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Abstract

With the proliferation of large, irregular, and sparse rela-
tional datasets, new storage and analysis platforms have
arisen to fill gaps in performance and capability left by con-
ventional approaches built on traditional database technolo-
gies and query languages. Many of these platforms apply
graph structures and analysis techniques to enable users to
ingest, update, query, and compute on the topological struc-
ture of the network represented as sets of edges relating sets
of vertices. To store and process Facebook-scale datasets,
software and algorithms must be able to support data sources
with billions of edges, update rates of millions of updates
per second, and complex analysis kernels. These platforms
must provide intuitive interfaces that enable graph experts
and novice programmers to write implementations of com-
mon graph algorithms. In this paper, we conduct a qualita-
tive study and a performance comparison of 12 open source
graph databases using four fundamental graph algorithms on
networks containing up to 256 million edges.

Categories and Subject Descriptors H.2.4 [Database Man-
agement]: Systems—Parallel databases
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graph databases, graph algorithms, relational

1. Background

In the context of this paper, the term graph database is used
to refer to any storage system that can contain, represent,
and query a graph consisting of a set of vertices and a set
of edges relating pairs of vertices. This broad definition
encompasses many technologies. Specifically, we examine
schemas within traditional disk-backed, ACID-compliant
SQL databases (SQLite, MySQL, Oracle, and Microsoft
SQL Server), modern NoSQL databases and graph databases
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(Neo4j, OrientDB, InfoGrid, Titan, FlockDB, ArangoDB,
InfiniteGraph, AllegroGraph, DEX, GraphBase, and Hy-
perGraphDB), distributed graph processing toolkits based
on MapReduce, HDFS, and custom BSP engines (Bagel,
Hama, Giraph, PEGASUS, Faunus), and in-memory graph
packages designed for massive shared-memory (NetworkX,
Gephi, MTGL, Boost, uRiKA, and STINGER). For all of
these, we construct a table containing the package main-
tainer, license, platform, implementation language(s), fea-
tures, cost, transactional capabilities, memory vs. disk stor-
age, single-node vs. distributed, text-based query language
support, built-in algorithm support, and primary traversal
and query styles supported. An abridged version of this ta-
ble is presented in Table 1.

For a selected group of primarily open source graph
databases, we implement and test a set of representative fun-
damental graph kernels on each technology. Although this
work focuses on open source software, proprietary technolo-
gies are included where appropriate for comparison. These
kernels include shortest path algorithms, iterative propaga-
tion algorithms, and updates to the graph data structure. Us-
ing identical high-end computing hardware and input data
sets, we measure the performance and scalability of these al-
gorithms for each graph database. In the spirit of full disclo-
sure, several authors are affiliated with the ongoing design
and development of STINGER [7].

1.1 Experimental Design

Previous work has compared Neo4j and MySQL using sim-
ple queries and breadth-first search [11], and we are inspired
by a combination objective/subjective approach to the report.
Graph primitives for RDF query languages were extensively
studied in [1] and data models for graph databases in [2],
which are beyond the scope of this study.

1.2 Algorithms and Approach

Four fundamental graph kernels are selected with require-
ments placed on how each must be implemented to empha-
size common programming styles of graph algorithms. The
first is the Single Source Shortest Paths (SSSP) problem,
which is specifically required to be implemented as a level-
synchronous parallel breadth-first traversal of the graph. Sin-
gle source shortest paths are used for routing and connec-
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tivity, and all-pairs shortest paths computations are building
blocks for algorithms such as betweenness centrality [4, 8].

The second test case is an implementation of the Shiloach-
Vishkin connected components algorithm (SV) [10] in the
edge-parallel label-pushing style. Connected components is
a global graph metric that touches all edges in the graph.
The Shiloach-Vishkin algorithm is not theoretically work
efficient, but the edge-parallel access pattern is representa-
tive of a broad class of graph algorithms. This algorithm is
read-heavy with sparse writes and a high degree of random
access.

The third test case is PageRank (PR) [5] in the vertex-
parallel Bulk Synchronous Parallel (BSP) power-iteration
style. PageRank is a measure of influence and importance
in the network. The algorithm for computing PageRank is
representative of a broad class of iterative graph algorithms.

The final test case is the performance of a set of edge
insertions and deletions in parallel to represent random ac-
cess and modification of the structure. Real-world networks
are in constant motion as new edges and vertices enter the
graph. This test case measures the performance of change in
the data structure.

When it is not possible to meet the algorithm require-
ments due to restrictions of the software framework, the
algorithms are implemented in as close of a manner as pos-
sible. When the framework includes implementations of
any of these algorithms, the implementation is used if it
meets the requirements. The implementations are intention-
ally written in a straightforward manner with no manual
tuning or optimization to emulate non-hero programmers.

Many real-world networks demonstrate ““scale-free” char-
acteristics [3, 12]. To emulate these characteristics in graphs
that are consistent, can be easily created and recreated, and
can be built to a specified size for the purposes of our bench-
marking, we chose to use the Recursive MATrix (R-MAT)
generator. Four initial sparse, static graphs and correspond-
ing sets of edge insertions and deletions are created using an
R-MAT [6] generator with parameters A = 0.55, B = 0.1,
C = 0.1, and D = 0.25). These graphs contain 1K (tiny),
32K (small), IM (medium), and 16M (large) vertices with
8K, 256K, 8M, and 256M undirected edges, respectively.
Graphs with over 1B edges were considered, but while a
small number of the packages examined can handle graphs at
that scale, it was determined that many could not handle that
scale. This was even true of those claiming to reach mas-
sive scale through distributed disk-based storage. As such,
for the purposes of our comparison, there was no need to use
these larger graphs. Edge updates have a 6.25% probability
of being deletions uniformly selected from existing edges
where deletions are handled in the default manner for the
package. For the tiny and small graphs, 100K updates were
performed, and 1M updates were performed otherwise.

The quantitative measurements taken are initial graph
construction time, total memory in use by the program
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upon completion, update rate in edges per second, and time
to completion for Single Source Shortest Paths, Shiloach-
Vishkin, and PageRank. Tests for single-node platforms and
databases are run on a system with four AMD Opteron 6282
SE processors and 256GB of DDR3 RAM. Distributed sys-
tem tests are performed on a cluster of 21 systems with mini-
mum configuration of two Intel Xeon X5660 processors with
24GB DDR3 RAM connected by QDR Infiniband. When ap-
plicable, the Hadoop Distributed File System (HDFS) was
run in-memory.

2. Qualitative Observations
2.1 User Experience

A common goal of open source software is widespread adop-
tion. Adoption promotes community involvement, and an ac-
tive community is likely to contribute use cases, patches, and
new features. When a user downloads a package, the goal
should be to build as quickly as possible with minimal in-
put from the user. A number of packages tested during the
course of this study did not build on the first try. Often, this
was the result of missing libraries or test modules that do
not pass, and was resolved with help from the forums. This
was specifically true of Giraph, which failed a test during the
build process. The easiest to install were those that were self-
contained. Even packages that relied on a package manage-
ment system (NetworkX in Python, most of the Java pack-
ages which relied on Maven) were more difficult to install
than their authors intended as the machines they were in-
stalled on inside of our cluster did not have direct internet
access. Build problems may reduce the likelihood that users
continue with a project.

Among both commercial and open source software pack-
ages, we find a lack of consistency in approaches to doc-
umentation. It is often difficult to quickly get started. Sys-
tem requirements and library dependencies should be clear.
Quickstart guides are appreciated. We find that most pack-
ages lack adequate usage examples. Common examples il-
lustrate how to create a graph and query the existence of
vertices and edges. Examples are needed that show how to
compute graph algorithms, such as PageRank or connected
components, using the provided primitives. The ideal ex-
ample demonstrates data ingest, a real analysis workflow
that reveals knowledge, and the interface that an application
would use to conduct this analysis. In this regard, NetworkX
is very well documented. Titan’s documentation is extremely
complete in terms of API documentation, but lacking in ex-
amples of real-world usage, which was a common theme.
Some packages lack formal documentation or have frag-
mented documentation (STINGER, Bagel).

While not unique to graphs, there are a multitude input
file formats that are supported by the software packages in
this study. Formats can be built on XML, JSON, CSV, or
other proprietary binary and plain-text formats. Each has a
trade-off between size, descriptiveness, and flexibility. The



number of different formats creates a challenge for data
interchange. Formats that are edge-based, delimited, and
self-describing can easily be parsed in parallel and translated
between each other.

2.2 Developer Experience

Object-Oriented Programming (OOP) was introduced to en-
force modularity, increase reusability, and add abstraction to
enable generality. These are important goals; however, OOP
can also inadvertently obfuscate logic and create bloated
code. For example, considering a basic PageRank compu-
tation in Giraph, the function implementing the algorithm
uses approximately 16% of the 275 lines of code. The re-
mainder of the code registers various callbacks and sets up
the working environment. Although the extra code provides
flexibility, it can be argued that much is boilerplate. The
framework should support the programmer spending as little
time as possible writing boilerplate and configuration so that
the majority of code is a clear and concise implementation
of the algorithm.

A number of graph databases retain many of the prop-
erties of a relational database, representing the graph edges
as a key-value store without a schema. A variety of query
languages are employed. Like their relational cousins, these
databases are ACID-compliant and disk-backed. Some ship
with graph algorithms implemented natively. While these
query languages may be comfortable to users coming from a
database background, they are rarely sufficient to implement
even the most basic of graph algorithms succinctly. The bet-
ter query languages are closer to full scripting environments,
which may indicate that query languages are not sufficient
for graph analysis.

In-memory graph databases focus more on the algorithms
and rarely provide a query language. Access to the graph
is done through algorithms or graph-centric APIs. This af-
fords the user the ability to write nearly any algorithm, but
presents a certain complexity and learning curve. The visi-
tor pattern in MTGL is a strong example of a graph-centric
API. The BFS visitor allows the user to register callbacks for
newly visited vertices, newly discovered BFS tree edges, and
edges to previously discovered vertices. Given that breadth-
first traversals are frequently used as building blocks in com-
mon graph algorithms, providing an API that performs this
traversal over the graph in an optimal way can abstract the
specifics of the data structure while giving performance ben-
efit to novice users. Similar primitives might include com-
ponent labelings, matchings, independent sets, and others
(many of which are provided by NetworkX). Additionally,
listening mechanisms for dynamic algorithms should be con-
sidered in the future.

2.3 Graph-specific Concerns

An important measurement of performance is the size of
memory consumed by the application processing a graph
of interest. An appropriate measurement of efficiency is the
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Figure 1: The memory occupied by the program after per-
forming all operations on the small graph (32K vertices and
256K undirected edges) for each graph analysis package.

number of bytes of memory required to store each edge of
the graph. The metadata associated with vertices and edges
can vary by software package. The memory usage of each
graph database on the small graph with 256K edges is plot-
ted in Figure 1. The most efficient package, SQLite con-
sumes only 37 bytes per edge. OrientDB uses over 40KB per
edge. Boost represents the median at 950 bytes per edge. The
largest test graph contained more than 128 million edges, or
about one gigabyte in 4-byte tuple form. Graph databases
were run on machines with 256GB of memory. However, a
number of software packages could not run on the largest
test graph (neo4j, OrientDB).

It is often possible to store large graphs on disk, but the
working set size of the algorithm in the midst of the com-
putation can overwhelm the system. For example, a breadth-
first search will often contain an iteration in which the size
of the frontier is as many as half of the vertices in the graph.
We find that some graph databases can store these graphs on
disk, but cannot compute on them because the in-memory
portion of the computational is too large.

We find differing semantics regarding fundamental opera-
tions on graphs. For example, when an edge inserted already
exists, there are several possibilities: 1) do nothing, 2) insert
another copy of that edge, 3) increment the edge weight of
that edge, and 4) replace the existing edge. Graph databases
may support one or more of these semantics. The same can
be said for edge deletion and the existence of self-edges.
Given that there is no consensus among the packages on how
these operations should operate on the graph, the documen-
tation of all packages should be more explicit about how
insert, update, and remove operations affect the data struc-
ture itself and what the implications in terms of storage and
traversal are. It may also be valuable for the community as a
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(d) Updates per second - Deletions for MTGL are ignored.

Figure 2: Time taken to compute benchmark algorithms on the small graph (32K vertices and 256K undirected edges).

whole to study the algorithmic and informatic implications
of these design choices.

A common query access pattern among graph databases
is the extraction of a subgraph, egonet, or neighborhood
around a vertex. While answering some questions, a more
flexible interface allows random access to the vertices and
edges, as well as graph traversal. Graph traversal is a funda-
mental component to many graph algorithms. In some cases,
random access to graph edges enables cleaner implementa-
tion of an algorithm with better workload balance or com-
munication properties.

3. Performance Results

We compute four algorithms (single source shortest path
(SSSP), connected components (SV), PageRank (PR), and
update) for each of four graphs (tiny, small, medium, and
large) using each graph package. Developer-provided imple-
mentations were used when available. Otherwise, implemen-
tations were created using the best algorithms, although no
heroic programming or optimization were done. The source
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code used for these tests and raw results are available at
https://github.com/robmccoll/graphdb-testing.
For a complete collection of results plots, please refer to [9].

Tests for single-node platforms and databases are con-
ducted on a system with four AMD Opteron 6282 SE pro-
cessors and 256GB of DDR3 RAM. Distributed system tests
are performed on a cluster of 21 systems with minimum con-
figuration of two Intel Xeon X5660 processors with 24GB
DDR3 RAM connected by QDR Infiniband. Apache HDFS
was run in-memory. Memory usage for Java applications
was taken from the MemoryMXBean memory management
interface summing the heap and non-heap usage.

All 12 open source packages completed both tiny and
small input datasets. The small graph is an undirected graph
with 32K vertices and 256K edges. Execution times and per-
formance results for all packages are plotted in Figure 2.
There are four orders of magnitude difference in perfor-
mance from top to bottom for each benchmark. STINGER,
MTGL, and Boost consistently rank among the highest per-
formers. NetworkX is the only Python package in the set, but
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Figure 3: Time taken to compute benchmark algorithms

outperforms the various Java-based packages in all but the
PageRank test. SQLite is a traditional relational database,
but performs well in the SSSP and PageRank tests. However,
updates and connected components were among the lowest
performers. Giraph was the highest performing Java imple-
mentation in all but the SSSP tests.

Increasing the number of edges by a factor of 32 to
approximately 8 million edges, only 9 of the original 12
packages successfully completed all of the benchmark tests.
Execution times and performance results for all packages are
plotted in Figure 3. There are still four orders of magnitude
difference in performance among the remaining packages.
STINGER, MTGL, Boost, Giraph, and NetworkX represent
the top five performers in each of the four benchmark tests.

Increasing the number of edges an additional factor of
16 to approximately 135 million edges, only 5 of the orig-
inal 12 packages successfully completed all of the bench-
mark tests. Execution times and performance results for all
packages are listed in Table 2. The performers of the large
tests are four out of top five performers of the medium tests
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on the medium graph (1M vertices and 8M undirected edges).

SSSP NY PR Update
Boost 114 782 989 865,000
Giraph 29.6 476 2,950 280,000
MTGL 127 16.2 14,200 246,000
Pegasus 826 2,390 4,680 11,200
STINGER | 735 552 161 2,530,000

Table 2: Algorithm performance results on the large graph
(16M vertices and 128M undirected edges). Update results
are in updates per second. All others in seconds. Packages
not shown could not complete the benchmark.

and Pegasus, which runs on top of Apache Hadoop. In most
circumstances, the PageRank computation is at least one or-
der of magnitude slower than both other algorithms. Both
PageRank and Shiloach-Vishkin are iterative algorithms, al-
though the number of iterations for PageRank is limited to
30, while Shiloach-Vishkin often converges in fewer than
10 iterations on scale-free networks. All four algorithms are



known to have large numbers of irregular memory accesses,
which can lead to poor cache performance.

4. Conclusions

Graph-based approaches to big data are emerging as a hot
topic, and many open source efforts are under way. The goal
of each of these efforts is to extract knowledge from the data
in a more flexible manner than a relational database. Many
approaches to graph databases build upon and leverage the
long history of relational database research.

Our position is that graph databases must become more
“graph aware” in data structure and query language. The
ideal graph database should understand analytic queries that
go beyond neighborhood selection. In relational databases,
the index represents pre-determined knowledge of the struc-
ture of the computation without knowing the specific input
parameters. A relational query selects a subset of the data
and joins it by known fields. The index accelerates the query
by effectively pre-computing a portion of the query.

In a graph database, the equivalent index is the portion
of an analytic or graph algorithm that can be pre-computed
or kept updated regardless of the input parameters of the
query. Examples include the connected components of the
graph, algorithms based on spanning trees, and vertex statis-
tics such as PageRank or clustering coefficients. A sam-
ple query might ask for shortest paths vertices, or alterna-
tively the top k vertices in the graph according to PageRank.
Rather than compute the answer on demand, maintaining the
analytic online results in lower latency responses. While in-
dices over the properties of vertices may be convenient for
certain cases, these types of queries are served equally well
by traditional SQL databases.

While many software applications are backed by databases,
most end users are unaware of the SQL interface between ap-
plication and data. SQL is not itself an application. Likewise,
we expect that NoSQL is not itself an application. Software
will be built atop NoSQL interfaces that will be hidden from
the user. The successful NoSQL framework will be the one
that enables algorithm and application developers to im-
plement their ideas easily while maintaining high levels of
performance.

Visualization frameworks are often incorporated into
graph databases. The result of a query is returned as a visu-
alization of the extracted subgraph. State-of-the-art network
visualization techniques rarely scale to more than one thou-
sand vertices. We believe that relying on visualization for
query output limits the types of queries that can be asked.
Queries based on temporal and semantic changes can be dif-
ficult to capture in a force-based layout. Alternative strate-
gies include visualizing statistics of the output of the algo-
rithms over time, rather than the topological structure of the
graph.

With regard to the performance of disk-backed databases,
transactional guarantees may unnecessarily reduce perfor-
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mance. It could be argued that such guarantees are not nec-
essary in the average case, especially atomicity and dura-
bility. For example, if the goal is to capture and analyze a
stream of noisy data from Twitter, it may be acceptable for
an edge connecting two users to briefly appear in one di-
rection and not the other. Similarly, in the event of a power
failure, the loss of a few seconds of data may not signifi-
cantly change which vertices have the highest centrality on
the graph. Some of the databases presented here seem to
have reached this realization and have made transactional
guarantees optional.
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