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Abstract—Betweenness Centrality is a widely used graph
analytic that has applications such as finding influential people
in social networks, analyzing power grids, and studying protein
interactions. However, its complexity makes its exact computation
infeasible for large graphs of interest. Furthermore, networks
tend to change over time, invalidating previously calculated
results and encouraging new analyses regarding how centrality
metrics vary with time.

While GPUs have dominated regular, structured application
domains, their high memory throughput and massive parallelism
has made them a suitable target architecture for irregular,
unstructured applications as well. In this paper we compare and
contrast two GPU implementations of an algorithm for dynamic
betweenness centrality. We show that typical network updates
affect the centrality scores of a surprisingly small subset of the
total number of vertices in the graph. By efficiently mapping
threads to units of work we achieve up to a 110x speedup over a
CPU implementation of the algorithm and can update the analytic
45x faster on average than a static recomputation on the GPU.

[. INTRODUCTION

The exploding popularity of online social networking has
created a profound demand for high performance, scalable
graph analytics. A particularly popular set of analytics attempt
to measure centrality, or the importance of a given degree
in its network. Such analyses can be used for contingency
analysis for power grid component failures [1] or to find the
best locations for stores within cities [2].

Architectural improvements haven’t been fast enough to
keep up with the demand for faster calculation of these
analytics. In addition, many networks of practical interest are
rapidly changing with time, exacerbating this issue. Hence, it
is crucial for algorithms to be able to update analytics rather
than recompute them. A lack of dynamic graph analytics in the
literature leads to frameworks that perform static computations
for graphs at different points in time. Repetitive static com-
putations are wasteful since updates to the analytic typically
only require computation on a small subset of the graph. The
tremendous volume of updates to social networks and the web
demands a high throughput solution that can process many
updates in a given unit time. Thus the construction of dynamic
graph analytics on the GPU is particularly useful for these
applications. Although there has been recent work regarding
irregular GPU computations [3], to our knowledge this paper
is the first attempt to implement a dynamic graph computation
on the GPU.
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The key contributions of this paper are summarized below:

e  We present several GPU implementations of dynamic
betweenness centrality, the best of which can get
significant speedup over 1) a CPU version of dynamic
betweenness centrality and 2) the full recomputation
of betweenness centrality on the GPU for a diverse set
of graphs.

e  We provide an analysis of the frequency of the various
scenarios that can occur when updating the graph
and how each of these scenarios affect performance.
Furthermore, we analyze the portion of the graph
affected by each update and show that efficiently
mapping threads to units of work is paramount to
obtaining high performance.

e  We analyze node and edge-based parallelism for our
algorithm, noting that although edge-based parallelism
has greater memory throughput, node-based paral-
lelism has less contention over shared resources. Since
the typical number of vertices to be processed at a
particular instant is much less than the total number
of edges in the graph, the node-based approach scales
better and sees better performance characteristics over-
all.

The rest of the paper is organized as follows. Section 2
focuses on a large amount of related work involving static
and dynamic methods for calculating betweenness centrality.
Section 3 presents our algorithms for dynamic betweenness
centrality on the GPU and discusses performance optimization.
Section 4 presents the benchmark graphs and target architec-
ture used for this study. Section 5 presents our experimental
results and analyses. Finally, section 6 concludes and discusses
future work.

II. RELATED WORK

Betweenness centrality (BC) ranks the importance of a
given vertex based on the number of shortest paths on which
this vertex lies. Contemporary applications of betweenness
centrality involve the study of AIDS within sexual networks
[4], lethality in biological networks [5], community detection
[6], and the analysis of the human brain [7]. The following
subsections review various algorithms for computing static and
dynamic betweenness centrality for large graphs.
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A. Definitions

Given a graph G = (V, E) with a set V of n = |V/| vertices
and aset E C VxV of m = |E| edges we define the following
metrics. Let d(¢) be the distance of the shortest path from the
source vertex s to vertex ¢ as is found by a Breadth-First Search
(BFS). By definition ds(s) = 0. Let o represent the number
of shortest paths starting at vertex s and ending at vertex t.
Next, let o5 (v) denote the number of such shortest paths that
pass through a particular vertex v. The betweenness centrality
of a given vertex v can now be defined as:

BC(w)= Y. Ist(v) 1)

g
s#Et#v st

Note that this metric is computationally intensive, as it
requires the solution of the all-pairs shortest paths problem.
Intuitively, the BC score of a vertex implies how often it is
used as a connection on the shortest path of pairs of other
vertices. Typically the vertices with the highest BC scores are
of particular interest and the relative ranking of the vertices
tends to be more informative than the magnitude of their scores

[8].

B. Brandes’s Algorithm

The fastest known sequential algorithm for computing
betweenness centrality was presented by Brandes in 2001 [9].
He defines the dependency of a vertex v for a given source
node s as:

O’S’U

ds(v) =
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In other words, the dependency of v is a function of the
dependency of its immediate successors w. This recursive
relationship allows for an efficient computation that avoids
unnecessary additions from vertices that are not on shortest
paths [10]. Using this definition, the BC score of a given vertex
v can be computed as:

BC(v) =) 6,(v) 3)

s#v

Algorithm 1 shows Brandes’s approach to computing exact
BC scores. For each node s in the graph, three stages are
processed:

1)  Initialization
2)  Shortest Path Calculation
3) Dependency Accumulation

The first of these stages initializes local data structures. These
data structures include a queue and stack for keeping progress
during the later stages, a list of immediate predecessors for
each element, the distance (d) of each element from the current
root, the number of shortest paths (o) from the root to each
element, and the dependency (9) of each element. The second
stage is a Breadth-First Search (BFS) traversal that starts at
the current root and finds the distance and the number of
shortest paths from the current root to all other roots. Finally,

the third stage visits nodes in the reverse order of the BFS
traversal and finds the fraction of shortest paths that pass
through each particular vertex out of all shortest paths. For
undirected graphs, the algorithm has O(mmn) time complexity
and O(m + n) space complexity.

Algorithm 1: Static Betweenness Centrality (Brandes)
[9]

1 BCv] « 0,Yv eV

2 for s €V do

3 Stage 1: Initialization

4 S + empty stack; ) < empty queue
Plw] + empty list, Yw € V

5 d[t] + oo, Vt e V

6 d[s] <0

7 olt] < 0,Vt eV

8 ofs] + 1

9 0[t] - 0,vt eV

10 Stage 2: Shortest Path Calculation

1 Q.enqueue(s)

12 while !Q.empty() do

13 v Q.dequeue()

14 S.push(v)

15 for w € neighbors(v) do

16 /Iw found for the first time?

17 if d[w] = oo then

18 Q.enqueue(w)

19 L dlw] « d[v] +1

20 //Shortest path to w via v?

21 if d[w] = d[v] 4+ 1 then

22 ow] « ofw] 4+ o[v]

23 Plw].insert(v)

24 Stage 3: Dependency Accumulation

25 while !S.empty() do

26 w < S.pop()

27 for v € Plw| do

28 t 3lv] < olv] + 2 (1 + oluw])

29 if w # s then

30 | BClw] < BC[w] + d[w]

Since exact centrality computation on current workstations
is infeasible for large-scale graphs, a number of methods for
approximating BC scores have been proposed. One of these
methods is to choose a subset of vertices to process in the
outermost for loop (line 2) of Algorithm 1 [11]. Since the
iterations of this for loop can all be processed in parallel, this
approach scales well on multiple processors and is used to
calculate BC scores for large graphs in this paper. If £ nodes
are chosen as source nodes (i.e. nodes to be processed in the
outermost for loop of Algorithm 1) then the time complexity
for approximating BC scores reduces to O(mk). Since k < n,
approximating the algorithm can be significantly faster than
computing it exactly, depending on the values of k£ and n. For a
detailed analysis regarding the accuracy of this approximation,
we refer the reader to [11].
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C. Parallel Implementations

Parallelism is another way to reduce the high computational
cost of centrality metrics. Sariyiice et al. propose a heteroge-
neous implementation that extracts vertices of degree 1 from
the graph, showing that only minor modifications to the calcu-
lation are necessary after this removal [12]. Jia et al. propose
a GPU implementation of betweenness centrality in [13]. The
work of Jia et al. investigates the difference in performance
between node and edge-based parallelism, concluding that
edge-based parallelism gets better memory throughput and thus
better performance. We revisit this comparison for our dynamic
algorithms in Section III. The optimal number of CUDA thread
blocks was also investigated, but in less detail. The authors
concluded that the optimal number of thread blocks is the
number of Streaming Multiprocessors (SMs) on the GPU.
Conventional wisdom with regard to GPU programming says
that each SM should have multiple active thread blocks [14];
however, the claim from [13] seems to suggest that this strategy
isn’t ideal for irregular algorithms since the memory bus will
become saturated.

To substantiate this claim and determine the best ratio of
thread blocks to SMs we run a static (and exact) between-
ness centrality computation for a varying number of thread
blocks and compare performance. We use three graphs from
the DIMACS challenge as our input [15], using the largest
graphs that are still feasible for an exact computation with
contemporary hardware (i.e. graphs with tens of thousands of
vertices). Figure 1 shows the speedup of static betweenness
centrality relative to using one thread block for two GPUs: a
GTX 560 with 7 SMs and a Tesla C2075 with 14 SMs. It
is clear that the best performance is obtained by setting the
number of thread blocks to be equal to the number of SMs
or a multiple thereof, as concluded in [13]. For the graphs
that we tested, we found that the performance of having one
thread block per SM was slightly faster or about the same
as the performance of having multiple thread blocks per SM.
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Hence we delegate one thread block per SM for the algorithms
presented in the upcoming sections.

D. Dynamic Approaches

Three different algorithms for dynamic betweenness cen-
trality have been proposed in recent literature. Lee et al.
propose QUBE, an algorithm that updates BC scores by
determining which vertices have BC values that may change,
thus avoiding the full all-pairs shortest paths computation [16].
Kas et al. use a Java-based graph library to improve upon
this result by directly updating the auxiliary data required
by the algorithm [17]. Finally, Green et al. provide a high-
performance implementation along with formal proofs and
algorithms for the various scenarios that can occur when
inserting or removing an edge [10]. Note that all of these
approaches are sequential, making our implementation the first
parallelized version of dynamic betweenness centrality. Our
implementation in this paper will most closely resemble the
approach by Green et al. [10].

1) Update Scenarios: In this section the various scenarios
for updating betweenness centrality scores are discussed in
detail. Readers interested in formal proofs can find them in
[10]. We restrict our focus to edge insertions since many real-
world networks only experience growth and do not shrink. For
example, graphs resembling co-authorship will only expand
as time progresses. Furthermore, it has been shown that edge
removal updates require similar algorithmic techniques to edge
insertion updates [16]. Thus, the lessons learned from focusing
on edge insertions are directly applicable to edge deletions.
It is also noteworthy that a node insertion causes no change
to existing BC scores. A newly inserted node belongs to its
own connected component (equivalently, has no incoming or
outgoing edges) and thus has a BC score of 0. The new node
will only affect the BC scores of other nodes once edges
connect the new node to other connected components in the
network.

To update the BC scores, we must store supplemental
global data to the scores alone. For each source vertex s,
the variables d;(t), o5, and 04(t) are preserved V¢ € V.
This added storage increases the space complexity to O(n?)
for exact BC computation and O(kn) for approximate BC
computation using k source vertices; however, as we will show
in Section V the performance gain is well worth the extra
space.

Formally, an edge insertion e = (u, v) creates a new graph
G’ = (V,E') where E' = E U {e}. For each source vertex,
one of the following three scenarios will occur, depending on
the relation between u and v before the edge is inserted:

Case 1: |ds(u) — ds(v)| = 0. The nodes connected to
the inserted edge are the same distance from the source
node. In terms of performance, this scenario is ideal
because no additional work needs to be done for this
source vertex (the other source vertices may require
work, however). The reason that no additional work
needs to be done is that the distances of » and v from
the source do not change and no additional shortest
paths are created. Note that this case can actually
occur for two slightly different reasons: one when u,
v, and s all belong to the same connected component
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Fig. 2. Distribution of scenarios for the graphs used in this study

and another when neither u nor v belongs to the same
connected component as s.

Case 2: |ds(u) — ds(v)| = 1. The nodes connected to
the inserted edge are on adjacent levels. While none
of the distances from the source vertex will change,
it is possible that the number of shortest paths have
changed and thus centrality scores may also change.

Case 3: |ds(u) — ds(v)| > 1. The nodes connected
to the inserted edge are greater than one level apart.
In this case distances from the source vertex will
change and shortest paths may have changed. Hence,
centrality scores will need to be updated. Note that
this case can actually occur for two slightly different
reasons: one when u, v, and s all belong to the
same connected component and another when either
u or v (but not both) belong to the same connected
component as s.

Figure 2 motivates the importance of the implemenation
for Case 2 with regard to overall performance of the dynamic
analytic. For each edge insertion, each source node will face
one of the three scenarios previously described. The data in
Figure 2 reflects 100 edge insertions for each input graph. For
each edge insertion, every source node in the graph faces one
of the three scenarios described above. Therefore if k source
nodes are used to approximate the BC scores of 100 edge
insertions there will be 100k scenarios distributed among the 3
cases described above (up to 100n for the exact computation).
Figure 2 shows how these distributions vary for the set of
graphs used in this study. Recall from above that for Case 1,
no work needs to be done. We can see that Case 2 represents
37.3% of all scenarios and 73.5% of the scenarios that require
actual work (Cases 2 and 3) for this set of graphs. Hence, for
the rest of this paper we focus our analysis on Case 2, noting
that our techniques generalize and can be applied to Case 3
and, oftentimes, parallel graph algorithms in general.

Algorithm 2 from Green et al. [10] shows how to update
the intermediate variables and centrality scores for Case 2.
In addition to d, o, and 9, a few additional variables are
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Algorithm 2: Dynamic Betweenness Centrality Case 2
(Green et al.) [10]

N-EE-CIEE - Y N N

e e <
o XN R W N =D

20

21
22
23
24
25
26
27
28
29

30

31
32

33

34
35

Input: Source node s and an inserted edge from u;oy,
to Upigh
Stage 1: Initialization
Q@ < empty queue
QQllevel] < empty queue, level =0,1,...
t[v] < untouched,Yv € V' \ {uiow}
tHurow] < down
] + o], Vo € V\ {wiow
(?[ulow] — U[ulow} + U[uhigh]
ov] - 0,Yv eV
Stage 2: Shortest Path Calculation
Q.enqueue(uyyy)
QOld[u1ow]]-enquene(Uow)
while !Q.empty() do
v Q.dequeue()
for w € neighbors(v) do
if djw] = d[v] + 1 then
if t[w] = untouched then
L Q.enqueue(w)

QQId[w]].enqueue(w)
lw] < ow] + (6[v] — olv])

,n—1

t{w] < down

Stage 3: Dependency Accumulation
while level > 0 do
while |QQ[level].empty() do
w 4+ QQ.dequeue()
for v € neighbors(w) do
if dfw] = d[v] + 1 then
if t[v] = untouched then
QQllevel — 1].enqueue(v)
t[v] < up
o[v] < d[v]
&[v]

b1v] - 8Ju] + 2 (1 + b[u))

if t[ } =upA (U T Uphigh V W 7é Ulmu)
then

Lﬂﬂ%ﬂﬂ—
if w # s then R
| BClw] + BClw] + bw] — §[w]

(1 + 6[w))

| level < level — 1

o] < o],V eV
for v e V do
if t[v] = untouched then

L5 ] 8]




introduced. Let t,, denote the stage of the update algorithm
in which some vertex v was found. If ¢, = down then v
was found in the shortest path (downward) calculation stage,
if ¢, = up then v was found in the dependency accumulation
stage, and if ¢, = untoyched then v was not found in either
stage. Also, let 55, and d5(v) be the updated values of o, and
0s(v) after the insertion, respectively. Note that the algorithm
takes the source node s as well as the endpoints ;0.,, and up;gn
of the inserted edge. Since o, and upign belong to adjacent
levels, one of them must be closer to s than the other. We refer
to this closer node as being “higher” up in the BFS tree of s
and hence call it up;gp. Similarly, the other endpoint of the
edge is “lower” in the BFS tree of s so we refer to it as -

Lines 1 through 8 initialize these data structures. Note that
a multi-level queue (QQ) is used in lieu of a stack because
it is possible for nodes to be added to this “stack™ in the
dependency accumulation stage. The level order of the BFS
tree from the source node s must be preserved as nodes are
processed in the dependency accumulation stage. Processing
in this stage begins with nodes that are the farthest away from
s. If a node v at level ¢ is pushed onto a stack rather than a
multi-level queue in line 28 by a node w at level ¢ + 1, the
next node to be popped would be v instead of the remaining
nodes at level ¢ + 1 that have yet to be processed but must
be processed first for correctness. Line 7 records the updated
number of shortest paths for u;,,, due to the edge insertion.
Since an edge is inserted from ;g5 tO Uoy all of the shortest
paths that pass from s to wupig, must also pass through .
(because the new edge is the shortest path from up;gn 10 Ujow)-
Therefore &{uq, ] is initialized to ouiow] + o [Unigh]-

Lines 9 through 20 update the number of shortest paths
from s to all other nodes due to the insertion of the new
edge. Since we know that the number of shortest paths for
nodes between s and up;q, Will not change, we can start the
BFS traversal downward from w;,,,. Note that this approach
does not explicitly store predecessors as is done in line 23
of Algorithm 1. Instead, the dependency accumulation stage
looks at all neighbors of nodes popped from the multi-level
queue and checks to see that a given neighbor is a predecessor
before subsequent processing (line 26). Although this method
generates some additional work it has been shown to save
O(E) memory in addition to showing speedups in practice
[18].

Finally, lines 21 through 40 update the BC scores of
each node. Since the preceding stage potentially changed the
number of shortest paths from the root s to other nodes and
since the dependency is a function of the number of shortest
paths, the values of the dependency will potentially change
as well. Line 31 adds the correct contribution of w to the
dependency of it’s predecessor v and line 33 subtracts out the
prior contribution of w to the dependency of v, which is now
incorrect due to the edge insertion. Lines 37 through 40 copy
the updated (local) values of shortest paths and dependency to
global variables to be used for the next update.

III. DYNAMIC BETWEENNESS CENTRALITY ON THE GPU

In this section we present several of our GPU implementa-
tions for dynamic betweenness centrality computations. Since
figuring out which case each source node has to compute
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is trivial, we focus on the algorithmic challenges of the
cases themselves. Again, our discussion focuses on Case 2
(edge insertion between nodes on adjacent levels) due to the
motivation from Figure 2 and its discussion in the previous
section.

Similar to previous work [13], we assign the maximum
number of threads per block and set the number of thread
blocks to be equal to the number of streaming multiprocessors
for all kernels. Each thread block takes advantage of the
available coarse-grained parallelism by handling independent
source vertices while the threads within a block take advantage
of fine-grained parallelism by traversing graph edges and
updating state concurrently.

Algorithm 3: Kernel for initialization of local variables

Input: Source node s and endpoints o, and upign of
the inserted edge
Stage 1: Initialization
for v € V do in parallel
if v = u;,,, then
t[v] < down
L o[v] ¢ ov] + olunign]
else

L

| d[v] «- 0

L S T S

=)

t[v] <+ untouched
Gv] + ofv]

Figure 3 illustrates this concept. To approximate BC, a
subset of the graph’s vertices are chosen at random and used as
root nodes for shortest path calculations (shown as the unfilled
vertices of the input graph in Figure 3). Each Streaming
Multiprocessor (SM) takes one source vertex and performs
a BFS to calculate the number of shortest paths from that
vertex to all other vertices in the graph. These shortest path
calculations are independent among SMs and can hence be
performed in parallel without communication overhead. The
dependency accumulation stage is also independent among
SMs with the exception of the final update to the BC value
itself. To update the global array holding the BC scores each
SM adds its changes atomically, preventing data races. Since
GPUs currently tend to have a small number of SMs (< 50)
and since these additions are not necessarily performed con-
currently (because one SM can finish its updates independently
of the others), there is little contention for global memory
resources for these atomic additions. Thus the use of atomic
operations in this instance is admissible as it has negligible
overhead.

Throughout this section we compare two approaches of
fine-grained parallelism: edge-based and node-based. Edge-
based parallelism assigns one thread to each edge in the
graph, which results with a greater number of work units that
consist of a small, roughly equivalent amount of work. Node-
based parallelism, on the other hand, assigns one thread to
each vertex in the graph, which results in fewer work units
that have varying size. Note that both methods use the same
number of threads, but map threads to work differently. Since
there are typically more vertices and edges in a graph than
available threads, each thread will process multiple units of
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work. For example, if there are 1000 available threads and
4000 edges in the graph, the edge-based method will provide
each thread with 4 edges to process. The edge-based approach
has better load balancing and has been shown to generate
greater memory throughput for static betweenness centrality
on the GPU [13] whereas the node-based approach has less
contention over shared resources. Both of these approaches
initialize local variables in parallel in the same way, as shown
in Algorithm 3.

A. Updating the Number of Shortest Paths

Algorithm 4: Edge-based Parallel Shortest Path Calcu-
lation Kernel
Input: Source node s and endpoints ujo,, and wpign of

the inserted edge
Stage 2: Shortest Path Calculation
shared current_depth < d[ujow]
shared done « false
while !done do
done <« true
for (v,w) € E do in parallel
if d[v] = current_depth then

if d[w] = current_depth + 1 then
if t[w] = untouched then
t{w] + down
L done < false

atomicAdd(&é|w], 6[v] — o[v])

barrier()
current_depth < current_depth + 1

Algorithm 4 shows GPU pseudocode to update the number
of shortest paths from the source node s to all other nodes in
the graph using edge-based parallelism. The shared keyword is
used to denote variables that are explicitly stored in the GPU’s
fast scratchpad (or shared) memory. Threads within an SM will
see the same value of shared variables while threads belonging
to different SMs will not. Note that explicit queues aren’t
necessary as shared memory and synchronization are used
to ensure that vertex frontiers (depths) are processed in the
correct order. It is possible for multiple threads to successfully
execute Line 10 and set t[w] to down, leading to a data race;
however, this data race is considered benign as it has no effect
on program output. Line 12 requires an atomic (serialized)
write to 6[w] to prevent a data race. Otherwise, this calculation
is exactly the same as the one in Line 20 of Algorithm 2.

Alternatively, Algorithm 5 shows GPU pseudocode that
achieves the same result using node-based parallelism. We
introduce three different arrays that act as queues in lines 2-
6. The @) array holds nodes that are being processed in the
current level of the BFS traversal. The (2 array is used to hold
vertices found in the current level of the BES traversal. These
vertices are transferred to () (line 26) and are explored in the
next level of the BFS traversal. Separate queues are necessary
because all nodes at the current level must be processed before
any nodes at the following level are to be processed to ensure
correctness. Finally, the Q@) array holds nodes that are to be
processed during the dependency accumulation, analagous to
the multi-level queue used in Algorithm 2.



Algorithm S: Node-based parallel Shortest Path Calcu-
lation Kernel
Input: Source node s and endpoints o, and wpigpn Of
the inserted edge
1 Stage 2: Shortest Path Calculation
2 shared current_depth < d[ujow]
3 Q[O] & Ulow
4 Qlen «—1
5 Qzlen +~0
6 QQIO] < 0w
7 QQlen «—1

8 while true do

9 for tid < 0...Qjcn, — 1 do in parallel

10 v Q[tid]

1 for w € neighbors(v) do

12 if d[w] = d[v] 4+ 1 then

13 if t{w] = untouched then

14 t{w] < down

15 i+ atomicAdd(&Q2en, 1)
16 Q2[i] + w

17 atomicAdd(&aw], 6[v] — olv])
18 barrier()

19 if Q2;c,, = 0 then

20 | break

21 else

22 remove_duplicates(Q2, Q2ien)

23 Qlen — Qzlen

24 Q2en < 0

25 for tid + 0...Qen — 1 do in parallel
26 Q[tid] + Q2[tid]

27 i < atomicAdd(&QQien, 1)

28 QQ[i] + Q2[tid]

29 barrier()

30 for v € V do
31 | atomicMax(&current_depth, d[v])

Using this approach, the number of threads needed to
process an iteration is simply the number of nodes that
currently reside in ) (which is stored in the variable Q). In
contrast, the edge-based parallel approach spawns |E| threads
for every level of the search, regardless of the amount of
work needed to be done. Hence the edge-based approach,
despite being conceptually simpler and more convenient to
program, generates significantly more accesses to memory,
most of which are futile.

It is important to recognize that ()2 may have duplicate
entries whereas ) and Q@) will not. An atomic operation could
be used to test and set ¢[w] on line 13, ensuring that only one
thread places w into ()2 on line 16. We avoid this atomic
operation by allowing multiple threads to insert the same
node into @2 and removing duplicate entries from (2 (line
22) before transferring Q2 to () for the next iteration of the
search. Note that we pass Q2. to the remove_duplicates()
subroutine because the removal of duplicates reduces the size
of the queue. Duplicate entries are removed from ()2 by the
following procedure (similar to Merrill et. al [19]):

1) Sort the elements of 2. In our implementation we
use bitonic sort, though we consider this choice to
have a negligible impact on performance because
Q2cr, is typically much smaller than n.

2)  Compare the value at index ¢ — 1 from the value at
index ¢ of the sorted array. Using an additional array,
mark index ¢ with the value true if the compared
values are equivalent. Else, mark false. This output
represents which indices of Q2 correspond to unique
elements.

3)  Perform a prefix sum on the above result to determine
which indices into ) each corresponding unique
element of Q2 should be placed and to find the
number of unique entries in the queue (i.e. Qe for
the next search iteration).

After the above procedure, the unique entries in Q2 are
transferred to ) for the next BFS iteration (line 26). These
entries are also added to Q@ (line 28) for the dependency
accumulation stage. Lines 30 and 31 set the appropriate
distance of the furthest processed vertex from s as the starting
point of the dependency accumulation method discussed in the
next section.

Algorithm 6: Edge-based Parallel Dependency Accumu-
lation Kernel
Input: Source node s and endpoints o, and upigp of
the inserted edge

1 Stage 3: Dependency Accumulation

2 while current_depth > 1 do

3 for (v,w) € E do in parallel

4 if d[v] = current_depth then

5 if d[w] = current_depth — 1 then

6 dsv <0

7 if atomicC AS(&t[v], untouched, up) =
untouched then

8 | dsv ¢+ dsv +d[v]

9 dsv < dsv + g[[sj]] % (14 8[w])

10 if tv] = up A (v # Upigh V W # Uiow)
then

11 t dsv <+ dsv — (‘:[[Z]] # (1 + o[w])

12 B atomicAdd(&d[v], dsv)

13 bc:rrier()

14 | current_depth < current_depth — 1

B. Updating the Dependency Accumulation

Once the shortest path calculation has been updated, it
remains to update the dependencies and the BC scores them-
selves. Algorithm 6 shows an edge-based parallel implementa-
tion of the dependency accumulation. Continuing from where
Algorithm 4 left off, vertices of decreasing distance from the
source are processed one level at a time. Line 7 requires
an atomic operation that ensures that only the first thread
to attempt to successfully set ¢, = wup executes Line 8.
The atomicC AS() function does an atomic compare and
swap. If t[v] = untouched, the function sets t[v] = up and
returns untouched. Otherwise, the function doesn’t change the
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contents of ¢[v] and returns the value of t[v] provided to the
function, causing the if statement on Line 7 to evaluate to
false so that Line 8 will not execute. The register dsv is used
to accumulate all changes to d[v] brought upon by w so that
only one atomic addition (Line 12) to update 0[v] is necessary.

Algorithm 7: Node-based parallel Dependency Accumu-
lation Kernel
Input: Source node s and endpoints o,y and wupigp Of
the inserted edge

1 Stage 3: Dependency Accumulation

2 while current_depth > 1 do

3 for tid < 0...QQen — 1 do in parallel

4 w — QQItid)

5 if d[w] = current_depth then

6 for v € neighbors(w) do

7 if d[v] = current_depth — 1 then

8 dsv <0

9 if
atomicC AS (&t[v], untouched, up) =
untouched then

10 dsv < dsv + 0[]

11 i + atomicAdd(&Q2en, 1)

12 QQ[Z + QQlen] =0

13 dsv < dsv + ;[[Z]] % (1 + 6[w])

14 if
t[’l}] =upA (’U 7& Uhigh Vuw 7& ulow)
then

15 t dsvedsvf%*(1+6[w})

16 atomicAdd(&6[v], dsv)

17 barrier()

18 QQlcn « QQlcn + Q2lcn

19 Q2en < 0

20 current_depth < current_depth — 1

The corresponding node-based parallel dependency accu-
mulation is shown in Algorithm 7. To simulate the multi-level
queue seen in Algorithm 2 we place processed vertices from
all levels of the BFS traversal into one array (@), as shown in
Algorithm 5. To process this array in level synchronous order,
we have threads extract vertices from the array and check if
the level of the extracted vertices matches the current level that
is to be processed, as shown on line 5. If we find a node that
wasn’t touched in the shortest path calculation stage we can
safely add it to the end of Q@ (line 12) and safely process
it concurrently with other nodes at its level because of this
check. Again, since only Q.. threads are performing work
whereas |F| threads are performing work in the edge-based
approach, the node-based approach exhibits significantly less
memory traffic. Since QQjen, is the number of nodes to be
processed at all levels and not just the current level, even
the node-based approach performs some unnecessary work.
However, we will show in Section V that the amount of this
extra work is tremendously small in virtually all cases.

Once the dependency accumulation kernel is complete the
updated values of the dependency are used to adjust the
BC scores and the local variables 6 and § are copied to
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Algorithm 8: Kernel to update global variables

Input: Source node s and endpoints o,y and upigpn of
the inserted edge
1 for v € V do in parallel
2 if v # s A t[v] # untouched then
3 | atomicAdd(&BC|v],[v] — 8[v])

o] + &[v]
if {[v] # untouched then
| o[v] + O[]

X &

their respective global variables o and  for the next update.
Algorithm 8 shows how to perform this task in parallel. Similar
to the initialization in Algorithm 3, both the edge and node-
based approaches complete this task in the same way.

IV. EXPERIMENTAL SETUP

Table I shows the graph inputs used throughout this study.
Again, we focus on approximate calculation of betweenness
centrality since we are interested in the analysis of large
graphs. The graph data was downloaded from the 10th DI-
MACS challenge [15]. These graphs were chosen based on
size, diversity, and relevance to dynamic graph analytics. The
set of graphs consists of real-world and random graphs and
different classes of graphs are represented, such as small-world
and scale-free graphs.

Single-threaded CPU experiments are implemented in C++
and compiled with gcc -03 -std=c++0x flags and GPU
experiments are implemented using CUDA and compiled with
nvce —-03 —arch=sm_21 flags. The CPU used in this
study is an Intel Core i7-2600K Processor running at 3.4GHz
with an 8MB cache and 16GB of DRAM. The GPU used
in this study is an Nvidia Tesla C2075 with 14 streaming
multiprocessors each consisting of 32 stream processors that
run at 1.15 GHz. The Tesla C2075 has 6GB of GDDRS
memory and has compute capability 2.0.

For each dynamic computation, 100 edges are chosen at
random to be removed from the graph, similar to the ap-
proaches used in [16] and [17]. These edges are then reinserted
into the graph one at a time and the analytic is updated. We
choose k£ = 256 source nodes for approximation of BC, also
at random, following the guidelines of the DARPA Scalable
Synthetic Compact Applications (SSCA) benchmark suite [22].
To ensure that the proposed experiments are fair, the BC scores
are approximated by all implementations: the dynamic CPU
baseline from Green et al. [10], our dynamic node and edge
parallel GPU algorithms, and the static BC computation on the
GPU from Jia et al. [13]. For each experiment we compare
the results of the baseline and our algorithms to ensure that
both yield the same results. We neglect the cost of updating
the graph, choosing to focus on the design and performance of
the analytic itself. Several techniques for dynamically updating
graph data structures at a small amortized cost are disccused
in [23].

V. EXPERIMENTAL RESULTS

Table II shows the speedup of our dynamic GPU BC
implementations over the dynamic sequential CPU algorithm



TABLE 1.

SUITE OF BENCHMARK GRAPHS

this result. It is clear that the edge-based approach does not
scale well to larger graphs because the amount of unnecessary
work that it performs grows with the size of the graph. Since
the edge-based approach assigns one thread for every edge
in the graph and since only a small subset of edges need to
be traversed for a specified iteration, the edge-based approach
ends up with many threads that perform an unnecessary com-
parison for a branch instruction along with the loads it depends
on. In contrast, the node-based method assigns one thread for
every element in the queue being processed. In the shortest
path calculation stage each of these elements has necessary
work to complete, which means that this thread mapping
is perfectly work efficient. In the dependency accumulation
stage only a subset of these elements have necessary work
to complete although the size of the queue is O(n) (and in
practice typically much smaller than n), which is significantly
less than the number of edges in the graph, particularly for
sparse graphs. Hence the node-based approach still provides a
notably better mapping of threads to units of work. The node-
based method performs well even for scale-free graphs such
as preferentialAttachment with power-law degree distributions
that can lead to severe workload imbalance among threads. We
can see that our node-parallel GPU approach is up to 110x
faster than the sequential CPU approach for the set of graphs
used in this study.

In addition to providing speedups over a single-threaded
CPU implementation of the dynamic algorithm, our approach
also provides high performance in comparison to a full re-

\ Name | Vertices | FEdges | Significance |
caidaRouterLevel (caida) 192,244 609,066 Internet Router Level Graph
coPapersCiteseer (coPap) 434,102 16,036,720 Social Network
delaunay_n20 (del) 1,048,576 | 3,145,686 Random Triangulation
eu-2005 (eu) 862,664 16,138,468 Web Crawl
kron_g500-simple-lognl9 (kron) | 524,288 | 21,780,787 Kronecker Graph
preferential Attachment (pref) 100,000 499,985 Scale-free [20]
smallworld (small) 100,000 499,998 Logarithmic Diameter [21]
TABLE II.  COMPARISON OF DYNAMIC CPU AND DYNAMIC GPU TABLE III.  COMPARISON OF NODE PARALLEL GPU UPDATES TO
ALGORITHMS GPU RECOMPUTATION
[ Graph [ CPU Time (s) [ Method | GPU Time (s) [ Speedup | [ Graph | Recomputation (s) [ Update (s) [ Speedup |
id 1749 98 Edge 84.79 20.64x Slowest: 0.3295 6.05x
cada : Node 15.85 110.41x caida 1.99 Average: 0.1585 12.58%
. Edge 762.81 1.41x Fastest: 0.0003 6095.09x
coPap 1080.81 Node 20.49 52.75x Slowest: 0.7242 | 4331x
Edge 4611.52 1.03x coPap 31.35 Average: 0.2049 153.02x
del 4762.75 Node 196.48 24.24x Fastest: 0.0003 94729.29x
Edge 591.20 6.75% Slowest: 10.8997 9.14x
eu 3991.27 Node 133 56.03x del 99.60 Average: 1.9648 50.69x
P L5 Fdge 166827 T17x Fastest: 0.0003 296436.91x
ron 1951.8 Node 81.54 23.94x Slowest: 3.0308 7.06x
21.40 Average: 0.7123 30.04x
Edge 62.73 6.07x e i
pref 380.77 Node 1038 36.68x ;astest. 0.0(:5038 6424‘:15.53)(
E 3014 12, owest: 1.565 T1x
small 360.82 Ng(gii 79 S50 - ii’i kron 38.69 Average: 0.8154 | 47.45x
: : Fastest: 0.2725 141.96x
Slowest: 0.5907 2.15x
pref 1.27 Average: 0.1038 12.24x
from Green et al. [10] for both the edge and node-based Fastest: 0.0603 21.07X
parallel methods. Wg can see that although the edg'e—based STowest: 0.0978 6.08x
parallel method can significantly outperform the CPU in some small 0.68 Average: 0.0720 9.48x
cases, the node parallel method substantially improves upon Fastest: 0.0350 19.49x

computation of the analytic on the GPU. Table III compares
the execution time of a static BC computation using the
implementation available from [13] to the slowest, average,
and fastest updates from our optimized node-parallel dynamic
algorithm. We can see that, even in the worst case for each
graph a dynamic update is faster than a static recomputation.
Intuitively this result makes sense because the number of edges
traversed by the static computation is an upper bound for the
number of edges that need to be traversed by the dynamic
computation.

The fastest updates occur when all source nodes see a
Case 1 scenario. Since the Case 1 scenario requires no work,
if all source nodes see this scenario then no source nodes
require work and the edge insertion has no effect on BC
scores. This ideal scenario took place for one or more of
the edge insertions for caidaRouterLevel, coPapersCiteseer,
delaunay_n20, and eu-2005. We can see from Table III that
these updates all took ~ 0.0003 seconds, which is simply the
amount of time necessary to discover that none of the BC
scores will change due to the insertion. The speedups seen
for this ideal case are essentially bounded by how long a
recomputation takes, which is heavily dependent on the size
of the graph. In contrast, the fastest cases for kron_g500-
simple-lognl9, preferentialAttachment, and smallworld require
updates to BC scores from one or more of the source nodes.
For example, the fastest edge insertion for kron_g500-simple-
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lognl9 led to a Case 1 scenario for 222 of the 256 source
nodes used for approximation, which means that the remaining
34 source nodes required significant amounts of work. Hence,
we see the large difference between the fastest cases between
the various input graphs.

More typically, many or even all source nodes can require
significant work. This result is more likely to occur in practice
because it is unlikely for two nodes to be on the same level
of a breadth-first search from the perspective of every other
node in the graph. However, even the slowest graph updates
are preferable to a full recomputation of the BC scores, with
speedups ranging from 2x to 43x for the graphs used in this
study. The key takeaway is that the updates can ignore the
portion of the graph between the root node and w4, When
counting the number of shortest paths as the insertion of an
edge below these vertices cannot create new shortest paths
from the root to these vertices. Depending on the distance
from the root node to the nodes connecting the inserted edge,
the number of shortest path computations that can be neglected
in this way can be very significant. Hence, the amount of time
that a given update takes in not solely dependent on how many
of the source nodes require work; it is also dependent on how
much work each of those source nodes requires. The scatterplot
in Figure 4 illustrates this concept. For each occurrence of a
Case 2 scenario in each graph we record the number of nodes
that are “touched” (i.e. {i € V | t[i] # untouched}). We
divide these counts by the total number of nodes in the graph
and sort them from least to greatest to see the distribution.

The results shown in Figure 4 are quite surprising. Of the
62,844 Case 2 scenarios encountered across the graphs used in
this study, the largest percentage of nodes that were touched
was approximately 35%. Perhaps even more surprising is that
a vast majority of the Case 2 scenarios touched an extremely
small portion of the graph, as evidence by the dense collection
of points toward the bottom of the figure. These results strongly
motivate the need for proper mapping of threads to units of
work in high performance algorithm design for dynamic graph
analytics. Through a combination of being able to detect when
updates to the graph will not affect BC scores and avoiding
unnecessary accesses to memory and redundant computation
when graph updates do affect BC scores we achieve an average
of a 45x speedup over a full recomputation of BC scores on
the GPU across all graphs used in this study.

VI. CONCLUSIONS

In this paper we compared two GPU implementations of
dynamic betweenness centrality, leveraging analyses from a
wealth of related work. To our knowledge, this is the first time
GPUs have been used for the analysis of time-varying graphs.
By comparing these two different decompositions of threads to
units of work, we show that keeping explicit track of the work
that needs to be done is a vastly superior strategy. Although our
approach uses atomic operations that serialize certain accesses
to memory, we show that these memory locations are typically
in low contention among threads because a surprisingly small
number of nodes are affected by each update. Our approach
achieves up to a 110x speedup over a CPU implementation of
the algorithm and can update the analytic 45x faster on average
than a static recomputation of the analytic on the GPU.
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Fig. 4. Portion of the graph that is touched for each Case 2 scenario

A multitude of opportunities exist to extend this area
of work. If a linear space dynamic betweenness centrality
algorithm exists, it would allow scaling of the techniques in
this paper to significantly larger graphs. Further performance
improvements can be attained with multi-GPU, heterogeneous,
or distributed implementations of this algorithm. The vast
amount of coarse-grained parallelism that exists should allow
for excellent strong scaling for such implementations. Finally,
there are plenty of other graph algorithms that can benefit from
either dynamic implementations or parallelism on multi-core
CPUs and GPUs.
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