
Load Balanced Clustering Coefficients

Oded Green
∗

Georgia Institute of
Technology

Atlanta, Georgia, USA

Lluís-Miquel Munguía
Georgia Institute of

Technology
Atlanta, Georgia, USA

David A. Bader
Georgia Institute of

Technology
Atlanta, Georgia, USA

ABSTRACT
Clustering coefficients is a building block in network sciences that
offers insights on how tightly bound vertices are in a network.
Effective and scalable parallelization of clustering coefficients re-
quires load balancing amongst the cores. This property is not easy
to achieve since many real world networks are scale free, which
leads to some vertices requiring more attention than others. In this
work we show two scalable approaches that load balance cluster-
ing coefficients. The first method achieves optimal load balanc-
ing with an O(|E|) storage requirement. The second method has a
lower storage requirement of O(|V |) at the cost of some imbalance.
While both methods have a similar time complexity, they represent
a tradeoff between maintaining a balanced workload and memory
complexity. Using a 40-core system we show that our load bal-
ancing techniques outperform the widely used and simple parallel
approach by a factor of 3X−7.5X for real graphs and 1.5X−4X
for random graphs. Further, we achieve 25X − 35X speedup over
the sequential algorithm for most of the graphs.

Keywords
Parallel Algorithms, Graph Algorithms, Social Network Analysis,
Scalable Programming

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming; G.2.2 [Discrete Mathematics]: Graph The-
ory—Graph Algorithms

1. INTRODUCTION
Clustering coefficients is a graph analytic that states how tightly

bound vertices are in a graph [23]. The tightness is measured by
computing the number of closed triangles in the graph, which can
then imply the small-world property. Computing the clustering co-
efficients has been applied to many types of networks: commu-
nication [21], collaboration [22], social [22], and biological [4].

∗Corresponding author: ogreen@gatech.edu

http://dx.doi.org/10.1145/2567634.2567635

Clustering coefficients is used in a wide range of social network
analysis applications. In such context, one can think of the local
clustering coefficients as the ratio of actual mutual acquaintances
versus all possible mutual acquaintances.

Clustering coefficients can be computed in two different vari-
ants: global and local. The global clustering coefficients is a single
value computed for the entire graph, whereas the local clustering
coefficients is computed per vertex. Both are computed in a simi-
lar fashion. Without the loss of generality, we consider the global
clustering coefficients in this work, specifically when presenting
pseudo-code. Nonetheless, our approach is applicable to comput-
ing local clustering coefficients as well. Table 1 presents the nota-
tions used in this paper.

We can formally define clustering coefficients as the sum of the
ratios of the number of triangles over all possible triangles:

CCglobal =
1

|V |
∑

v∈V

CCv =
1

|V |
∑

v∈V

tri(v)

deg(v) · (deg(v)− 1)

Clustering coefficients can be computed in multiple approaches
[20]: enumerating over all node-triples, matrix multiplication, and
intersecting adjacency lists. As many real world networks are con-
siderably sparse, we focus on the last of these three approaches
which has a time complexity of O(|V | · d2max) where dmax is the
vertex with largest adjacency. The pseudo-code for this approach
can be found in Algorithm 1. Many real world networks have a
skewed vertex degree distribution which present parallel load bal-
ancing challenges.

In this work, we show that it is possible to estimate the total
amount of work required by the clustering coefficients algorithm in
O(|E|) steps. While the load balancing may seem costly, for sparse
graphs where O(|E|) < O(|V | ·d2max). We show in Section 4 that
this computation is negligible in time on an actual system for many
real world sparse graphs.

We show two load balancing techniques: the edge-based ap-
proach and the vertex-based approach. These differ in the fact that
the edge-based approach offers a better workload balance than the
vertex-based approach. While this advantage is desirable, it comes

Algorithm 1: Serial algorithm for computing the number of
triangles and clustering coefficients.

CCglobal ← 0;
for v ∈ V do

for u ∈ adj(v) do
if u = v then

next u;

C ← intersect(v, adj(v), u, adj(u));

CCglobal ← CCglobal +
|C|

|V |·deg(v)·(deg(v)−1)
;

3

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPAA’14, February 16, 2014, Orlando, Florida, USA.
Copyright © 2014 ACM 978-1-4503-2654-4/14/02…$15.00.

0

2.e+09

4.e+09

6.e+09

8.e+09

1.e+10

1.2e+10

1.4e+10

1.6e+10

N
u
m
b
er
o
f
co
m
p
ar
is
o
n
s

5 10 15 20 25 30 35 40

Threads

Minimum number of comparisons

Maximum number of comparisons

(a)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
at
io
o
f
co
m
p
ar
is
o
n
s

0

5

10

15

20

25

30

35

40

S
p
ee
d
U
p

5 10 15 20 25 30 35 40

Threads

Ratio:

Maximum attainable speedup

Min
Max

(b)

Figure 1: (a) Load distribution among parallel cores. (b) On
the main ordinate, the ratio between the threads with minimum
and the maximum number of comparisons is depicted. The sec-
ondary ordinate shows the maximum attainable speedup.

at an increased computational and memory space cost. The edge-
based approach requires an O(|E|) memory and O(|E|) operations
that evenly split the work to the p parallel cores. On the other hand,
the vertex-based approach requires an O(|V |) memory and O(|E|)
operations, which also are split among the cores. Both approaches
can be executed in parallel.

The remainder of the paper will be structured as follows. This
section discusses the challenges with computing clustering coeffi-
cients in parallel and briefly introduces our solutions. Section II
discusses the related work and discusses real world graph proper-
ties and introduces vertex covers. In Section III, we present our two
approaches for effective load balancing. In Section IV, we discuss
our experimental methodology and present quantitative results. Fi-
nally, in Section V, we present our conclusions.

1.1 Parallel Clustering Coefficients Challenges
and Solutions

In [3, 8, 12], it was shown that several real world networks fol-
low a power law distribution on the number of adjacent edges to a
vertex. As the time complexity of the algorithm is dependent on the
square of the degree of the vertex with the highest degree, dmax,
a simple division of the vertices amongst the cores such that each
core receives an equal number of vertices is not likely to offer a
good load balance. This is due to the fact that a single core might
receive multiple high degree vertices. This can cause a single core
to become the execution bottleneck. The focus of our work is to
overcome this challenge.

Fig. 1 depicts an example of the load balancing issues caused by
straightforward division schemes when computing clustering coef-
ficients for a graph with a non-uniform adjacency distribution. Fig.
1 (a) plots the minimum and the maximum number of comparisons
performed by the different parallel cores. Assuming that the total
amount of work (number of comparisons on our case) required by
the algorithm is known and is defined as Work, the maximal par-
allel speedup that can be attained for each algorithm is limited by
the thread with maximum number of comparisons, compmax:

maxspeedup = Work/compmax. (1)

By this definition, uneven work distributions can affect scala-
bility severely. The main ordinate of Fig. 1(b) depicts the ratio
between the minimum and the maximum number of comparisons
shown in Fig. 1(a). The secondary ordinate of Fig. 1(b) shows
the maximal attainable speedup of the work distribution of the al-

Table 1: Notations in this paper
Name Description

CCglobal Global clustering coefficients

CCv Clustering coefficients for vertex v
deg(v) Degree of vertex v.

tri(v) Number of triangle that vertex v is in.

dmax Vertex with maximal degree in the graph.

P and p Number of parallel cores.

V Set of vertices in a graph.

E Set of edges in a graph.

u, v Vertices in the graph.

t Thread number.

V ertex_adj Array of size |V | containing the starting positions of the ver-
tex adjacencies

eWork Array of size |E| used to accumulate the work estimation of
every connected vertex pair.

vWork Array of size |V | used to accumulate the work estimation of
every vertex.

Pivots Array of size P + 1 that holds the starting and ending points
of the work done by each core.

t Thread id.

cct Local thread clustering coefficients value.

ccglobal Global clustering coefficients value.

gorithm used to plot Fig. 1(a). In fact, it is the observation from
above, that motivated the development of load balancing techniques
that take into account the unique workload properties of clustering
coefficients.

2. RELATED WORK
Clustering coefficients was first introduced by Watts and Stro-

gatz [23]. Since, it has become a common means to quantify struc-
tural network properties. In essence, clustering coefficients mea-
sures the tightness of neighborhoods in graphs. They can be com-
puted for both dense and sparse graphs, yet, they offer more in-
sights for sparse graphs, many of which have the small-world prop-
erty. The Small-World property was first presented by Milgram
[18] and suggested that people in the United States can be related
in less than six steps of separation.

An additional graph property of significance is the power-law
distribution of edges in a network. Graphs featuring this character-
istic have a large number of vertices with low degrees and a small
number of vertices with high degrees, see by Faloutsos et. al. [12]
and Barabási and Albert [3].

Clustering coefficients for a given graph is often reduced to enu-
merating the triangles formed between every triplet of vertices.
Schank and Wagner [20] present an extensive review on other var-
ious serial algorithms along with performance comparisons over
both "real world" networks and synthetic graphs. Still in the con-
text of serial algorithms, Green and Bader [13] propose a novel
clustering coefficients algorithm that employs vertex covers in or-
der to reduce the number of list intersections and the number of
actual comparisons needed to compute the triangle enumeration.
We show that our load-balancing techniques can be extended to
this algorithm as well.

The increase in the network size from thousands of vertices to
millions and possible billions in the foreseeable future and the rel-
evance of dynamic graphs has brought about a need for effective
computations of clustering coefficients. The advances for faster
clustering coefficients algorithms focus in parallelization techniqu-
es as well as approximation schemes. Both improvements are or-
thogonal concepts: while parallelization reduces the computation
time, approximation can offer insights on the closeness of ver-
tices when the cost of computing the clustering coefficients is pro-
hibitive. Special techniques can also be developed for dynamic

4

graphs. Dynamic graph algorithms allow updating the analytic
without doing a full recomputation every time the underlying net-
work is modified. In practice, these optimizations are applied con-
currently.

Several examples of algorithms using these optimizations can be
found in the works of Becchetti et al. [6], Bar-Yossef et al. [2], and
Buriol et al. [9] where triangle counting approximation techniques
are employed on streaming graphs as a measure to cope with large
data sets.

Ediger et al. [11] present both a parallel exact and parallel ap-
proximate algorithm for computing clustering coefficients for dy-
namic graphs. Their approach employs Bloom filters and they
show results on the Cray XMT (a massively multithreaded archi-
tecture) for graphs with over a half a billion edges. Leist et al. [16]
provide multiple parallel implementations using several GPUs and
IBM Cell-BE processors for smaller graphs.

While these algorithms tackled many of the different aspects of
computing clustering coefficients, they do not deal with the inher-
ent load imbalance that is typical for many graph algorithms using
static scheduling techniques. In such a scenario, the work is par-
titioned by the runtime and it is unaware of the properties of the
application. As such, the application designer is responsible for
dividing the work equally to the cores.

Both [5] and [17] consider the problem of workload imbalance
for other graph algorithms. They use similar techniques to the ones
that we use in this paper, which are based on prefix sum. Prefix sum
is a basic primitive that can also be efficiently parallelized. A first
straightforward parallel implementation was introduced by Hillis
and Steele [15]. Blelloch [7] then showed a PRAM parallel work-
efficient algorithm. In [14] a GPU implementation of the prefix
sum is introduced.

In [5], a Breadth First Search algorithm is presented. The ver-
tices in each level are partitioned to the multiple cores based on
the sum of the adjacent vertices. A prefix sum is employed fol-
lowed by a binary search in order to elaborate the partitioning. The
overhead of these two partitioning stages is negligible compared to
the remainder of the BFS. In [17], scalable GPU graph traversals
are presented that partition the traversal edges equally among the
multiple GPU streaming processors.

Other load balancing mechanisms can be used on specialized ar-
chitectures. Ediger et al. [10] made use of the online scheduler
of the massively multithreaded architecture of the Cray XMT for
computing clustering coefficients. The scheduler is responsible for
dispatching tasks when processors become available, thus achiev-
ing an effective parallelism. They show nearly perfect load bal-
ancing upto 64 XMT processors for several different graph types.
Beyond the 64 processors, the speedup continues to grow but does
not always scale perfectly - this is most likely due to workload im-
balance.

3. LOAD BALANCED SCALABLE
CLUSTERING COEFFICIENTS

We present two different techniques, which are conceptually sim-
ilar and consist of two highly parallel phases. The first phase ap-
proximates the expected amount of work. With the work estimation
at hand, we proceed to partition the work to the cores. This is fol-
lowed by showing that each of these steps is itself balanced. In
the second phase, the adjacency lists are intersected by the multiple
cores using a modified version of Algorithm 1.

The workload estimation process is based off of Algorithm 1
and consists of foreseeing the amount of work needed to intersect
vertices and edge endpoints. For that purpose, we employ two basic

work estimations, which are discussed in depth. Both estimations
can be defined in terms of the amount work needed for intersecting
the adjacency lists of two vertices u, v ∈ V .

For simplicity, we assume that the adjacency lists are sorted.
Given the sorted lists, the upper bound for the adjacency list in-
tersection is deg(u) + deg(v) comparisons. This number repre-
sents the worst-case scenario for a adjacency list intersection. An
actual list intersection might be cut short if all the elements of one
of the lists are traversed. However, this cannot be detected with-
out doing the intersection or further testing. Nonetheless, we find
deg(u) + deg(v) to be a fair estimation of the adjacency list inter-
section.

We can define Work(v, u) as the number of comparisons needed
for the intersection of the adjacencies of v and u:

Work(v, u) = deg(v) + deg(u). (2)

We proceed to gather this estimation for the vertex endpoints of
every edge in the graph. This is formalized in terms of the previous
definition as:

Work(G(V,E)) =
∑

(u,v)∈E

Work(u, v) =

∑

(u,v)∈E

(deg(v) + deg(u)) (3)

Such definition can also be expressed in terms of vertices and
their adjacencies:

Work =
∑

(u,v)∈E

Work(u, v) =
∑

v∈V

∑

u∈adj(v)

deg(v) + deg(u)

(4)
Specifically, the number of comparisons required for a specific

vertex is:

Work(v) =
∑

u∈adj(v)

(deg(v) + deg(u)) =

deg(v)2 +
∑

u∈adj(v)

deg(u) (5)

We derive the time complexity of clustering coefficients from
(5). Computing either Σ(v,u)∈EWork(v, u) or Σv∈V Work(v) al-
lows to partition the work into near equal units to the multiple cores
available. The first technique, which we refer to as the edge-based
approach, requires O(|E|) memory and theoretically offers opti-
mal partitioning assuming that all comparisons are executed1. The
vertex-based approach reduces the memory requirement to O(|V |)
at the expense of non-equal partitioning. In Section 4 we quanti-
tatively compare these two approaches for real networks. While
we have yet to discuss the algorithms in detail, we note that both
algorithms have a similar upper bound time complexity, yet the ac-
curacy of the partitioning will slightly change based on the storage
complexity.

3.1 Edge-Based Approach
We present the first of our two approaches that partitions the

work equally among the multiple cores. We refer to this method
as the edge-based approach and its pseudo-code can be found in
Algorithm 2. In Table 1, a reference is given for the variables used
by our methods. Overall, we distinguish two distinct computation
phases: 1) work estimation and load balancing and 2) clustering
coefficients computation.

1As discussed earlier, a list intersection might complete early based
on the actual adjacencies.

5

Algorithm 2: Edge-Based algorithm.

input : Graph G(V,E), number of cores p
output: Clustering coefficients value ccglobal

For t← 1 to p do in parallel
// Stage 1: Workload estimation
Pivotst ← BinarySearch (V ertex_adj, t · |E|/p);
SynchronizationBarrier();
for v ← Pivotst to Pivotst+1 do

for ∀u ∈ adj(v) do
eWork(v,u) ← deg(v) + deg(u);

SynchronizationBarrier();
ParallelPrefixScan (eWork);
Pivotst ←BinarySearch (eWork, t · |E|/p);
SynchronizationBarrier();
// Stage 2: CC calculation
cct ← 0;
Et ← all edges between Pivotst and Pivotst+1

for e = (v, u) ∈ Et do
VertexIntersection (v, deg(v), u, deg(u));

cct ← cct +
|C|

|V |·deg(v)·(deg(v)−1)
;

SynchronizationBarrier();
ccglobal ← ParallelReduction(cct);

Using an array of size O(|E|) the expected number of compar-
isons for each edge is calculated using expression (2). The first step
in Stage 1 divides the edges equally among the p cores such that
each core receives |E|/p edges. Assuming that the graph is given
in a CSR representation, a binary search is conducted by each core
into the vertex offset array. This vertex offset array is essentially a
prefix sum array of the edge degrees in the graph. Hence, the bi-
nary search in the vertex offset array for the value t · |E|/p allows
finding the vertex to which that edge belongs to, for a given thread
t ∈ {1, 2, ..., p}.

Due to the fine grained load balancing, several cores may inter-
sect adjacency lists for the same vertex2. For simplicity, we assume
that the sets of adjacencies assigned to the different cores do not
overlap. This is a fair assumption given adjacency distributions of
many real world graphs. However, if there is a vertex with a large
enough degree that it dominates the execution time, it is possible to
modify the algorithm such that the adjacencies of a vertex is shared
by multiple cores. Additionally, a single large adjacency intersec-
tion can be divided to several cores using a modified version of
Merge Path [19] which is parallel merging algorithm.

Each core will compute Work(v, u) for the set of edges it has
been assigned. The results will be stored in the Work array of size
O(|E|). Once this is completed, a parallel prefix sum is computed
on this array in order to obtain the total amount of work computed
from the first vertex up to the current vertex. The last entry in the
prefix array maintains the expected number of comparisons for the
entire graph. Upon completion of the prefix sum, an additional
binary search is executed per core into the prefix sum array. The
binary search finds the partitioning pivots of the algorithm. The bi-
nary search might actually want to divide a specific list intersection
to multiple core. As discussed before, for simplicity our algorithm
does not partition the work to multiple cores. In reality, this is not
a concern and is discussed in Section 4. When the binary search
is completed, the partitioning pivots for clustering coefficients are
available and we can proceed to compute the clustering coefficients
as part of Stage 2.

3.2 Vertex-based approach
We refer to our second load balancing technique as the vertex-

based method. Its pseudo-code can be found in Algorithm 3. This

2This can occur when the ratio between the average vertex degree
and number of cores is considerably small.

Algorithm 3: Vertex-based algorithm.

input : Graph G(V,E), number of cores p
output: Clustering coefficients value ccglobal

For t← 1 to p do in parallel
// Stage 1: Workload estimation
Pivotst ← BinarySearch (V ertex_adj, t · |E|/p);
SynchronizationBarrier();
for v ← Pivotst to Pivotst+1 do

vWorkv ← 0;
for ∀u ∈ adj(v) do

vWorkv ← vWorkv + deg(v) + deg(u);

SynchronizationBarrier();
ParallelPrefixScan (vWork);
Pivotst ← BinarySearch (vWork, t · |E|/p);
// Stage 2: CC calculation
cct ← 0;
for v ← Pivotst to Pivotst+1 do

triangles← 0;
for ∀u ∈ adj(v) do

VertexIntersection (v, deg(v), u, deg(u));
triangles← triangles + |C|;

cct ← cct + triangles
|V |·deg(v)·(deg(v)−1)

;

SynchronizationBarrier();
ccglobal ← ParallelReduction(cct);

approach reduces the storage requirement from O(|E|) to O(|V |)
by performing the load balance at a vertex granularity. As a result,
some imbalance might be introduced and a single vertex can be-
come a bottleneck of the algorithm. We will see in Section 4, that
this imbalance does not reduce the total performance of the vertex-
based approach. In comparison with the edge-based approach, this
imbalance is minute.

Similarly to the previous technique, the load-balanced clustering
coefficients calculation is comprised of two main stages: 1) the
workload estimation and 2) the clustering coefficients calculation.

The amount of work is calculated using expression (5). In the
first stage, each thread performs a binary search of the term t·|E|/p
over the offset array of the graph CSR. As a result of this work
division, each thread is then responsible for a non-overlapping set
of vertices and computes the number of comparisons required by
each vertex. The results are then stored in an array of size O(|V |).
Note that computing the expected number of comparisons needed
by the algorithm requires the same number of the steps for both the
edge-based and vertex-based approaches, with the key difference
in the size of the array used. This is followed by a prefix sum
over the Work array of size O(|V |). In the final step, a binary
search is employed by each core to compute the partition points of
the workload. As before, the vertices will be divided among the
threads in such a way that their adjacency intersections will not be
split.

3.3 Complexity analysis
In the edge-based approach, the amount of work per edge is

maintained in an array of size O(|E|). Hence, the space complex-
ity of this approach is O(|E|). For the vertex-based approach the
space complexity is O(|V |) due to the fact that work estimations
are stored vertex by vertex. The time complexity (per thread) of the
load balancing stage in both methods is decomposed as described
in Table 2.

The work complexity is the time complexity multiplied by a fac-
tor of p cores. Overall, the work complexity is of O(p · log(|V |) +
|E|+ p · log(|E|) + |E|) for the edge-based approach.

In the case of the vertex-based method the complexity is O(p ·
log(|V |) + p · log(|E|) + |V |+ |E|).

6

3.4 Vertex Cover Optimization
In this subsection we briefly discuss how our load balancing

technique can be adapted to the vertex cover optimization presented
in [13]. This optimization involves computing a vertex cover for the
graph and doing the adjacency list intersection only when both ver-
tices of the edge are in the vertex cover. They show that finding the
vertex cover takes a small fraction of the total execution and that
the requirement that both vertices of an edge be in the vertex cover
can reduce the number of list intersections and number of compar-
isons. This optimization avoids counting the same triangle multiple
times. Their optimization can be applied in addition to the lexico-
graphical sorting which reduces the number of times triangles are
counted by a factor of two. To adapt the vertex cover to our al-
gorithm, two modifications are required: 1) Parallel computation
of the vertex cover V̂ and 2) apply the load balancing techniques
discussed in this paper to the vertex cover, V̂ , instead of the entire
vertex set V . Making these modifications allows creating a load
balanced algorithm which avoids duplicate triangle counting.

3.5 Summary
We have shown two methods that load balance clustering coef-

ficients. These approaches tradeoff accuracy for space complex-
ity. For these methods to be considered asymptotically optimal, the
load balancing phase must have a lower time complexity than the
actual clustering coefficients computation from (4). For many real
graphs, including sparse graphs, this will be the case as:

O(p · log(|V |)+ |E|+ p · log(|E|)+ |E|) < O(|V | · d2max) (6)

for the edge-based case and

O(p · log(|V |)+ p · log(|E|)+ |V |+ |E|) < O(|V | · d2max) (7)

for the vertex-based case.
As a result, both approaches will offer better performance and

core-scaling. We discuss the overhead of this approach in Section 4
with respect to real graphs. Note that while the work complexity of
clustering coefficients has not changed, the actual time complexity
per core changes from O(Work/p) to Θ(Work/p).

4. RESULTS
In this section, we present the experimental performance results

for both our new parallel load balanced algorithms. In our tests,
we use a 4-socket 40 physical core multicore system made up of
the Intel Xeon E7-8870 processor. Each core runs at a 2.40 GHz
frequency and has 30 MB of L3 cache per processor. The system
has 256 GB of DDR3 DRAM. We test our algorithms over a subset
of graphs from the 10th DIMACS Implementation Challenge on
Graph Partitioning and Graph Clustering [1]. The graph set used in
the tests can be found in Table 3.

We compare the performance of our algorithm with a straight-
forward parallel algorithm. For the straightforward algorithm, the
vertices in the outer loop of Algorithm 1 are evenly split among
the cores. The performance of the algorithms is dependent on the

Table 2: Time complexities of both approaches
Stage Edge-based Vertex-based

approach approach

Binary search in the offset
array

O(log(|V |)) O(log(|V |))

Element-wise workload es-
timation

O(|E|/p) O(|E|/p)

Workload prefix sum O(|E|/p + log(p)) O(|V |/p + log(p))
Binary search in the work-
load prefix sum array

O(log(|E|)) O(log(|V |))

Table 3: Graphs from the 10th DIMACS Implementation Chal-
lenge used in our experiments with the clustering coefficients
computation runtimes for the different algorithms. Labels: SF
- Straightforward (40 threads), V-B: Vertex-Based (40 threads),
and E-B: Edge-Based (40 threads).

Name Network Type |V | |E| Serial SF V-B E-B

audikw1 Matrix 943k 38.35M 30.89 2.52 0.96 1.05

cage15 Matrix 5.15M 47.02M 18.98 1.10 0.70 0.76

ldoor Matrix 952k 22.78M 7.94 0.26 0.25 0.28

astro-ph Clustering 16k 121k 0.09 0.006 0.003 0.003

caidaRouterLevel Clustering 192k 609k 0.39 0.07 0.01 0.01

cond-mat-2005 Clustering 40k 175k 0.10 0.009 0.003 0.004

in-2004 Clustering 1.38M 13.59M 32.67 5.58 1.19 1.21

coAuthorsCiteseer Collaboration 227k 814k 0.26 0.02 0.01 0.01

coPapersCiteseer Collaboration 434k 16M 21.37 3.64 0.86 0.88

coPapersDBLP Collaboration 540k 15.24M 15.26 1.44 0.68 0.72

luxembourg Road 114k 119k 0.01 0.0002 0.0005 0.0008

belgium Road 1.44M 1.55M 0.14 0.005 0.007 0.008

road_central Road 14.82M 16.93M 3.84 0.19 0.26 0.27

road_usa Road 23.95M 28.85M 3.47 0.13 0.20 0.22

preferAttachment Clustering 100k 499k 0.26 0.08 0.009 0.01

smallworld Clustering 100k 499k 0.14 0.004 0.004 0.004

RMAT-18 Random 262k 10.58M 63.78 2.70 2.01 2.08

RMAT-20 Random 1.05M 44.62M 236.28 8.14 7.1 7.38

properties of the input graph. We distinguish two key character-
istics that may affect substantially the scalability of the different
methods such that the straightforward algorithm is likely to outper-
form our algorithms:

1) Sparsity - while most of the graphs are considered to be sparse,
the road networks are especially sparse where E ≈ V . The fact that
such networks consist of a single connect component implies that
the vertices have few adjacencies, which in turns means that the in-
tersection stage will be considerably short. As such our algorithms
may potentially introduce overhead for such networks.

2) Uniform degree distribution - for graphs in which the degree
distribution is uniform and most vertices have the same number of
neighbors the workload is inherently balanced as each vertex will
require an equal number of comparisons. .

4.1 Scaling
We define the ratio of computed comparisons as the fraction of

the minimum number of comparisons performed by a thread over
the maximum number of comparisons. Fig. 2 depicts this workload
imbalance for the three algorithms given a 40 core partition. In Fig.
3 we show this ratio for a subset of networks as a function of the
number of threads. Our results show that the straightforward algo-
rithm offers a balanced partitioning for the highly sparse networks
with uniform degree distribution. Note that for all the networks, the
straightforward approach has both the upper and lower bounds for
work distribution. This is true for all the networks we tested. For
some networks, including caidaRouterLevel, the ratio between
the minimal and maximal workload can be as high as 100 times.

In contrast to the straightforward partitioning, our edge-based
approach delivers a near equal number of comparisons to each core
for all the networks. This fact can be observed in Fig. 2 (the
ratio chart), where the bar for the edge-based method is approx-
imately 1 for all the networks, which is the ideal scenario. Our
observation can be reinforced by the data displayed in Fig. 3, as
it is almost impossible to differentiate the two curves for minimal
and maximal number of comparisons for the edge-based method.
The vertex-based approach delivers mixed results. In some cases
the partitioning overlaps with that of the edge-based approach. In
some cases it differs by 10% − 20%. This is due to some vertices
being more computationally demanding and that these vertices are
not split among several cores.

Results show that the partitioning of the vertex-based approach
is not as accurate as that of the edge-based method. Despite this the
vertex-based approach offers better performance, as its load balanc-
ing stage is slightly less computationally demanding.

7

0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o
:

audikw1

cage15
ldoor

astr
o-p

h

caidaRouterL
ev

el

cond-m
at-2

005

in-2
004

coAuthorsC
ite

se
er

coPapersC
ite

se
er

coPapersD
BLP

belgium

luxembourg

ro
ad_centra

l

ro
ad_usa

preferentia
lA

tta
chment

sm
allw

orld

RM
AT18

RM
AT20

Straightforward parallelization Vertex-based approach Edge-based approach

M
in

M
a
x

Figure 2: The ordinate is the ratio between the thread with the least amount of work with the thread with the most amount of work
based on the number comparisons required by the thread in the adjacency list intersection. The abscissa are the graphs used. Note
that for all the graphs the edge-based approach achieves almost perfect partitioning.

5

10
9

2

5

10
10

N
u
m
b
er
o
f
C
o
m
p
ar
is
o
n
s

0 5 10 15 20 25 30 35 40

Threads

(a) audikw1

10
5

2

5

10
6

2

5

10
7

2

5

N
u
m
b
er
o
f
C
o
m
p
ar
is
o
n
s

0 5 10 15 20 25 30 35 40

Threads

(b) caidaRouterLevel

5

10
6

2

5

10
7

2

5

N
u
m
b
er
o
f
C
o
m
p
ar
is
o
n
s

0 5 10 15 20 25 30 35 40

Threads

(c) coAuthorsCiteseer

5

10
6

2

5

10
7

2

5

N
u
m
b
er
o
f
C
o
m
p
ar
is
o
n
s

0 5 10 15 20 25 30 35 40

Threads

(d) preferentialAttachment

Vertex-based approach min

Vertex-based approach max

Edge-based approach min

Edge-based CC approach max

Straightforward parallelization min

Straightforward parallelization max

Figure 3: The abscissa is the number of threads used. The ordinate is the number of comparisons required for a specific thread
count. Two curves are shown for each of the algorithms: for threads that receive the most and least number of comparisons. The
straightforward partitioning is the lower and upper for all the figures while the minimum and the maximum overlap in the case of
the edge-based approach.

The number of comparisons each processor receives can be also
relevant to estimate an upper bound on the speedup a given par-
allel clustering coefficients calculation can attain. Given a work
distribution, the maximum speedup obtained by parallel computa-
tion can be expressed as in expression (1). In the next subsection,
we show how such theoretical speedup displays a correlation with
the actual speedup attained for the different networks in the set.

4.2 Speedup Analysis
Fig. 4 depicts the speedup obtained for the three algorithms

when using 40 cores. Further details of the strong scaling speedups
are shown in Fig. 5, as a function of the number of threads.

If we consider the small world graphs, both of our methods show
better scalability for 40 cores, which represents an improvement
over the straightforward algorithm of 1.5X − 7.5X . For road net-
work graphs, the straightforward algorithm outperforms both our
methods. This is due to the fact that road networks are very sparse,
E ≈ V . As a result, the computation of the intersection repre-
sents a smaller fraction of the overall runtime, which includes the
load-balancing. In addition, road networks feature a substantially
uniform degree distribution. Hence, a straightforward division of
the work yields a load-balanced computation. The same behavior
can be observed in other networks that feature uniform degree dis-
tributions, such as the smallworld network. A clear relationship

0

10

20

30

40

S
p
e
e
d
u
p

audikw1

cage15
ldoor

astr
o-p

h

caidaRouterL
ev

el

cond-m
at-2

005

in-2
004

coAuthorsC
ite

se
er

coPapersC
ite

se
er

coPapersD
BLP

belgium

luxembourg

ro
ad_centra

l

ro
ad_usa

preferentia
lA

tta
chment

sm
allw

orld

RM
AT18

RM
AT20

Straightforward Load division CC Edge-Based Load-Balanced CC Vertex-Based Load-Balanced CC

Figure 4: Speedup obtained with 40 cores for the different algorithms

8

(a) audikw1 (b) caidaRouterLevel (c) coAuthorsCiteseer (d) preferentialAttachment

Figure 5: The ordinate for all the subfigures is the speedup as a function of the number of threads (the abscissa).

0

10

20

30

40

S
p
e
e
d
u
p

au
di
kw
1

ca
ge
15

ld
oo
r

as
tro
-p
h

ca
id
aR
ou
te
rL
ev
el

co
nd
-m
at
-2
00
5

in
-2
00
4

co
A
ut
ho
rs
C
ite
se
er

co
Pa
pe
rs
C
ite
se
er

co
Pa
pe
rs
D
B
LP

be
lg
iu
m

lu
xe
m
bo
ur
g

ro
ad
_c
en
tra
l

ro
ad
_u
sa

pr
ef
er
en
tia
lA
tta
ch
m
en
t

sm
al
lw
or
ld

R
M
AT
18

R
M
AT
20

Straightforward Load division CC Theoretical upper bound estimation on the speedup

Figure 6: Speedup obtained for 40 cores using straightforward division algorithm in comparison with the estimated speedup.

can be observed between the thread with the most work and the ac-
tual speedup. This is not surprising, given the fact that this thread
is the execution bottleneck.

Fig. 6 shows a comparison between the actual speedups obtained
for the different networks when using the straightforward approach
and an estimated maximum speedup obtained using expression (1).
Overall, our work estimations provide a fairly precise indicator on
the behavior of the algorithm for most of the networks.

Further insights on the overhead of the work estimation phase are
depicted in Fig. 7, which shows the ratio of the time spent comput-
ing the clustering coefficients out of the total time spent (including
the load balancing) for both our methods on the 40 cores for all
the networks we used. The overhead of our load balancing tech-
niques represents between 1% - 20% of the overall runtime, except

for the road network graphs. For the road networks, our overhead
is indeed significant. This is mostly due to the fact that very little
work is done in the adjacency list intersection stage meaning that
the overhead introduced by our techniques plays a more significant
role in the overall time.

Note, if the load-balancing stage is not taken into account in the
total execution time, but rather just the clustering coefficients exe-
cution time, our new algorithms always outperform the straightfor-
ward algorithm for all thread counts due to load balancing.

Despite the fact that the edge-based version provides a more bal-
anced work distribution than the vertex-based method, these dif-
ferences do not translate into a better performance. This is due to
the higher computational complexity of the work estimation phase
of our edge-based method and synchronization. For all the net-

0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o

audikw1

cage15
ldoor

astr
o-p

h

caidaRouterL
ev

el

cond-m
at-2

005

in-2
004

coAuthorsC
ite

se
er

coPapersC
ite

se
er

coPapersD
BLP

belgium

luxembourg

ro
ad_centra

l

ro
ad_usa

preferentia
lA

tta
chment

sm
allw

orld

RM
AT18

RM
AT20

Vertex-based approach computation Vertex-based approach load estimation Edge-based approach computation Edge-based approach load estimation

Figure 7: Percentage of time spent in both the load balancing phase vs. the list intersection phase for both approaches.

9

works, the edge-based approach introduces more overhead than
the vertex-based approach. This is caused by the increased mem-
ory and computational requirements of this method. Recall that
the edge-based approach uses an O(E) array to store the expected
amount of work. This array is then used for the prefix sum process
for a total of O(E) operations (whereas the vertex based requires
only O(V) operations). Further, this prefix array will be reloaded
into the cache for each of the accesses.

4.3 Summary
This section presented timing results, scaling results, and work-

load partitioning for the straightforward parallel implementation,
our edge and vertex-based approach using real world graphs from
the DIMACS Challenge [1]. We showed that both our load bal-
ancing techniques scaled up to 40 cores and can continue to scale
to a significantly larger number of cores, whereas the scalability of
straightforward algorithm is limited for many types of networks. In
some cases, our approaches show an improvement of a factor of
as high as 5.5X − 7.5X over the straightforward algorithm. The
overhead introduced by our algorithm is discussed.

5. CONCLUSIONS
Due to highly skewed vertex degree distributions, computing

clustering coefficients on social networks presents big load balanc-
ing challenges. In this paper we presented two parallel methods for
computing exact clustering coefficients. By using workload estima-
tion, we achieve effective load-balanced computation for multiple
graph topologies. For both of our methods, we present a discussion
on the tradeoffs between achieving perfect work distribution and
the complexity it requires. In practice, employing an approximate
load balancing scheme with a moderate computational cost allows
achieving an overall speedup of 25X−35X over the sequential al-
gorithm for most of the graphs. This represents an improvement of
3X−7.5X for real graphs and 1.5X−4X for random graphs over
using straightforward parallel approaches. Overall, load balancing
is a key element to take into account when leveraging the parallel
computing power in graph applications.

6. REFERENCES
[1] D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner.

10th DIMACS Implementation Challenge on Graph
Partitioning and Graph Clustering, volume 588. American
Mathematical Society, 2013.

[2] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in
streaming algorithms, with an application to counting
triangles in graphs. In ACM-SIAM Symposium on Discrete
algorithms, SODA ’02, pages 623–632, Philadelphia, PA,
USA, 2002. Society for Industrial and Applied Mathematics.

[3] A.-L. Barabási and R. Albert. Emergence of Scaling in
Random Networks. Science, 286(5439):509–512, 1999.

[4] A.-L. Barabási and Z. N. Oltvai. Network Biology:
Understanding the Cell’s Functional Organization. Nature
Reviews Genetics, 5(2):101–113, 2004.

[5] B. W. Barrett, J. W. Berry, R. C. Murphy, and K. B. Wheeler.
Implementing a portable multi-threaded graph library: The
MTGL on Qthreads. In IEEE International Symposium on
Parallel & Distributed Processing, IPDPS, pages 1–8. IEEE,
2009.

[6] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient
Semi-streaming Algorithms for Local Triangle Counting in
Massive Graphs. In ACM SIGKDD Int’l Conf. on Knowledge
Discovery and Data Mining, pages 16–24. ACM, 2008.

[7] G. E. Blelloch. Prefix sums and their applications. 1990.

[8] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph
Structure in the Web. Computer Networks, 33(1):309–320,
2000.

[9] L. S. Buriol, G. Frahling, S. Leonardi,
A. Marchetti-Spaccamela, and C. Sohler. Counting Triangles
in Data Streams. In ACM SIGMOD-SIGACT-SIGART Symp.
on Principles of Database Systems, pages 253–262. ACM,
2006.

[10] D. Ediger, K. Jiang, J. Riedy, and D. Bader. GraphCT:
Multithreaded Algorithms for Massive Graph Analysis.
IEEE Transactions on Parallel and Distributed Systems,
PP(99):1–1, 2012.

[11] D. Ediger, K. Jiang, J. Riedy, and D. A. Bader. Massive
Streaming Data Analytics: A Case Study with Clustering
Coefficients. In International Symposium on Parallel &
Distributed Processing, Workshops and PhD Forum
(IPDPSW), pages 1–8. IEEE, 2010.

[12] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-Law
Relationships of The Internet Topology. In ACM SIGCOMM
Computer Communication Review, volume 29, pages
251–262. ACM, 1999.

[13] O. Green and D. A. Bader. Faster Clustering Coefficients
Using Vertex Covers. In 5th ASE/IEEE International
Conference on Social Computing, SocialCom, 2013.

[14] M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix sum
(scan) with CUDA. GPU gems, 3(39):851–876, 2007.

[15] W. D. Hillis and G. L. Steele Jr. Data parallel algorithms.
Communications of the ACM, 29(12):1170–1183, 1986.

[16] A. Leist, K. Hawick, D. Playne, and N. S. Albany. GPGPU
and Multi-Core Architectures for Computing Clustering
Coefficients of Irregular Graphs. In International Conference
on Scientific Computing (CSC’11), 2011.

[17] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU
graph traversal. In ACM SIGPLAN symposium on Principles
and Practice of Parallel Programming, PPoPP ’12, pages
117–128, New York, NY, USA, 2012. ACM.

[18] S. Milgram. The Small World Problem. Psychology Today,
2(1):60–67, 1967.

[19] S. Odeh, O. Green, Z. Mwassi, O. Shmueli, and Y. Birk.
Merge path - parallel merging made simple. In IEEE 26th
International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 1611–1618, 2012.

[20] T. Schank and D. Wagner. Finding, Counting and Listing All
Triangles in Large Graphs, an Experimental Study. In
Experimental and Efficient Algorithms, pages 606–609.
Springer, 2005.

[21] Y. Shavitt and E. Shir. DIMES: Let the Internet Measure
Itself. ACM SIGCOMM Computer Communication Review,
35(5):71–74, 2005.

[22] S. H. Strogatz. Exploring Complex Networks. Nature,
410(6825):268–276, 2001.

[23] D. J. Watts and S. H. Strogatz. Collective Dynamics of
“Small-World” Networks. Nature, 393(6684):440–442,
1998.

10

