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Abstract—Applications of high-performance graph analysis
range from computational biology to network security and even
transportation. These applications often consider graphs under
rapid change and are moving beyond HPC platforms into energy-
constrained embedded systems. This paper optimizes one success-
ful and demanding analysis kernel, betweenness centrality, for
NVIDIA GPU accelerators in both environments. Our algorithm
for static analysis is capable of exceeding 2 million traversed
edges per second per watt (MTEPS/W). Optimizing the parallel
algorithm and treating the dynamic problem directly achieves
a 6.9× average speed-up and 83% average reduction in energy
consumption.

I. INTRODUCTION

Graphs are used to model the structure of the internet
[11], interactions in social communties [19], and dynamic
simulations of physical phenomena [21]. Many common graph
problems have efficient sequential solutions but resist attempts
at parallel efficiency. Increasingly parallel architectures and
accelerators require new algorithms for both performance and
power efficiency. The high memory bandwidth and power
efficiency of Graphics Processing Units (GPUs) make them
attractive to bandwidth-hungry graph algorithms, but mapping
the analytics to GPU hardware is challenging.

Graph analysis algorithms often require fine-grained syn-
chronization that limits parallelization. Some algorithms, like
lexicographic depth-first search, are known to be P-complete
and are inherently sequential [25]. Limited spatial locality
and widely varying computational load also present challenges
beyond those common in scientific computing or map-reduce-
style data analysis. Maintaining analytics as new data streams
into the graph without entirely recomputing results is another
new challenge.

This paper tackles these challenges with the following
contributions:

• We propose various parallel methods for calculating
betweenness centrality (BC), a successful analytic that
tracks the influence of vertices in a network. We
consider both coarse-grained and fine-grained methods
of parallelism.

• We compare static methods for re-computing BC scores
to a natively dynamic method that updates BC scores.
We show that most edge changes affect a surprisingly
small portion of the graph and that asymptotically

efficient algorithms are crucial to analyzing time-
varying graphs.

• We present results comparing our methods to the
state-of-the-art on embedded and HPC platforms
considering both time and energy to solution. Our
static implementation of the algorithm is capable of
exceeding 2 MTEPS/W. Our dynamic implementation
of the algorithm achieves greater than a 25× speedup
over existing sequential methods on the CPU. On the
GPU, our implementation achieves on average a 6.9×
speedup and 83% reduction in energy consumption
compared to a static recomputation.

II. BACKGROUND

A. GPU Computing

Although GPUs are typically known for rendering computer
graphics, the introduction of programming models such as
CUDA and OpenCL have opened the computational power
of the GPU to domains such as databases, electronic design
automation, and biology [8], [18], [27]. GPUs have been
successful in accelerating compute-bound applications that
have regular structure and lots of floating point arithmetic
[20]. Recent research also has shown successful acceleration of
irregular and memory-bound applications that have randomized
memory access patterns [7], [24].

GPUs are designed for highly parallel operation and dedicate
transistors to arithmetic units rather than branch predictors or
large caches. They leverage a single-instruction, multiple-thread
(SIMT) programming model where consecutive threads execute
the same instruction on different elements of data. A GPU
consists of a number of streaming multiprocessors (SMs) that
each execute threads in groups, known as warps on NVIDIA’s
GPUs. In the case of a branch instruction, the resulting paths of
the branch are executed sequentially by predicated execution.

Programmers using NVIDIA’s CUDA specify a number of
grid and block dimensions for each kernel. These dimensions
specify how many groups of threads are assigned to each
SM and how many threads coexist within those groups.
Programmers also manage shared memory, which is scratchpad
storage assigned to each SM. Shared memory has much higher
bandwidth than global memory but is smaller and hence harder
to use in applications that require data scalability.

Compared to conventional CPUs, GPUs tend to consume
more instantaneous power but provide significantly higher
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throughput which results in better overall energy efficency
in terms of performance per Watt. For instance, all of the top
10 computers on the November 2013 Green500 list utilize GPU
accelerators [14].

B. Betweenness Centrality

Centrality metrics are an important class of graph algorithms
used in applications such as graph visualization [16], urban
planning [6], and community detection [4]. Betweenness
Centrality (BC) was a metric developed in the social sciences for
tracking the control of information in communication networks
[12]. Recently it has been used to determine influential members
of social networks [10]. BC scores are obtained by calculating
the ratio of the number of times a vertex is on a shortest path
between pairs of other vertices to the total number of shortest
paths between those vertices.

Let σst be the number of shortest paths between vertices
s and t and let σst(v) be the number of these paths that pass
through a particular vertex v. The betweenness centrality of v
can be defined in terms of these numbers as follows:

BC(v) =
∑

s6=t6=v

σst(v)

σst
(1)

The fastest known sequential algorithm for computing BC
scores was developed by Brandes [5]. Rather than using the
O(n3) Floyd-Warshall algorithm to solve the all-pairs shortest
path (APSP) problem, Brandes derived a recursive relationship
between vertices and their successors. The algorithm performs
a breadth-first search traversal to solve the APSP problem and
uses these results in a backward traversal on the graph referred
to as the dependency accumulation to recursively obtain the
centrality scores. Even with these improvements, the algorithm
is computationally demanding as it requires O(mn) time for
unweighted graphs, where n is the number of vertices and m
is the number of edges in the graph.

Several high-level strategies have been used to accelerate the
computation of betweenness centrailty, such as approximation
techniques [1], parallelism [22], and streaming [23]. The
simplest method of approximating BC scores is to use a
subset of the source vertices for the calculation. This step
reduces the time complexity of the algorithm from O(mn) to
O(mk) where k is the number of approximated source vertices.
Essentially, the number of shortest paths from the k vertices to
all vertices are found instead of the number of shortest paths
between all pairs of vertices. Betweenness centrality lends
itself well to parallelism since both coarse and fine-grained
opportunities for parallelizing Brandes’s algorithm exist. Coarse-
grained parallelism involves assigning different source vertices
to different threads or compute units. This assignment of work is
embarassingly parallel since all source vertices can be handled
independently. Fine-grained parallelism of BC assigns threads
to cooperatively execute stages of the graph traversal needed
for the shortest path calculation and dependency accumulation
stages. Finally, several methods for incrementally updating
centrality scores rather than recomputing them have been
proposed in the literature [13]. Streaming methods are becoming
increasingly important to analyze dynamic graphs that change
over time. Typical network updates only affect a local region of
the graph, making global recomputations wasteful in terms of
both time and energy. Experimental results for both our static

Fig. 1. Power consumed as a function of the number of thread blocks launched

and dynamic implementations of Betweenness Centrality on
the GPU can be found in Section V.

III. METHODOLOGY

A. Coarse-grained Parallelism

The most important consideration for both our static and
dynamic implementations of betweenness centrality is the
decomposition of threads to units of work. Previous work
investigating absolute performance showed that the number
of thread blocks should be equivalent to the number of SMs
for calculating betweenness centrality [17]. This also proves
true for energy efficiency. Figure 1 shows how the average
instantaneous power consumption of a Tesla C2075 GPU varies
with thread blocks. Since the C2075 has 14 SMs, we can see
that the most power is consumed when the number of thread
blocks issued is a multiple of the number of SMs. Interestingly,
it appears that when 15 blocks are issued, rather than scheduling
one block to each SM with one block leftover, the hardware
opts to issue two blocks to 7 of the SMs and one block to
an 8th SM in an attempt to conserve power by idling the
remaining 6 SMs. Noting the scale of the y-axis, assigning
thread blocks to all of the SMs on the GPU requires less than
twice as much power than using just one thread block. Since the
performance of the algorithm scales linearly with the number
of active SMs (because each SM can execute independently in
parallel), assigning one thread block to each SM is clearly the
most energy-efficient method of operation.

B. Fine-grained Parallelism

Each cooperative thread array (CTA), or thread block, of
the GPU is assigned a root vertex to traverse from and perform
shortest path and dependency calculations. This results in
attributing that root vertex’s impact on the BC scores. Once this
process has been completed for all of the roots in the graph (or
all of the roots to be approximated), the algorithm terminates.
The threads within each CTA work together to traverse the
graph and calculate shortest paths and dependencies in parallel.
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Fig. 2. Decomposition of work to parallel compute units

Figure 2 illustrates this process. Each root, or source vertex, to
be processed is assigned to a CTA that is scheduled to one of
the SMs on the GPU. The threads within this SM traverse the
graph from the root, calculating local changes to the BC scores.
Finally, each SM adds its changes to the global BC scores
atomically. Since CTAs are executing independently they will
not finish calculating their local scores simultaneously. Hence,
the contention of resources for the atomic updates to the global
BC scores is low.

One of the most significant factors in how fast the algorithm
executes is the choice of graph traversal method. For a graph
traversal at the level of a CTA for betweenness centrality, it has
been shown that assigning threads to each edge rather than each

TABLE I. GPUS USED FOR THIS STUDY

GPU Tesla C2075 Tesla K40c GT 640

SMs 14 15 2
Memory (GB) 6 12 1

Frequency (GHz) 1.15 0.745 0.95
Compute Capability 2.0 3.5 3.5

TDP (W) 225 245 75

vertex of the graph achieves greater memory throughput on the
GPU [17]. Alternatively, the use of an explicit queue can obtain
even better performance for especially sparse graphs, such as
road networks, or for dynamic updates to the graph that touch
only a local subset of vertices [23]. Section V explores how
these methods of parallelism impact the power consumption
of the GPU.

IV. EXPERIMENTAL SETUP

Table I shows the various GPUs used for these experiments.
The Tesla C2075 GPU is based on NVIDIA’s “Fermi” archi-
tecture and cannot leverage the latest features of the CUDA
programming model, such as Dynamic Parallelism; however,
our implementations do not rely on such features. The Tesla
K40c is NVIDIA’s latest GPU designed specifically for HPC
applications and is based on NVIDIA’s “Kepler” architecture.
These GPUs were designed with scientific computing in mind
and have more memory than typical desktop GPUs. The GT
640 is a commodity GPU that is a part of the NVIDIA Kayla
platform, an embedded system consisting of an NVIDIA Tegra
3 ARM Cortex A9 Quad-Core processor and the GT 640 GPU.

Algorithms were implemented in CUDA C++ using the
CUDA 5.5 toolkit. Static computations were implemented to
compute exact centrality scores whereas dynamic computations
were implemented to also compute approximations to centrality
scores using k = 256 randomly chosen roots as suggested by
the DARPA SSCA benchmark suite [2]. We simulate dynamic
graphs by randomly choosing 100 edges, removing them from
the graph, and reinserting them sequentially, updating the BC
scores after each insertion. This is the limit for low-latency
applications that must respond to changes rapidly.

On the Kayla platform, power was measured using a Watts
Up wall-plug meter, which measures system power. Since the
entire computation is executed on the GPU, the CPU is idle and
its power is constant and small enough to be neglected. Power
was sampled at one second intervals and averaged over the
lifespan of a kernel. Typical edge updates take a small number
of seconds and the instantaneous power does not significantly
change throughout a kernel execution. Power on the Tesla GPUs
is measured directly using the NVIDIA Management Library
(NVML). This library provides a C-based API for measuring
power and temperature of Tesla GPUs. We sampled power at
10 ms intervals and report the average of the lifespan of a
kernel.

Finally, Table II shows the graph datasets used for this
study. These graphs were obtained from the DIMACS Challenge
archives [3] and represent a diverse set of networks ranging
from planar road maps (luxembourg.osm) to power-law graphs
representing the structure of web domains (eu-2005).



TABLE II. GRAPH DATASETS USED FOR THIS STUDY

Graph Nodes Edges

as-22july06 22,963 48,436
astro-ph 16,706 121,251

caidaRouterLevel 192,244 609,066
coPapersCiteseer 434,102 16,036,720

delaunay n12 4,096 12,264
delaunay n14 16,384 49,122
delaunay n20 1,048,576 3,145,686

eu-2005 862,664 16,138,468
kron g500-logn16 55,321 2,456,071
kron g500-logn19 524,288 21,780,787
luxembourg.osm 114,599 119,666

preferentialAttachment 100,000 499,985
smallworld 100,000 499,998

TABLE III. ENERGY-EFFICIENCY OF STATIC BC COMPUTATIONS ON
THE GPU FOR VARIOUS CLASSES OF NETWORKS

Graph Avg Power (W) MTEPS/W

delaunay n20 129.38 0.85
luxembourg.osm 95.41 0.35

preferentialAttachment 127.18 1.33
smallworld 127.10 2.54

V. EXPERIMENTAL RESULTS

A. Static Experiments

Since graph algorithms are memory bound the faster that
they can traverse edges the faster they tend to execute. Analgous
to FLOPS for compute bound applications is the notion of
Traversed Edges per Second, or TEPS. For an instance of
betweenness centrality, the number of TEPS is defined as
follows [26]:

TEPSBC(G, t) =
mn

t
(2)

where n is the number of graph vertices, m is the number of
graph edges, and t is the time in seconds. Defining a single
work amount, here mn, regardless of the implementation is
equivalent to defining the FLOPS for LU factorization as 2/3n3
regardless of the matrix arithmetic operations [9].

For the approximation of BC, n is replaced with k in
defining TEPS. Table III shows the average power consumption
and million of TEPS per W (MTEPS/W) for four different
classes of graphs: meshes (delaunay n20), road networks
(luxembourg.osm), scale-free networks (preferentialAttachment),
and networks with a diameter that is logarithmic in the number
of vertices (smallworld). The TEPS/W metric is used to rank the
energy-efficiency of graph processing systems for the Green
Graph 500 [15]. These results were recorded using NVML
and a Tesla K40c GPU. We can see that the luxembourg.osm
road network consumed significantly less power on average
than the other classes of graphs. Road networks tend to be
extremely sparse and have very consistent degree distributions.
In fact, no vertex (i.e. intersection) in this particular road
network has more than 6 neighbors (i.e. incoming roads). As a
result, each iteration of a breadth-first search over this graph
results in a small amount of new vertices to be explored and
consequently, few warps of execution per CTA and lower power
consumption. Note that for all classes of graphs there isn’t
enough computation for the average power consumed to be
anywhere near the TDP of the device.

TABLE IV. COMPARISON OF DYNAMIC BC COMPUTATIONS ON THE
CPU AND GPU OF THE KAYLA PLATFORM

Graph delaunay n12 kron g500-logn16

Solution Quality Exact Approx. (k = 256)
CPU Time (s) 35.44 33.79
GPU Time (s) 1.32 1.33

Speedup 26.92× 25.39×
Average CPU Energy (J) 914.35 875.08
Average GPU Energy (J) 42.64 43.79

Energy Savings 95.3% 95.0%
CPU MTEPS/W 0.05 0.72
GPU MTEPS/W 1.18 14.37

TABLE V. COMPARISON OF STATIC AND DYNAMIC BC COMPUTATIONS
ON THE GPU OF THE KAYLA PLATFORM

Graph delaunay n12 kron g500-logn16

Solution Quality Exact Approx. (k = 256)
Static Time (s) 12.63 5.63

Dynamic Time (s) 1.32 1.33
Speedup 9.6× 4.2×

Static Energy (J) 424 188
Dynamic Energy (J) 42.6 43.8

Energy Savings 90.0% 76.7%
Static MTEPS/W 0.12 3.34

Dynamic MTEPS/W 1.18 14.37

Table III shows that our algorithm is more power-efficient
on scale-free and small-world graphs. For these graphs we
use an edge-based graph traversal to maximize the memory
throughput of the GPU rather than using an asymptotically
optimal traversal algorithm. These graphs tend to have a
smaller number of traversal iterations that each contain tens of
thousands of edges to traverse in parallel. In contrast, networks
with larger diameters tend to have hundreds of edges to traverse
per iteration, making it more challenging to fully utilize the
GPU.

B. Dynamic Experiments

For dynamic calculations we compare against two baselines.
First we can compare CPU and GPU implementations of the
dynamic BC algorithm to see the benefit of using a massively
parallel architecture. Second we can compare the dynamic
GPU approach to a static GPU approach to see the benefit of
updating analytics rather than recomputing them.

Table IV compares using the CPU and GPU for computing
BC scores dynamically. Note that the CPU algorithm is
sequential. The times recorded represent the average time to
update the BC scores for 100 edge insertions (one update
occurs per edge insertion). Although the GPU requires slightly
more instantaneous power than the CPU, we can see that the
throughput provided by the GPU more than makes up for this
additional power cost. The GPU implementation uses 19.69×
less energy on average than the CPU for the two graphs above.
Since these results were obtained on the Kayla platform, we
had to restrict our analysis to significantly smaller data sets (and
hence used approximation for the Kronecker kron g500-logn16
graph).

Using the same graphs, we compare static and dynamic
methods for betweenness centrality in Table V. The static
implementation used as a reference here is from Jia et al. [17]



Fig. 3. Percentage of vertices touched by Case 2 scenarios

Fig. 4. Percentage of vertices touched by Case 3 scenarios

(previous state-of-the-art) and the dynamic implementation is
our own. Note that this static implementation differs from the
one used in Table III, which was our own implementation
that improves upon the results from [17]. The times presented
are again averaged over all 100 edge insertions. Although
the time required for each update is highly dependent on the
amount of work required by that update, even the slowest
updates are faster than static recomputation. In addition to
being faster than the static approach, the dynamic approach
also consumes less power. The intuition behind this result
is that a static computation of BC scores for the updated
graph is an upper bound for the amount of work required by
a dynamic update. Since the dynamic update only traverses
edges that are affected by the update it avoids unwarranted
accesses to memory. Overall, our dynamic method sees a 6.9×
average speedup compared to a static recomputation for these
two graphs. Dynamic updating consumes an average 83% less
energy than static recomputation.

The insertion of an edge into the graph presents one of
three possible scenarios from each root. The inserted edge can
either connect vertices that are the same distance (Case 1),
adjacent distances (Case 2), or non-adjacent distances (Case 3)
from a given root. Case 1 insertion scenarios do not change
BC scores whereas Case 2 and Case 3 insertion scenarios
require additional computation to account for the newly inserted
edge [13]. To quantify how much work is required by the
dynamic algorithm for a typical edge insertion, we record the
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Fig. 5. Left: preferentialAttachment Middle: kron g500-logn19 Right:
smallworld

percentage of vertices that are touched by the shortest path
recalculations and dependency accumulations for each edge
insertion. Figures 3 and 4 sort and display these percentages
as a scatterplot for Case 2 and Case 3 insertion scenarios,
respectively. Amazingly, a vast majority of edge insertions
impact less than 1% of vertices in the graph. Out of the 62,844
Case 2 scenarios encountered, no more than approximately
35% of vertices were touched by any of them. Similarly,
for Case 3, which tends to have more work as it pulls up
vertices from further away from the root than Case 2 does,
only three scenarios touched more than 30% of vertices in
their respective graphs. This result implies that the use of
asymptotically efficient algorithms is crucial to obtaining high
performance for dynamic graph analytics.

To illustrate the effect of using a dynamic approach in
terms of power, Figure 5 shows a scatter plot of the average
power consumption during each edge update for two methods
of parallelism for three graphs. The edge-based parallel method
was introduced by Jia et al. [17] and assigns a thread to each
edge of the graph to be inspected during each iteration of the
graph traversal. The node-based parallel method instead uses an
explicit queue to only traverse edges coming from vertices that
are at the current depth of the graph traversal. The solid lines in
the figure represent the average power consumption across all
edge insertions. Since the edge-based parallel method checks
every edge at every iteration of the search, it causes unecessary
branching overhead and fetches to global memory. Since the
edge approach does this unnecessary work regardless of where
the edge is inserted into the graph the variance in power for the
edge-based approach is small as the GPU consistently draws
significant power. While this may normally be a sign that the
processor is utilized in this case the processor is being fed
superfluous instructions.

In contrast, the average power consumption for the node-
based parallel method varies greatly with insertion. Intuitively,
each edge insertion has some variable cost in terms of the
portion of the graph that is affected by each update. Since the
work done by the node-based method depends entirely on this



cost, the power consumed by the node-based method is also
variable. Note that in all cases tested the edge-parallel method
consumes more power than the node-parallel method.

Finally, the above results are consistent regardless of the
graph tested. The left portion of Figure 5 shows results for
a scale-free graph, the middle portion shows results for a
Kronecker graph, and the right portion shows results for a
small-world graph. In each case the power consumption for the
node-based method is significantly smaller and more volatile
than for of the edge-based method.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents performance and energy efficiency
optimizations for static and dynamic betweenness centrality. Our
static implementation of the algorithm is capable of exceeding
2 MTEPS/W. Our dynamic implementation of the algorithm
achieves greater than a 25× speedup over existing sequential
methods on the CPU and a 6.9× average speedup along with
an 83% average reduction energy-to-solution compared to a
static recomputation of the analytic on the GPU. Our methods
have been shown to work well on both embedded systems such
as the Kayla platform and HPC systems such as Tesla GPUs.
Furthermore, our methods are easily scalable to multiple GPU
nodes for even faster processing.

Both parallel optimization as well as dynamic updating
prove important to reducing total energy consumption. Applying
these techniques to other algorithms may drastically increase
the range of applications for graph analysis. More in-depth
models of concurrency and energy consumption can guide
analytic development. With sufficient hardware flexibility and
programming models to match, advanced analysis of dynamic
graphs will move from machine rooms to embedded and hand-
held devices.
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