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Glossary

Benchmarking Performance evaluation for
comparison to the state of the art

Benchmark Suite Set of instances used for
benchmarking

Definition

Benchmarking refers to a repeatable performance
evaluation as a means to compare somebody’s
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work to the state of the art in the respective field.
As an example, benchmarking can compare the
computing performance of new and old hardware.

In the context of computing, many different
benchmarks of various sorts have been used.
A prominent example is the Linpack benchmark
of the TOP500 list of the fastest computers in
the world, which measures the performance of
the hardware by solving a dense linear alge-
bra problem. Different categories of benchmarks
include sequential vs. parallel, microbenchmark
vs. application, or fixed code vs. informal prob-
lem description. See, e.g., Weicker (2002) for a
more detailed treatment of hardware evaluation.

When it comes to benchmarking algorithms
for network analysis, typical measures of interest
are solution quality and running time. The
comparison process requires the establishment of
widely accepted benchmark instances on which
the algorithms have to compete. In the course of
the 10th DIMACS Implementation Challenge on
Graph Partitioning and Graph Clustering (Bader
et al. 2012), we have assembled a suite of graphs
and graph generators intended for comparing
graph algorithms with each other. While our
particular focus has been on assembling instances
for benchmarking graph partitioning and graph
clustering algorithms, we believe the suite to be
useful for related fields as well. This includes the
broad field of network analysis (which includes
graph clustering, also known as community
detection) and various combinatorial problems.

The purpose of DIMACS Implementation
Challenges is to assess the practical performance
of algorithms in a respective problem domain.
These challenges are scientific competitions
in areas where worst case and probabilistic
analysis yield unrealistic results. Where analysis
fails, experimentation can provide insights into
realistic algorithm performance. By evaluating
different implementations on the assembled
benchmark suite, the challenges create a
reproducible picture of the state of the art in
the area under consideration. This helps to
foster an effective technology transfer within the
research areas of algorithms, data structures, and
implementation techniques as well as a transfer
back to the original applications.

Introduction

Graph partitioning and graph clustering (or
community detection) are ubiquitous subtasks
in many application areas. Generally speaking,
both techniques aim at the identification of vertex
subsets (clusters) with many internal and few
external edges. In this work we concentrate our
description on aspects important to the field of
network analysis, in particular on community
detection.

In its most general form, community detection
does not require a fixed number k of clusters nor
constraints on the size of the clusters. Instead, a
quality function which measures both, the density
inside clusters and the sparseness between them,
is used. A variety of such functions has been
proposed, among which the measure modularity
has proven itself fairly reliable and largely in
accordance with human intuition in the literature:

Problem 1 (Modularity Maximization) Given
an undirected, weighted graph G D .V;E; !/
without parallel edges, find a partition C of
V which optimizes the modularity objective
function:
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Here we assume e D fu; vg 2 E is a multiset
(i.e., a self-loop u D v is allowed) and that the
strength s.v/ of a node v is the sum of the weights
of its incident edges. Recently some criticism
towards modularity has emerged. Fortunato and
Barthelemy (2007) demonstrate that global mod-
ularity optimization cannot distinguish between a
single community and a group of smaller com-
munities. Berry et al. (2011) provide a weight-
ing mechanism that alleviates the resolution-limit
problem, but others remain (Good et al. 2010;
Lancichinetti and Fortunato 2011). That is one
reason why the 10th DIMACS Implementation
Challenge had a second graph clustering cat-
egory apart from modularity maximization. In
this second category, algorithms are compared
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with respect to four different objective func-
tions, with the goal to explicitly invite cluster-
ing algorithms that are not based on a specific
objective function. These objective functions are
based upon performance (van Dongen 2000),
intracluster density, and intercluster conductance
and expansion (Kannan et al. 2004).

In contrast to graph clustering, the term graph
partitioning usually implies that the number of
partitions is fixed and the task is to partition
the vertex set into blocks of (almost) equal size.
Its main application is not network analysis but
the preprocessing of data for parallel computing.
The objective functions used for the partitioning
sub-challenges are the number of edges between
the blocks and the maximum communication
volume (Çatalyürek and Aykanat 1996) of the
partition.

Participants of the challenge were invited
to submit solutions to the different challenge
categories on graph partitioning and graph
clustering. This way different algorithms
and implementations were tested against the
benchmark instances. Thereby future researchers
are enabled to identify techniques that are
most effective for a respective partitioning or
clustering problem – by using our benchmark set
and by comparing their results to the challenge
results and to those in the literature published
afterwards.

In this entry we describe the benchmark suite
and its assembly process. Moreover, we sketch
some of the results obtained by the challenge
participants using the benchmark graphs.

Key Points

Collecting the instances for the benchmark suite
was performed with two main aspects in mind,
diversity of source applications and diversity of
instance sizes. Moreover, some graphs have been
frequently used in previous work, whereas others
are new or fairly recent.

Some instances are based on real-world in-
puts, while others have been created using a
generator. The generated graphs also vary in how
closely they resemble real-world counterparts.

All instances have been long term archived with
public access (Bader et al. 2012).

The solutions generated by the challenge par-
ticipants using the benchmark suite constitute a
valuable picture of the state of the art in graph
partitioning and graph clustering. To better suit
algorithms that do not explicitly optimize a tra-
ditional objective function (and to circumvent
known flaws in these traditional objective func-
tions), additional criteria to assess the quality of
the submitted clusterings were evaluated.

Moreover, a nondiscriminatory way to assign
scores to solvers that takes both running time and
solution quality into account was used.

Historical Background

Previous DIMACS Implementation Challenges
addressed a large variety of algorithmic
problems, several of them involving graphs
and networks. Graph repositories similar to
our benchmark suite exist as well. However,
they often lack the size, broadness of source
applications, and connection to a quality-driven
competition.

An example repository widely used in
combinatorial scientific computing is Chris
Walshaw’s graph partitioning archive (Soper
et al. 2004). It stores 34 graphs and the best-
known graph partitions computed for these
graphs. This archive has substantially simplified
the improvement of graph partitioning algorithms
over the last decade. Today, however, the
instances contained therein have to be deemed
rather small and also somewhat limited in terms
of application areas. For example, there are no
social networks contained in this archive.

The University of Florida Sparse Matrix Col-
lection (Davis 2008), maintained by Tim Davis,
is broader in terms of application areas and ma-
trix sizes. Although social networks have been
included recently as well, most matrices stem
from technical applications.

Graph collections focusing on scale-free
graphs such as social networks do exist,
e.g., Arenas (2009) and Newman (2012). One
of the more prominent examples is the Stanford
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Large Network Dataset Collection SNAP ().
These collections are often somewhat limited in
the number of stored graphs or their variability.
Also, and maybe more importantly, in most cases,
the collections lack a significant comparison of
how a larger number of different algorithms
perform on the data.

Proposed Solution andMethodology

With the 10th DIMACS Implementation Chal-
lenge and its graph collection, we addressed both
of these issues. Our collection contains more than
100 graphs of various origins and assembled in
different categories. (In addition we link to the
Walshaw archive and the University of Florida
Sparse Matrix Collection.) We took care that
our collection contains instances best suited for
partitioning in technical applications as well as
instances particularly intended for clustering and
related network analysis tasks. Additionally the
challenge results provide guidance as to how
different algorithms perform on different classes
of graphs.

The driving considerations during the
assembly of the graph collection were to include
a sufficiently large variety of application sources
(thereby instance structures) and graph sizes.
In that line of reasoning, we identified three
higher-level classes from which to select: random
graphs, generated graphs with close resemblance
to data from real-world applications, and actual
real-world data. Our intent is to offer a good
diversity in order to provide a meaningful
benchmark for network analysis and graph
partitioning algorithms.

With generators at hand, an experimenter can
scale to (nearly) arbitrary graph sizes, retaining
the general structure of the graphs while increas-
ing their sizes. This is, for example, important
when performing weak-scaling studies for the
experimental analysis of parallel algorithms. It is
worth mentioning that, since the instance sizes
are only limited by architectural constraints, gen-
erators provide a means to “grow” instance sizes
with future architectural improvements. This way
the current state of a collection does not age

as quickly as without generators. More details
on the graphs generated to resemble real-world
inputs follow below.

Generated random graphs offer an additional
benefit. They are usually easier to analyze with
theoretical methods than other graph types. The
Erdős-Rényi (ER) model, for example, has ex-
perienced significant consideration in theoretical
works. Many important properties of these graphs
were proved in this long course of research; see,
e.g., Bollobás (1985). Due to the lack of resem-
blance of typical ER graphs to real-world inputs,
an active line of research is developing more re-
alistic models such as R-MAT (Chakrabarti et al.
2004) and BTER (Seshadhri et al. 2012). The
random graphs we included and their generators
are described later in this section in more detail.

Finally, real-world graphs add the necessary
confidence that an algorithm’s performance in
terms of running time and quality on the collec-
tion resembles its performance on the represented
real-world applications. The real-world graphs
we included are also described below.

In the remainder of this section, we first ex-
plain the preprocessing performed to unify the
instances in our collection. After that, the indi-
vidual categories of the collection are described.

Preprocessing
Graph partitioning and, with some exceptions,
also graph clustering are usually applied to undi-
rected graphs. A common preprocessing step is
therefore to symmetrize the graph prior to par-
titioning, i.e., to make the graph undirected by
including an undirected edge between two ver-
tices a and b if and only if there exists an edge
from a to b or from b to a.

If both directions are present in the original
graph, there are several possibilities to assign
a weight to the resulting undirected edge. We
chose the following approach: if the input graph
is unweighted, an edge between two vertices is
considered as the information that they are related
in some sense, independent of the strength of this
connection. Hence, if an edge in both directions
exists, it is translated into an unweighted, undi-
rected edge. On the other hand, if the input graph
is weighted, we add up the edge weights of both
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directions, as the connection between the vertices
is typically stronger if both directions exist. Anal-
ogously, the weight of parallel edges is summed
up only in case of weighted networks; otherwise,
parallel edges are removed. Self-loops are always
removed (with the exception of some synthetic
Kronecker graphs, for which versions with self-
loops and parallel edges and versions without
exist). Only a handful of the real-world networks
included in the benchmark contain (few) par-
allel edges and self-loops; therefore, this deci-
sion does not alter the structure of the networks
considerably.

Furthermore, the graph format used in the
benchmark is a slight extension of the format
that some well-established partitioners such as
Metis (Karypis and Kumar 1999) use. This for-
mat supports only integer edge weights, but some
of the real-world graphs use fractional weights
in very different orders of magnitude. It would
have been possible to define an extension of this
format to allow for fractional weight. However,
this might have prevented some solvers to enter
the challenge. Multiplying the edge weights by
a suitable power of 10 to get integer weights
would have been another approach. Yet, as the
edge weights are of very different ranges, each
graph would have needed its own normalization,
and without rounding, the resulting edge weights
could be too large to fit in standard integer types.
Although we are aware that this causes a loss of
information, we felt that the neatest solution was
to make the respective graphs unweighted. One
of the benchmark graphs (cond-mat-2005)
originally contains edges with a weight inf. As
their meaning is not clear and none of the ob-
jective function is well defined in case of infinite
weights, we discarded these edges as well as all
edges with an edge weight of 0.

RandomGraphs
The Erdős-Rényi random graph generator in the
collection creates graphs according to the well-
known G.n; p/ model (which is very similar to
the original model proposed by Erdős and Rényi
but was actually devised by Gilbert (1959)).
The included graphs have been generated with

p D 1:5 lnn
n

, where the value of p is chosen with
the intent to obtain connected graphs with high
probability. This class of graphs is well studied in
theory. It is also known that typical Erdős-Rényi
graphs do not resemble real-world graphs. The
class was included nevertheless for its theoretical
importance and due to the easy generation of
large graphs with high average degree.

The graphs in the category Kronecker are
generated using the Graph500 benchmark (Bader
et al. 2010). This benchmark’s purpose is to
measure the performance of computer systems
when processing graph-structured workloads.
More specifically, our instances are derived
from an R-MAT generator which is part of
the benchmark. R-MAT graphs (Chakrabarti
et al. 2004) are generated by sampling from a
perturbed Kronecker product. They are scale-
free and reflect many properties of real social
networks. All files have been generated with the
R-MAT parameters A = 0.57, B = 0.19, C = 0.19,
and D = 0.05 and edge factor 48, i.e., the number
of edges equals 48n, where n is the number of
vertices. The original Kronecker files contain
self-loops and multiple edges. These properties
are also present in real-world datasets. However,
as some tools cannot handle these “artifacts,”
we present “cleansed” versions of the datasets
(yielding simple graphs) as well.

Delaunay and random geometric graphs
are taken from KaPPa (Karlsruhe Parallel
Partitioner). Here, rggX is a random geometric
graph with 2X nodes. Each node represents
a random point in the unit square and edges,
connecting nodes whose Euclidean distance is
below 0:55

p
ln n=n. This threshold is chosen

in order to ensure that the graph is almost
connected. The graph DelaunayX is the Delaunay
triangulation of 2X random points in the unit
square.

GeneratedGraphs with Real-World
Structure
Each graph in the star mixture section of the
benchmark represents a starlike structure of
different graphs S0; : : : ; St . Here the graphs
S1; : : : ; St are weakly connected to the center

http://www.graph500.org
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S0 by random edges. The total number of random
edges added between each Si and S0 is less
than 3 % out of the total number of edges in Si .
The graphs are mixtures of the following
structures: social networks, finite-element
graphs, VLSI chips, peer-to-peer networks, and
matrices from optimization solvers. These graphs
were submitted by Safro et al. and are included
into the benchmark because they are potentially
hard graphs for graph partitioning.

Two classic random models of social networks
are preferential attachment (Barabási and Albert
1999) and small world (Watts and Strogatz 1998).
In the context of graph clustering, planted parti-
tion or G.n; pin; pout/ graphs are frequently used
to validate algorithms (Lancichinetti and Fortu-
nato 2009). These networks do not exhibit com-
mon properties of real-world social networks like
a power-law degree distribution. However, their
use is typically motivated by the knowledge of a
ground-truth clustering that is used in the gener-
ation process and can be used to compare algo-
rithms independent of specific objective functions.
We included one graph of each category in the
benchmark set as we deemed it interesting to see to
what extent algorithmic behavior on these graphs
coincides with the behavior on real-world data.

Although we do not store dynamic graphs,
three so-called frames (static instances within
the same dynamic sequence) from three dynamic
mesh sequences each are included in our collec-
tion. These sequences resemble two-dimensional
adaptive numerical simulations. The generator
is explained in some detail by Marquardt and
Schamberger.

Computational task graphs model temporal
dependencies between tasks to be solved, here for
applications working on data streams. The gener-
ated graphs can be used for performance analysis
of algorithms and the development of improved
hardware parameters. These graphs have been
submitted by Ajwani et al.

Real-WorldGraphs
The benchmark includes a large number of real-
world networks stemming from many different
applications. Since scientific computing is a
major application area using graph partitioning,

we included graphs that have been used in
numerical simulations of various kinds.

The partitioning of road networks is an im-
portant technique when it comes to preprocess-
ing for shortest-path algorithms (Bauer et al.
2010). The graphs that can be found in this
section are road networks from whole continents,
e.g., Europe, as well as from whole countries,
e.g., Germany. These graphs were submitted by
Kobitzsch and are based on data from the Open-
StreetMap project.

Parallel direct methods for solving linear
systems yield another important application
of graph partitioning. We therefore included
a subset of graph representations of matrices
from the University of Florida Sparse Matrix
Collection (Davis 2008).

In the context of graph clustering, the analysis
of social networks is one of the most important
applications. The part of the benchmark suite
especially addressed to clustering algorithms re-
flects this by including a variety of real-world
social networks. Most of these are taken from the
webpages of Newman (2012) and Arenas (2009)
and have been previously used to compare and
evaluate clustering in the context of modularity
maximization.

A special subcategory of social networks
are coauthorship networks. In a scientific
context, coauthorship networks link scientists
that have coauthored at least one publication.
The DIMACS benchmark includes coauthorship
graphs from the field of astrophysics, condensed
matter and high-energy theory, network science,
and computer and information science. Closely
related to these are copaper and citation net-
works. Copaper graphs are compiled analogously
to coauthorship graphs by linking papers if they
share at least one author. In contrast to that,
citation networks link papers with another if
one cites the other. The benchmark set contains
graphs of both kinds based on publications in
computer and information science.

Graph clustering has also been successfully
applied to web graphs, where edges link web-
pages based on hyperlinks. A subset of the web
graphs we included is gathered by the Laboratory
for Web Algorithms in Milano by domain-wise
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crawls performed between 2000 and 2007. In
the context of the challenge, these networks are
particularly interesting due to their size; in fact,
the graph combining 12 monthly snapshots of
the .uk domain comprises over 3 billion edges,
which makes it the largest network in the whole
benchmark set.

Apart from these, the part of the benchmark set
explicitly addressed to clustering contains a vari-
ety of (mainly) small networks from various appli-
cation areas such as biology and political science.
All of these are well known in the modularity-
based clustering community. For details on par-
ticular networks and references, we refer to the
challenge webpage (Bader et al. 2012).

The graphs in the redistricting category rep-
resent US states. They are used for solving the
redistricting problem, i.e., determining new elec-
toral boundaries, for example, due to population
changes. Each node represents a block from the
2010 census. Two nodes share an edge if their
blocks are adjacent.

Illustrative Example

As running times would have been prohibitive
for the whole set of benchmark instances,
participants of the competition were only
required to submit clusterings for a subset
of instances, the final challenge testbed. This
subset was announced 2 weeks before the
deadline. To illustrate the performance of
different algorithms on graphs from different
categories, Table 1 shows the best modularity
values achieved by the submitted solvers
on the final challenge testbed. From the 15
solvers in this category, 2 clearly lead the
field. CGGCi RG (Ovelgönne and Geyer-Schulz
2012) iteratively combines several high-quality
clusterings to find a solution with higher quality.
In contrast to that, VNS (Aloise et al. 2012)
uses the metaheuristic variable neighborhood
search, a variant of local search. With few
exceptions, VNS achieves the best results on
networks with up to approximately 100,000
vertices but is outperformed by CGGi RG in
larger networks. An interesting observation is that

ParMod (Çatalyürek et al. 2012), a technique
based on recursive bipartitions, attains the best
modularity values on two graphs. Neither the size
nor the density of these graphs is exceptional,
but unlike the majority of graphs used for this
competition, they exhibit a mesh-like structure.

In addition to quality, running time is also an
important aspect when choosing an algorithm for
a certain application. This is why the DIMACS
Challenge included a second subchallenge for
each objective function, where both quality
and speed contributed to the final scores. More
specifically, the scoring is based on the Pareto
Count of a submitted algorithm on an instance,
i.e., the number of competing algorithms that
are both faster and achieve a higher quality.
In this category, a fast agglomerative solver
named RG (Ovelgönne and Geyer-Schulz 2012)
obtained the best scores. While the differences
in running time might not seem very important
in the context of small instances, they were in
fact huge on larger instances. Considering, for
example, the raw running times on the web graph
uk-2002, RG needs approximately 13 min to
compute a clustering, which is more than 600
times faster than the running time of CGGCi RG,
while the difference in modularity is less than
0.001. This running time can be further improved
by using parallel algorithms. For example, one of
the submissions is able to cluster this instance in
only 30 s by using a GPU (Fagginger Auer and
Bisseling 2012), with a modularity that is still
larger than 0.97.

Consequently, the question which algorithm is
the “best” cannot always be answered globally.
Instead, the answer often depends on application-
specific parameters like the size and structure of
certain instances, as well as the available hard-
ware and a custom trade-off between quality and
running time. Comparing the results of different
algorithms on various benchmark instances can
assist the choice of an appropriate algorithm.

Future Directions

With the graph archive of the 10th DIMACS
Implementation Challenge on Graph Partitioning
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Benchmarking for Graph Clustering and Partitioning, Table 1 Best modularity scores achieved by challenge
participants on the challenge testbed

Graph Modularity Solver

as-22july06 0.678267 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

astro-ph 0.744621 VNS (Aloise et al. 2012)

audikw1 0.917983 VNS (Aloise et al. 2012)

belgium.osm 0.994940 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

cage15 0.903173 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

caidaRouterLevel 0.872042 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

celegans metabolic 0.453248 VNS (Aloise et al. 2012)

citationCiteseer 0.823930 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

coAuthorsCiteseer 0.905297 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

cond-mat-2005 0.746254 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

coPapersDBLP 0.866794 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

email 0.582829 VNS (Aloise et al. 2012)

er-fact1.5-scale25 0.077934 comm-el (Riedy et al. 2012)

eu-2005 0.941554 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

G n pin pout 0.500098 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

in-2004 0.980622 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

kron g500-s-logn16 0.065056 VNS (Aloise et al. 2012)

kron g500-s-logn20 0.050350 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

ldoor 0.969370 ParMod (Çatalyürek et al. 2012)

luxembourg.osm 0.989621 VNS (Aloise et al. 2012)

memplus 0.700473 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

PGPgiantcompo 0.886564 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

polblogs 0.427105 VNS (Aloise et al. 2012)

power 0.940851 VNS (Aloise et al. 2012)

preferentialAttachment 0.315994 VNS (Aloise et al. 2012)

rgg n 2 17 s0 0.978324 VNS (Aloise et al. 2012)

smallworld 0.793042 VNS (Aloise et al. 2012)

uk-2002 0.990301 CGGCi RG (Ovelgönne and Geyer-Schulz 2012)

uk-2007-05 0.480210 comm-el-xmt2 (Riedy et al. 2012)

333SP 0.989095 ParMod (Çatalyürek et al. 2012)

and Graph Clustering, we have introduced a com-
prehensive collection of graphs that can be used
for the assessment of graph partitioning and net-
work analysis algorithms.

With the archive we hope to simplify the
development of improved solution techniques in
these areas by allowing algorithm engineers to
compare the performance of their implementa-
tions to the state of the art.

A deliberate limitation is to not consider dy-
namic graphs, directed graphs, nor hypergraphs.
As instances of this type were not considered
in the challenge, they were not included in the

collection either. We do consider all these omitted
graph types useful though, and they represent
interesting applications.

Of particular interest for network analysis are
directed and dynamic graphs. There is no lack of
data (albeit not all of them are publicly acces-
sible). As an example, the dynamic interaction
of social network users over time constitutes a
dynamic graph that is of particular interest to
social media enterprises and online marketers.
When compiling dynamic instances into a collec-
tion, it should be considered that dynamic graphs
are more difficult to assemble or generate in a
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consistent way – issues such as a suitable interval
length and space-saving storage formats arise.

We encourage interested colleagues to start a
new collection using a similar methodology, this
time focusing on the types of graphs we omitted.
Such an effort would certainly be beneficial to the
network analysis community.
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Synonyms

B2B marketing; Business marketing; Industrial
marketing; Interorganizational marketing;
Organizational marketing

Glossary

AMA American Marketing Association
ARA Analysis Consideration of the actor bonds,

resource ties, and activity links that connect
the parties in an industrial network

B2B Acronym for “business-to-business”
B2C Acronym for “business-to-consumer”
Decision-Making Unit The team of managers

who are involved, both directly and indirectly,
in making organizational purchasing decisions

IMP Group International group of researchers
who collaborate on business-to-business rela-
tionships research (see www.impgroup.org)

Marketing Mix (Approach) An approach to
marketing based on the ideas that the buyer
and seller operate independently and that
the marketer is the active participant while
the buyer responds passively to the seller’s
marketing mix. The marketing mix is the

combination of stimuli (such as product
design, advertising, social media, pricing,
customer service, and distribution) employed
by the marketer to convince the buyer to buy.

Definition

Business-to-business marketing concerns seller-
initiated processes directed at creating mutually
beneficial exchange transactions between organi-
zations.

Historical Background

Marketing, in general, and B2B marketing,
specifically, are relatively recently developed
fields of scholarship. Recent years have seen
marketing scholarship seek to emancipate itself
from its underpinning disciplines, notably
neoclassical economics, psychology, and social
psychology. Much recent scholarship revolves
around two key directions in the development
of marketing thought: firstly, the attempt to
develop original marketing models that do
not simply borrow ideas from other social
science disciplines and, secondly, to differentiate
between scholarship intended to advance the field
of study and scholarship undertaken to develop
managerial technologies and techniques. The
field of B2B marketing, as explained here, has
played a key role in the development of both of
these directions.

Foundations

The ChangingDefinition of Marketing
In 2007 the American Marketing Association
defined marketing as:

The activity, set of institutions, and processes
for creating, communicating, delivering, and ex-
changing offerings that have value for customers,
clients, partners, and society at large. (http://www.
marketingpower.com/Community/ARC/Pages/Add
itional/Definition/default.aspx)
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This new definition replaced the 2004 AMA
definition, which was:

Marketing is an organizational function and a set
of processes for creating, communicating, and
delivering value to customers and for managing
customer relationships in ways that benefit the
organization and its stakeholders.

The transition from the 2004 definition to the
2007 definition represented the continuation of
a shift in marketing thought, away from defini-
tions dominated by managerial concerns and the
management of organizational processes (often
understood as the marketing mix), towards a
definition that acknowledges that the marketing
system is embedded within, and a part of, wider
social systems. Intellectual developments within
the field of B2B marketing in particular had,
over the preceding decades, played their part in
bringing about this transition.

B2BMarketing and B2CMarketing
Until the 1960s B2B marketing was regarded as a
minor offshoot of B2C marketing, and both were
dominated by managerially orientated research.
Marketing was seen as the sole concern of mar-
keting and sales managers, and customers were
seen as the passive – if sometimes recalcitrant –
recipients of marketing messages. The job of
marketing (management) was to find out what
customers wanted, design profitable products to
meet those needs, and then persuade customers
to part with their money to buy the products (note
that in the language of marketing, the category
“product” subsumes both goods and services).
The emphasis was on the identification of the key
buying criteria used by purchasing organizations,
the identification of the members of the decision-
making unit (or buying center), and the devel-
opment of strategies to influence those members
through persuasive marketing communications,
involving advertising and direct selling.

The Emergence of Modern Theories of
B2BMarketing
Since the 1970s this rather naı̈ve model of mar-
keting has been challenged in numerous ways and
in virtually all of the contexts in which marketing

takes place. It is in the B2B context that the model
has been challenged most extensively and most
effectively. The challenges were both conceptual
and empirical (Ford 2001).

Conceptually, it is clear that customer orga-
nizations engage in complex buying processes
that are simultaneous with and that interact with
the marketing and selling processes of supplier
organizations. It makes little sense to analyze
the B2B marketing and selling process inde-
pendently of the customer organization’s buying
process; these processes are interlinked (Ford
and Håkansson 2006). Furthermore, B2B buying
and selling frequently takes place in the con-
text of small-number exchange, meaning, simply,
that in many B2B markets there are relatively
few qualified suppliers and relatively few sub-
stantial buyers. In contrast to the B2C context,
where the customer is usually an individual per-
son and the supplier is often a large organization,
in the B2B context the customer is an organi-
zation and may be economically very powerful
(consider the buying power of Ford, Boeing, or
Samsung). Consequently, the notion of a passive
buyer responding to the marketing messages of an
active seller is inappropriate for a wide range of
B2B markets. Sometimes the buying organization
will be in charge of the process (specifying and
designing the product that it requires, managing
the process of communication with prospective
suppliers, and then subcontracting supply). In
other cases the process will be managed through
an equal partnership between buyer and supplier.
There are also some B2B markets in which the
seller-dominant model of marketing makes sense.
The key point is that the nature of the B2B
marketing process is contingent on a wide range
of factors, such as the number of buyers and
sellers, the concentration of buying and selling
power, the dynamism of the economic environ-
ment, the complexity of the product, and the rate
of change of technology. A simplistic concep-
tion of marketing as the process by which the
seller identifies and then meets customer needs
is entirely inadequate.

Empirically, many studies have demonstrated
that, frequently, buying and selling organizations
engage in what can be described as “buyer-seller
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relationships.” Such relationships involve, but
are by no means uniquely defined by, repeated
exchanges of products for money. Repeated
exchanges are necessary but insufficient
conditions for the existence of a B2B buyer-seller
relationship. In addition to repeated exchanges,
a buyer-seller relationship may be characterized
by a range of factors such as extensive sharing
of commercial and technical information,
extensive social interaction between personnel
from the buying and selling organizations,
tolerance for occasional underperformance by
the relationship partner, and emergence of mutual
trust which involves both cognitive and affective
components. Many empirical studies have sought
to measure key relational variables, such as
trust, commitment, power, relationship strength,
adaptation, and information exchange, within
B2B buyer-seller relationships.

The IMP Group: The Interaction and ARA
Models
According to the ARA (actors, resources,
activities) model of the IMP Group, B2B buyer-
seller relationships lead to the development
of bonds between the parties (actors) to the
relationship, ties between their resources, and
links between their activities (Håkansson and
Snehota 1995). The IMP Interaction Model
was an influential, relationship-based approach
to B2B marketing developed in the 1980s.
The Interaction Model sought to identify the
important characteristics of dyadic (i.e. one to
one) business relationships. In addition to the
relationship characteristics mentioned already,
the concept of the relationship atmosphere
was an important contribution from the IMP
approach. Although never defined entirely
satisfactorily, the concept of the relationship
atmosphere seeks to capture the essence of
“how the relationship feels” at a given point
in time; short-term underperformance by one
party to the relationship may damage the
relationship atmosphere but, in the case of
a robust relationship, is unlikely to lead to
relationship termination. Various attempts
have been made to develop, either empirically
or conceptually, life cycle models of B2B

buyer-seller relationships. Such models, defining
relationships in terms of stages through which
they progress, remain controversial. While there
is clearly some sense in which a B2B relationship
is initiated and then, if successful, develops and
matures (and possibly is eventually terminated),
there is little or no evidence that this process
occurs in a predictable series of readily defined
“stages” with clear boundaries.

The Industrial Network Perspective
The industrial network school of thought
emerged from the IMP Group approach to B2B
marketing (Axelsson and Easton 1992; Araujo
and Easton 1996). The change of emphasis is
from a dyadic perspective (factors affecting
the relationship between two organizations in
a relationship) to a network perspective (factors
affecting the relative position of all of the actors
within a defined network space). Although the
dyadic perspective remains influential, and case
studies of specific buyer-seller relationships
remain a popular method of empirical inves-
tigation in this field, the industrial networks
perspective is considered a more comprehensive
approach to the analysis of B2B marketing.
B2B buyer-seller relationships are necessarily
embedded in a network of relationships, and
behavior at the level of the individual dyad
will often only be comprehensible when viewed
through a network lens. For example, a marketing
organization may choose not to develop further
an apparently successful relationship with a
key customer for reasons that are inexplicable
at the dyadic level. Network-level effects may
provide a rationale for this behavior (for example,
if the customer is a major rival to another,
more influential customer, so that the further
development of one relationship might endanger
the other).

Future Directions

The question of how the further development
of information technology will affect B2B
marketing remains open. This has been an
enduring question, investigated for each new
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wave of IT. Currently, much debate surrounds the
role of social media (such as Facebook, Twitter,
and LinkedIn) in B2B marketing. With each
new wave of IT, similar questions arise, notably
whether the pattern of relationships and networks
in B2B markets will be fundamentally disrupted
by new forms of interaction, and whether new
media will be complements to or substitutes for
personal interaction in B2B relationships and
networks.

In addition, lively debate continues around the
question of strategy within industrial networks.
On one hand, it has been argued that meaning-
ful strategic action within complex networks is
virtually impossible, since no actor can hope to
predict the outcome of its actions because they
are mediated by the actions of countless other
actors. On the other hand, business managers in
B2B organizations clearly believe that they are
engaged in strategic decision-making that makes
a difference to business performance.

Cross-References

� Inter-organizational
Networks

�R&D Networks
�Supply Chain Networks
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