if X.type = ST then

7 L for {L € V| S.data = L.data} do

8

L //Add Rule 7 edge from L to X

Algorithm 1 shows a straightforward approach for an iter-
ation of inferring edges. This process is repeated iteratively
until a fixed-point is reached. The outermost loop iterates
through each store vertex S in the graph. The inner loop on
Line 2 iterates through every reachable vertex from S. Here
we use the notation S < X to represent that instruction
S comes before instruction X in memory order, which is
equivalent to saying that X is reachable from S in the graph.

The remaining lines in Algorithm 1 logically enforce the
inferred edge rules depicted by Figures 2 and 3. The loop
in Line 7 essentially represents the set of loads L that read
data from S. The complexity of finding these vertices can
be reduced since we can explicitly map each store to its
respective child loads once the initial graph is constructed,
as this information is constant throughout the execution of
the program. Overall, the time complexity of one iteration of
Algorithm 1 is O(n?), assuming that edges can be inserted
into the graph in O(1) time.

L7 I " N

B. Virtual Processors and Reverse Vector Time Clocks

Manovit and Hangal develop a more efficient algorithm
that leverages transitivity via the use of virtual processors
and Reverse Time Vector Clocks (RTVCs) [15]. The authors
discovered that the set of instructions from each physical
processor can be grouped into subsets of instructions that
belong to virtual processors (vprocs) where each virtual
processor is sequentially consistent (and thus have equivalent



Physical Processor 0

Virtual Processor 0 Virtual Processor 1

Virtual Processor 2

(b) Virtual

(a) Physical

Figure 4. Splitting of a physical processor in sequentially consistent virtual
processors

program order and memory order). Figure 4 shows an exam-
ple of how a physical processor can be split into sequentially
consistent virtual processors. This process depends on the
memory model being targeted; for the ARM processors
considered in this study, instructions on a physical processor
are grouped by their memory location and instruction type.
Since instructions that access different locations in memory
can be freely reordered by the hardware, they must be
assigned to different virtual processors. Although the instruc-
tions belonging to vprocs 1 and 2 in Figure 4 access the same
memory location A they must also belong to separate virtual
processors because the view in which these instructions are
executed from other physical processors can be out of order.

Algorithm 2: Optimized Sequential Approach for Infer-
ring Edges

1 for {S € V| Sitype = ST} do

2 for {X € S.rtvc[P], P € p} do
3 while X # vprocs|P].end do
4 if X.type = LD A S.data #
X.data A S.location = X.location then
5 //Add Rule 6 edge from S to the parent
store of X
6 update_RTV Cs()
7 break //Move on to next vrpoc
8 else if
X.type = ST A S.location = X.location
then
9 for {L € V | S.data = L.data} do
10 L //Add Rule 7 edge from L to X
1 update_RTV C's()
12 break //Move on to next vproc
13 else
14 | X « X.neat

A consequence of this grouping is that if a vertex S has
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an outgoing edge to an instruction X in virtual processor
p then S implicitly precedes all of the successors of X
that are also in p. Thus, a given instruction only needs to
inspect its outgoing edges to its earliest successors in each
virtual processor [15]. This bounds the number of reachable
vertices to be inspected by each store by p, the number
of virtual processors, rather than n, the total number of
vertices. The data structure that points from each vertex
to its earliest successors in each vproc is referred to as a
Reverse Time Vector Clock (RTVC) [15], named after the
popular approach for partially ordering events in distributed
computing [9], [12].

Algorithm 2 shows how the use of virtual processors
and reverse time vector clocks can significantly reduce
the complexity required to infer edges. The RTVC of an
instruction S is denoted as S.rtvc and the earliest successor
of S to vproc P is denoted as S.rtvc[P]. The algorithm
simply finds the earliest successors of each store to each
vproc for which edges can be inferred, given a test program
containing p vprocs. These techniques reduce the complexity
of inferring edges from O(n3) to O(n?p2dyaz), where
dmaz 18 the maximum degree of any vertex v € V. Since
p2dmae < n these changes have led to order of magnitude
improvements in execution time over the approach outlined
in Algorithm 1 [15].

Algorithm 3: Function for Updating RTVCs

1 topo + reverse(get_topological_sort(G))
2 for {U € topo} do

3 U.rtvc[i] < co,Vi € p

4 for {V € U.adjacency_list} do

5 W < U.rtve[V.uproc]

6

7

if W = oo then
L U.rtve[V.proc] < V
8 else if
V.program_order < W.program_order then
9 L U.rtve[Vproc] + V
10 //Now check transitive edges through V

11
12
13
14

for {P € p} do
if V.rtve[P] # oo then
if U.rtvc[P] = oo then
L U.rtvc[P] < V.rtvc[P]

else if V.rtvc[P].program_order <
U.rtvc[P].program_order then
| Urtve[P] + V.rtue[P)

15

16

The recomputation of RTVCs (update_RTV Cs()) in
Lines 6 and 11 of Algorithm 2 deserves separate attention.
Algorithm 3 shows the details of this function. Line 1 returns
the topological sort of the input graph G in reverse order.



This operation is easily completed in linear time [7]. The
reverse order of the topological sort is necessary to execute
the iterations of the loop on Line 2 in the proper order.
The loop on Line 4 looks at the direct neighbors of U. If
a given neighbor V' of U belongs to a vproc that has yet
to be seen from the perspective of U, then it is the earliest
successor (so far) from w to that vproc (Line 7). Otherwise,
if V belongs to a vproc that U already has an entry for,
the program ordering of that entry and V' can be compared
(Line 8) to determine which successor is earlier in memory
order (recall that instructions belonging to the same vproc
are ordered in memory as they are in the program). The
loop on Line 11 looks transitively through the RTVC of V'
to update the RTVC values of U.

IV. FACILITATING PARALLELISM

Despite the performance gains seen by the algorithm
presented in the previous section, large tests of interest still
take days to execute on server class machines. A natural
way to elicit further performance gains is to parallelize the
algorithm and run it on multi-core CPUs or GPU accelera-
tors. However, Algorithm 2 isn’t trivially parallelized. Every
time an edge is inserted, the RTVCs of the head of the edge
and its ancestors are updated. In general, updating RTVCs
requires O(npd,q.) time per edge insertion. There can be
up to O(n?) edge insertions in the worst case, although the
number of added edges is typically a small multiple of n.
Regardless, the time spent updating RTVCs is significant and
these updates are a barrier to parallelism since the iterations
of the inner loops of Algorithm 2 are dependent on the
RTVC values.

Algorithm 4: Parallel-friendly Approach for Inferring
Edges

1 for {S € V| Sitype = ST} do

2 for {X € S.rtvc[P], P € p} do

3 while X # vprocs[P].end do
4

if X.type = LD A S.data #
X.data A S.location = X.location then
5 //Add Rule 6 edge from S to the parent
store of X
6 else if
X.type = ST A S.location = X.location
then
7 for {L € V| S.data = L.data} do
8 L | //Add Rule 7 edge from L to X
9 else
10 L X + X.next

1 u;date_RTVC s()

[

To enable parallelism we propose a simple alteration to
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Algorithm 2: reduce the frequency of RTVC updates from
once per edge insertion to once per iteration of inferring
edges. Algorithm 4 shows this alteration. This change allows
for the iterations of the for loops on Lines 1 and 2 to be
safely executed independently in parallel at the potential cost
of some unnecessary work in the form of edge insertions that
provide no information with respect to the memory order of
instructions. Even though the graph changes as the algorithm
progresses, the work required by an iteration of Algorithm 4
only depends on the RTVC values and not the current state
of the graph. When the RTVC values are updated at the end
of an iteration of inferring edges, the edges found during
the iteration can be inserted into the graph in one batched
operation and then the new RTVC values can be derived
from the updated graph.

Lazily updating the RTVCs instead of greedily updating
them can result in situations where reachable vertices from
each store are checked when such a check isn’t strictly nec-
essary, as is done in Algorithm 1. However, our evaluation
demonstrates that updating RTVCs less frequently is well
worth the cost of the extra work.

To show that this strategy maintains the correctness of the
approaches outlined in the previous algorithms, it will suffice
to show that our method is both sound and “as complete.”
Let G; be the graph obtained after i iterations of Algorithm 1
and H; be the graph after ¢ iterations of Algorithm 4. Let [
be the total number of iterations, noting that this value may
be different for Algorithms 1 and 4. It follows that G and
Hj are the resultant graphs after these algorithms terminate.

Theorem 1. Soundness. All edges inserted by Algorithm 4
represent valid memory orderings of instructions.

Proof: To show that Theorem 1 is valid, we note
that even if RTVC values are “stale,” they always point
to a successor of S. Since Algorithm 1 iterates through
all successors of S for inferring edges, any edges that are
inserted regardless of whether or not RTVCs are consistent
with the current state of the graph must be valid. Any RTVCs
that are stale will be updated for the next iteration such that
the earliest successors from each store to each vproc will
always be checked before the algorithm terminates. Since
the Algorithms 1 and 2 have been shown to only insert valid
edges [15], [10] and since our algorithm only inserts edges
that either of these algorithms would insert, our algorithm
must also only insert valid edges. [ ]

Theorem 2. Completeness parity. If G contains a cycle
then Hy must also contain a cycle.

Proof: To satisfy Theorem 2, we assume for the purpose
of contradiction that H; has no cycle when G has a cycle.
This result implies that we have neglected to insert some
edge e that created the cycle in G;. However, Algorithm 4
ensures that the earliest successor from each store vertex
to each vproc is checked for the application of rule 6 and



7 edges. Since it was shown that such checks provide the
same information as checking all successors from each store
[15], e must have been found, else it does not exist. Since
e was not found, it must not exist, contradicting our initial
assumption. ]

In addition to facilitating parallelism, Algorithm 4 per-
forms less work to update RTVCs. If k edges are inserted
into the graph, Algorithm 2 requires O(k) RTVC updates.
In contrast, Algorithm 4 only requires O(:) RTVC updates
for ¢ iterations because the number of RTVC updates scales
with the number of iterations rather than the number of
edge insertions. Since k = O(n?) in the worst case (and
is O(n) in practice) whereas ¢ < 10 for all of the test
cases used for this study, Algorithm 4 requires significantly
less overhead for RTVC updates than Algorithm 2. Overall,
Algorithm 4 reduces the work complexity of inferring edges
from O(n?p%d,nez) to O(n?p) per iteration.

V. PARALLEL METHODOLOGY

The approach to verifying memory consistency described
in the previous section is not the first attempt to parallelize
this class of algorithms. Roy et al. present a parallel im-
plementation of TSOtool that targeted the Intel IA-32 and
Itanium architectures [22]. Their approach cannot utilize vir-
tual processors and the RTVC-based optimizations described
in [15] because of complications arising from using specific
memory types on the IA-32 and Itanium architectures.

Although these complications encouraged the design of a
more general approach, the algorithms from Roy ef al. have
a few significant weaknesses. Firstly, they choose to store the
graph as an adjacency matrix, requiring O(n?) space despite
the fact that constraint graphs are typically quite sparse. This
decision prohibited scalabity to graphs larger than 10,000
vertices in their experiments. Secondly, it is unclear if the
tests performed by Roy er al. are scalable to large thread
counts or portable to graphs with differing characteristics,
such as the number of accessed memory locations or the
ratio of loads to stores.

In the remainder of this section we discuss two parallel
implementations of Algorithm 4: one in OpenMP for multi-
core CPUs and the other in CUDA for GPU accelerators.

A. OpenMP

Considering that shared-memory systems using OpenMP
tend to have a limited number of threads, decomposing
problems such that each thread has a sufficient amount of
work is less challenging than on systems with thousands
of concurrent threads, such as NVIDIA’s GPUs or Intel’s
Xeon Phi coprocessors. Since we know in advance that the
number of threads is small, we provide each thread with
its own storage space for collecting newly inserted edges
to reduce communication overhead. Threads are assigned to
iterations of the for loop in Line 1 of Algorithm 4, which
can independently traverse the RTVCs from their assigned
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store vertex and add edges to their local lists. Once the entire
iteration is complete these thread-specific lists are trivially
reduced into one global list, which is used to update the
graph.

Algorithm 5: OpenMP Approach for Inferring Edges

1 added_edges < vector(num_threads())
2 for {S € V | Sitype = ST} do in parallel
3 for {X € S.rtvc[P], P € p} do

4 while X # vprocs[P].end do
5 if X.type = LD A S.data #
X.data A S.location = X.location then
6 | added_edges|get_id()].insert(S — X)
7 else if
X.type = ST A S.location = X.location
then

for {L € V| S.data = L.data} do
L added_edges|get_id()].insert(L —
else

X)
10
L X «+ X.next

11

12 foreach {Partition t € num_threads()} do
13 foreach {Edge e € added_edges[t]} do
14 L new_edges.insert(e)

[

5 u;odate_RT VCs()

Algorithm 5 shows the details of this approach. The
vector added_edges of length num_threads(), the number
of OpenMP threads, allows each thread to concurrently
find edges without communication or race conditions. The
for loop on Line 12 sequentially accumulates the results
collected this way into one data structure so that one large
update to the graph can be made instead of num_threads()
(smaller) updates. Although we had the option of utilizing
finer granularities of parallelism, using the coarsest level of
granularity maximizes independent work among threads and
minimizes the OpenMP overhead of creating and destroying
threads.

B. CUDA

Our initial approach to parallelizing Algorithm 4 using
CUDA involved a slightly more complicated thread decom-
position than our OpenMP approach. We initially assigned
thread blocks (groups of threads) to each store processed by
the outermost loop on Line 1 of Algorithm 4. The threads
within each block were assigned to inspect each vproc from
their respective store as seen on Line 2 of Algorithm 4. This
approach achieved limited processor utilization because the
number of vprocs is small relative to the number of threads
per block, which should be a multiple of the warp size



(currently 32 threads on NVIDIA hardware). Additionally,
the work done by each thread in this manner is fairly uneven.
At one end of the spectrum, a thread may find that its store
has a null RTVC value for the vproc that it is looking at
and thus, the thread has no work to complete. In contrast,
another thread may simultaneously find that the store does
have an RTVC entry to this vproc but the earliest successor
from the store to the vproc is much later than the initial
entry. In this latter case the thread must traverse through the
vproc and possibly insert edges from each load that reads
from the store to this successor.

It turns out that simply taking advantage of the large
amount of coarse-grained parallelism through the number
of stores (O(n)) is a better approach. This approach more
efficiently utilizes the processor because threads are con-
stantly kept busy by processing independent store vertices
rather than waiting for the critical thread in a given block
to finish traversing its vproc and adding edges. Using our
initial approach, if the number of vprocs modulo 32 (the
warp size) is not 0 then threads will have an unequal number
of vprocs to inspect. In the worst case, one thread has one
more vproc than all of the others, meaning that the remaining
threads in the block will all idle while the one thread with
additional work inspects its additional vproc. Using a coarser
approach eliminates this issue because each thread processes
all vprocs from a given store. A load imbalance may still
exist in the number of stores to be processed per thread;
however, the small number of Streaming Multiprocessors
(SMs) on the GPU implies that the same HW lanes will
sequentially process many stores, making this "off by one”
load imbalance insignificant.

Algorithm 6: CUDA Approach for Inferring Edges

for {S € V | S.type = ST} do in parallel

for {X € S.rtvc[P], P € p} do

while X # vprocs|[P).end do

if X.type = LD A S.data #

X.data A S.location = X.location then

5 t < atomicAdd(&edge_ptr,1)
new_edges|t].insert(S — X)

B OW N -

6 else if
X.type = ST A S.location = X.location
then

7 for {L € V| S.data = L.data} do

8 t + atomicAdd(&edge_ptr, 1)
new_edges|t].insert(L — X)

9 else

10 L X < X.next

1 update_ RTV C's()

-

Algorithm 6 shows how we alter our parallel implemen-
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tation for a GPU architecture. Having separate subarrays for
each thread as was done in Algorithm 5 is no longer practical
because of the large (and tunable) number of threads offered
by the GPU. We instead use one array and use atomic
operations (Lines 5 and 8) to ensure that threads write to
unique locations in memory. In practice we calculate the
number of edges to be inserted by the loop on Line 7 and
perform one atomicAdd rather than one atomicAdd for
each inserted edge. Since the logic of finding which edges to
add is the bottleneck of this algorithm we can easily update
the graph (and RTVCs) on the CPU between iterations of
Algorithm 6.

VI. RESULTS
A. Experimental Setup

All experiments were run on a system with an Intel
Core 17-2600K CPU and an NVIDIA GeForce GTX Titan
GPU. The Intel Core i7-2600K has four cores, each of
which run at 3.4 GHz, an 8 MB cache, and 16 GB of
DRAM. The NVIDIA GeForce GTX Titan has a base clock
that runs at 837 MHz, 6 GB of GDDRS5 memory, a peak
theoretical memory bandwidth of 288.4 GB/s, and is a
compute capability 3.5 (“Kepler”) GPU.

Sequential and OpenMP code was written in C++ and
compiled with version 4.5.3 of the g++ compiler. CUDA
code was compiled with the nvcc compiler and the CUDA
6.0 toolkit. We compare our approaches to an adaptation
of TSOtool used to verify ARM processors. The system
we use for testing contains four ARM Cortex-A57 cores.
The Cortex-A57 microarchitecture implements the ARMvS-
A 64-bit instruction set and has an out-of-order superscalar
pipeline. The graphs we use for experimentation represent
real traces used to find bugs in the implementation of the
memory model (or bugs in the memory model itself). The
graphs span sizes ranging from n = 218 to n = 222 vertices,
with each vertex representing an instruction from one of the
four processor cores. Each core issues the same number of
instructions. The precise number of edges that each graph
initially contains varies, but is fairly close to n. Hence, these
graphs represent a particularly sparse, high-diameter, and
low-degree network structure. We test a number of graphs
of each size. These graphs vary in their proportion of load,
store, and barrier instructions; number of virtual processors;
and number of instruction dependencies.

B. Experimental Results

Figure 5 shows the performance characteristics of TSO-
tool and our improvements over this baseline. The data
shown in these figures represent only the time spent adding
edges to the graph; however, we will show that this time
represents a vast majority of the overall execution time, and
hence was our focus for optimization. Figure 5a shows tests
that all have 128K instructions per core, or a total of n = 21°
instructions across all four cores. Similarly, Figures 5b (and
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Table I
SPEEDUP OVER TSOTOOL FOR OUR SEQUENTIAL AND PARALLEL
IMPLEMENTATIONS OF INFERRING EDGES

Inst. per Core 64K 128K 256K 512K 1M
Num. of tests 27 27 23 10 2
Alg. 4 15.09x 1641x 14.51x  4.01x 3.08x
OMP 2 29.31x  31.49x 2798x  7.52x 5.70x
OMP 4 5345x  57.34x 51.68x 14.19x  10.39x
GPU 57.90x  76.98x 72.32x 42.90x 45.16x

5¢) show tests that all have 256K (512K) instructions per
core, or a total of n = 220 (n = 221) instructions. The tests
are independent, but are sorted from fastest to slowest (for
the TSOtool baseline) for convenience. We compare four of
our approaches to the TSOtool baseline:
1) A sequential approach that minimizes updates to
RTVCs (Algorithm 4)

2) An OpenMP implementation using 2 threads (OMP 2,
Algorithm 5)

3) An OpenMP implementation using 4 threads (OMP 4,
Algorithm 5)

4) A GPU implementation (Algorithm 6)

Note that by inspection of the (logarithmic) y-axis of
Figures 5b and 5c one can see that for a graph that is
just twice as large, experiments can take significantly longer
to run. It is evident from Figure 5 that TSOtool spends
excessive time updating RTVCs. Our alternative sequential
method that lazily, rather than eagerly, updates RTVCs (as
shown in Algorithm 4) shows substantial improvements over
this baseline. Furthermore, since our algorithm facilitates
parallelism, we attain additional performance improvements
by using OpenMP and CUDA. In the more extreme cases,
our GPU implementation is orders of magnitude faster than
TSOtool.

It is interesting to note that although the results for
TSOtool have been plotted in order of increasing execution
time, our corresponding implementations do not necessarily
share this behavior. For instance, the second slowest TSOtool
test in Figure 5b executes much faster than the slowest
TSOtool test for our implementations. This peculiarity is
explained by the fact that this particular test has a larger
portion of store instructions (79%) than the other tests of
this size. A larger number of store instructions leads to
more executions of the outer for loop of Algorithm 2 in
comparison to other tests which also leads to a relatively
greater number of calls to update_RTV C's(). Since our ap-
proach in Algorithm 4 improves upon the previous approach
in Algorithm 2 precisely by calling update_ RTV C's() less
frequently it makes sense that our approach would perform
especially well for this particular test.

Table I shows the geometric mean speedup of our various
approaches over TSOtool for each test size. Note that the
number of tests decreases with test size due to industrial time



Table II
PARALLEL SPEEDUPS OVER ALGORITHM 4

Inst. per Core 64K 128K 256K 512K 1M
Num. of tests 27 27 23 10 2
OMP 2 1.94x  1.92x 1.93x  1.88x 1.85x
OMP 4 3.54x  349x  3.56x  3.54x 3.37x
GPU 384x 4.69x 498x 10.70x  14.66x
Table IIT

APPLICATION SPEEDUP OVER TSOTOOL FOR OUR SEQUENTIAL AND
PARALLEL IMPLEMENTATIONS

Inst. per Core 64K 128K 256K 512K M

Num. of tests 27 27 23 10 2
Alg. 4 5.64x 5.31x 6.30x 3.68x 3.05x
OMP 2 7.62x 7.12x 9.05x 6.41x 5.58x
OMP 4 9.43x 890x  12.13x 10.81x  9.97x
GPU 10.79x  10.76x  1547x  24.55x  37.64x

constraints when using TSOtool, providing motivation for
our efforts. We can see that our reduction in the number of
RTVC updates gives us at least a 3x speedup over TSOtool
sequentially. Furthermore, since our methodology facilitates
parallelism, we see the additional benefit of parallelism, as
shown in Table II. Table II shows the precise performance
gains for inferring edges in parallel. The speedups for
parallel methods in Table I show total speedup over the
TSOtool baseline, which includes the speedup of simply
using the more efficient sequential algorithm as well as
parallel performance benefits. Table II extracts the parallel
speedups over our more efficient sequential approach (Algo-
rithm 4) to convey the benefits of parallelization alone. We
can see that the OpenMP implementations approximately
achieve 1.9x and 3.5x speedups using 2 threads and 4
threads, respectively, regardless of problem size. Our GPU
implementation consistently does better than the OpenMP
implementation; however, it doesn’t perform substantially
better than the OpenMP implementation until the problem
size is sufficiently large. Compared to our sequential ap-
proach, the GPU approach achieves more than an order of
magnitude speedup for graphs with 512K instructions per
core or greater.

Recall from Figure 1 that inferring edges is just one por-
tion of the overall design flow for the memory consistency
verification problem. Thus, we need to show that our efforts
in improving the performance of inferring edges also im-
proves overall application performance, else our efforts were
not properly focused. Table III shows the overall application
speedup of our sequential and parallel approaches over
TSOtool. These speedups quantify the additional throughput
one can achieve in terms of the number of tests run by using
our approaches. For instance, one can run approximately 37
times as many tests with 1M instructions per core using
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our GPU implementation compared to what is done today
in the same amount of time using TSOtool. This increase
in throughput is important because it allows for greater
coverage in testing. Running additional tests allows one
to check for a greater variety of errors in the memory
subsystem.

These speedups are also substantial in terms of absolute
time and performance. One of the larger tests we exper-
imented with required over nine hours of total application
execution time using TSOtool. Using our GPU approach, we
were able to finish the same test in under ten minutes. As
a metric of absolute performance, we measured the GPU
memory throughput of our larger tests to average 28.19
GB/s and reach a peak of 35.15 GB/s, showing that our
implementation, although simplistic, efficiently utilizes the
processor. Considering the extreme sparsity and irregular
structure of the program execution graphs that we tested,
achieving a significant percentage of the peak memory
bandwidth of the processor is challenging [11].

Figure 6 provides some additional performance insights.
We compare both sequential methods of updating RTVCs,
eager (TSOtool, Algorithm 2) and lazy (Algorithm 4), in
terms of performance and the number of inferred edges. A
consequence of using Algorithm 4 and infrequently updating
RTVCs is that stale RTVC values can lead to unnecessarily
inferred edges. However, in some cases we can see that using
Algorithm 4 actually results in fewer inferred edges. This
result can occur when a store’s RTVC to a certain vproc
incrementally moves toward the beginning of the vproc
during an iteration of Algorithm 2. In contrast, Algorithm 4
will skip the intermediate locations of the RTVC, thus
neglecting to infer any edges at those intermediate locations.



Table IV
METADATA REGARDING THE TWELVE LARGEST TEST CASES

n=|V| m=|E|] TSOtool Iter. ST/LD/BAR
Inferred (%)
2,097,963 3,799,254 4,487,224 5 76/24/0
2,098,219 3,686,624 4,411,887 4 79/21/0
1,977,832 4,453,340 5,179,108 5 46/53/1
2,097,741 3,875,831 4,635,852 7 77/23/0
1,936,321 5,109,990 5,236,671 5 44/54/2
2,098,321 2,491,062 4,257,077 6 80/20/0
2,097,809 4,321,793 4,404,753 7 78/21/1
1,871,831 3,660,617 4,861,044 6 44/54/2
2,097,809 4,434,120 4,418,555 5 80/20/0
2,004,180 4,354,887 5,530,123 6 45/54/1
4,195,405 6,934,725 9,338,902 7 76/23/1
4,194,961 7,960,567 8,963,281 6 78/22/0

Although it was shown in Section IV that inferring addi-
tional edges or neglecting to infer these intermediate edges
does not invalidate the program’s output, it is reasonable
to be concerned about the performance implications of the
unnecessary work of inferring additional edges. Figure 6
shows that the amount of execution time for tests run using
Algorithm 4 is independent of the number of edges inferred.
In fact, the (Pearson product-moment) correlation coefficient
between these two vectors is just 0.007, supporting that the
data are largely unrelated. Surprisingly, for tests run using
Algorithm 2 we actually see a slight inverse correlation
between execution time and the number of inferred edges:
-0.423. It is clear that other characteristics, such as the
size of the graph, the frequency of dependencies between
instructions, and the distribution of instruction types have a
more profound impact on performance. For our largest tests
we saw up to 36% additional edges inserted by Algorithm 4
compared to that of Algorithm 2; nevertheless, our speedups
still justify the redundant work.

Table IV shows additional information regarding our
twelve largest test cases. The first two columns present the
number of vertices and edges for each test case, respectively,
before any edges are inferred. It is evident that the initial
graphs are substantially sparse, as m < 3n. The third
column shows the number of edges that are inferred using
the algorithm from TSOtool. We place this data side by
side with the number of iterations (shown in the fourth
column) because these two columns contrast the number
of calls to update_ RTV Cs() made by TSOtool and our
approaches. We can see that using TSOtool, O(n) calls to
update_RTV Cs() are made for these test cases, and these
excessive calls will only become increasingly detrimental
to performance as the graphs tested continue to grow. On
the contrary, our approach requires at most seven calls to
update_RTV Cs(). The speedup achieved by our approach
isn’t directly proportional to this reduction in the number
of updates because each iteration of the algorithm requires
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searching through the vprocs of each store in the graph,
regardless of the number of updates that occur. Although
the number of iterations tends to grow with the size of the
graph, the rate at which the number of iterations grows is
tremendously small. Hence, the number of RTVC updates
that we perform scales very well with the size of the
graph. Finally, the fifth column of Table IV breaks down
the percentage of store, load, and barrier instructions found
within each test. Note that tests with the same initial graph
and proportion of ST/LD/BAR instructions can still vary by
quite a bit as the number of distinct memory locations and
virtual processors may differ.

VII. CONCLUSIONS

This paper discusses several parallel methodologies for
verifying the memory consistency of architectures with
relaxed memory models. We provide an alternative approach
to using reverse time vector clocks that chooses to update
this data structure after every iteration of inferring edges
rather than after every edge insertion as was done previously.
This approach reduces the work complexity of inferring
edges, which we have shown to be the dominating factor
in terms of performance for the entire verification process.
Additionally, this approach simplifies the parallelization of
consistency verification as a direct parallelization of our
new approach requires significantly less communication than
a direct parallelization of the previous approach. For a
set of 89 tests in use at NVIDIA, we achieved geometric
mean speedups of 12.74x, 44.95x, and 64.28x over the best
existing approach for inferring edges for our sequential,
OpenMP, and GPU implementations respectively. For the
twelve largest test cases, our GPU implementation was
able to achieve an average application speedup of 26.36x,
reducing execution time from over nine hours to under ten
minutes in one instance.

A number of insights regarding the computation of par-
allel graph algorithms have appeared in recent literature.
Frameworks such as Ligra [23] and Galois [20] alleviate the
difficulty of programming graph algorithms on shared mem-
ory architectures without sacrificing performance. Heavily
optimized GPU implementations of specific algorithms have
also been developed, for algorithms such as Breadth-First
Search [19], Single-Source Shortest Paths [8], and Between-
ness Centrality [17]. This collection of work tends to focus
on graph algorithms that are traversal-based; it remains
unclear if these insights can be directly applied to non
traversal-based algorithms such as the algorithms discussed
in this paper. We consider a more general approach to the
design of shared memory parallel graph algorithms to be an
intriguing area of future work.
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