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Abstract. The increasing energy consumption of high performance com-
puting has resulted in rising operational and environmental costs. There-
fore, reducing the energy consumption of computation is an emerging
area of interest. We study the approach of data sampling to reduce the
energy costs of sparse graph algorithms. The resulting error levels for sev-
eral graph metrics are measured to analyze the trade-off between energy
consumption reduction and error. The three types of graphs studied,
real graphs, synthetic random graphs, and synthetic small-world graphs,
each show distinct behavior. Across all graphs, the error cost is initially
relatively low. For example, four of the five real graphs studied needed
less than a third of total energy to retain a degree centrality rank corre-
lation coefficient of 0.85 when random vertices were removed. However,
the error incurred for further energy reduction grows at an increasing
rate, providing diminishing returns.
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1 Introduction

Power consumption has become a critical issue in computing. This is a concern
both for supercomputers, where massive energy use poses a financial and an envi-
ronmental cost, and for embedded in-the-field processing systems, which have
a limited energy supply or battery lifetime. Achieving maximum computational
capabilities on embedded systems while limiting power use is an important task.

We address energy reduction for irregular, sparse graph algorithms through
data sampling or removal. Sparse networks often represent relationships, com-
munication, or information flow. For example, a graph may represent an online
social network, network traffic, biological networks, or financial transactions.
Often such graphs are constructed from a massive, and constant, stream of data,
which leads to large graphs and energy-expensive computations. However, in
cases where an approximate solution suffices, it is not always necessary to store
and use the entire graph. For example, when calculating distances, approximate
results for shortest paths may be acceptable for a given application. If the goal
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is to find the most influential, or important, vertices, it is only necessary to
calculate top scores correctly since low-scoring vertices are of no interest. Since
approximations are often satisfactory for real-world graph metrics, a certain
degree of error in the underlying graph data, such as missing or incorrect edges
and vertices, may be tolerated. Real-time streams of data may also amass too
much information to be stored or lead to over-saturation, in which case certain
vertices and edges may need to be removed over time.

Vertex and edge removal can also be performed intentionally with the goal
of reducing energy consumption. Sampling results in a smaller graph, with fewer
memory accesses, fewer compute operations, and a shorter overall running time,
all of which contribute to less energy use. However, in order for this to be a
feasible approach, it is necessary to determine the resulting level of error. We
investigate the sensitivity of several graph metrics to missing vertices and edges,
which can be used to set tolerable error level thresholds.

Previous work has compared the sensitivity of scale free and random networks
to vertex removal [1]. Sampling and contraction methods have been used to
reduce the size of internet topology graphs [13]. Graph analytic sensitivity to
noisy data has been addressed by Borgatti et al. [5]. However, that work only
considers vertex centrality measures on Erdős-Rényi random graphs [9], whose
structure differs from that of real networks. Because the authors focus on errors
in the data due to noise instead of conscious data sampling for power reduction,
many of the errors analyzed, such as false positive edges, are not as applicable
to the goal of energy reduction. Kossinets [12] studies the effects of missing data
in social networks by analyzing a bipartite scientific collaboration network of
authors and papers as well as bipartite random graphs. Our work differs because
we focus on filtering methods for the purpose of decreasing the size of the graph
and therefore the energy needed to compute various analytics.

2 Energy Model

The energy consumption of an algorithm can be modeled in terms of the energy
per memory operation, energy per arithmetic operation, and constant energy
that must be expended until the computation terminates, as given in Eq. (1),
where W is the number of memory operations, εflop is the fixed energy cost of a
compute operation, Q is the number of arithmetic operations, εmem is the fixed
energy cost of a memory operation, T is the duration of the algorithm, and π0

is the fixed constant energy cost, which may be idle energy or leakage [7,11].

E = Wεflop + Qεmem + Tπ0 (1)

Because sparse graph algorithms tend to exhibit a low arithmetic intensity and
are memory bound,we focus on the number of memory operations and energy per
memory operation. Many real-world graphs have a low diameter and irregular
structure with little or no locality in the data access pattern. Sparse graph
algorithms tend to exhibit low data reuse and focus on traversing the graph
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structure [15]. Therefore, focusing on memory cost is an appropriate proxy for
the energy consumption of sparse graph algorithms.

Dynamic power management is a technique used to reduce power consump-
tion in which system components are switched to a low-performance, or idle,
state when load demands are low [4]. Memory power reduction can be achieved
by dynamically adjusting memory voltage and frequency based on bandwidth
utilization [8]. We describe three possible situations in which energy considera-
tions can cause analytics to be run on incomplete graphs. From the algorithmic
perspective, all have the same result. A subset of the vertices and edges of a
graph are not used when calculating a graph analytic.

1. The system may choose not to access a subset of the graph in memory. This
reduces the number of memory accesses.

2. Portions of memory may be turned to a low power mode to conserve energy,
resulting in some data being unavailable. In-the-field embedded systems, for
example, may do this after having detected low energy supplies.

3. The system may have insufficient storage for the entire graph and so a subset
of the graph must be removed or never stored in the first place.

3 Methodology

Our approach to measuring sensitivity to missing data is as follows. We start
with a true, base graph G and compute the value of a metric, called the true
metric value. For each sampling level k, the graph is sampled in several ways
and a subset of the vertices and edges is removed, creating the sampled graph
Gk,sampled. The metric is recomputed on Gk,sampled, which gives the observed
metric value. We then compare the true metric value to the observed metric
value, resulting in a metric error. The energy required is calculated as the ratio
of energy needed for Gk,sampled to the energy needed for G. The relationship
between the average metric error and energy required for each sampling level can
then be examined. This process is repeated for all sampling methods described
in Sect. 3.2.

3.1 Datasets

Testing is performed on both real and synthetic networks, listed in Table 1.
The real graphs come from the 10th DIMACS Implementation Challenge [2] and
include citation networks, collaboration networks, a graph of users of the Pretty-
Good-Privacy algorithm for secure information interchange, and a graph of the
structure of the Internet from 2006. The synthetic graphs used were produced
by an RMAT generator [6]. These include both Erdős-Rényi random graphs
and small-world graphs that have many properties of real-world social networks,
such as a power law degree distribution and low diameter [3,10,14]. We used
parameters α = 0.25, β = 0.25, γ = 0.25, δ = 0.25 for the Erdős-Rényi random
graph and α = 0.55, β = 0.1, γ = 0.1, δ = 0.25 for the small-world graph.
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Table 1. Graph instances used in testing

Name Vertices Edges

citationCiteseer 268,495 1,156,647
coAuthorsCiteseer 227,320 814,134
coAuthorsDBLP 299,067 977,676
as-22july06 22,963 48,436
PGPgiantcompo 10,680 24,316
SmallWorld EF 8 32,768 237,523
SmallWorld EF 16 32,768 456,626
SmallWorld EF 32 32,768 861,878
Random EF 8 32,768 262,085
Random EF 16 32,768 524,031
Random EF 32 32,768 1,047,549

3.2 Graph Sampling Methods

The four approaches used to sample data are listed below for a graph with n
vertices. For each one, we consider values of p = 0.01, 0.05, 0.1, 0.15, . . . , 0.8, 0.85.

– RandEdge: Edges in the graph are chosen to be removed with equal proba-
bility p so that the error is distributed evenly across the network.

– RandVertex: Each vertex in the graph is chosen to be removed with equal
probability p. When a vertex is removed, all of its incident edges are removed
as well.

– HighDegVertex: The highest degree vertices and incident edges are removed.
The top p ∗ n vertices are selected.

– LowDegVertex: The p∗n lowest degree vertices and their edges are removed.

3.3 Metrics Evaluated

We evaluate the graph connectivity, clustering coefficients, and degree centrality.
The degree centrality of a vertex measures the number of edges incident on it
and is the most basic centrality measure. We evaluate the sensitivity of degree
centrality by measuring how much the rank of vertices’ degree centrality changes
when data is removed. For a given sampling level, the degree centrality rank
is calculated for each vertex present in both the original and sampled graphs,
resulting in two vectors. The Spearman correlation coefficient of these two rank
vectors is then measured.

A connected component of a graph is a set of vertices linked by paths of
edges. As vertices and edges are removed, the connected components of a graph
may disconnect. While the number of components may increase, measuring the
error in the number of connected components offers little information about
how the structure of the graph has changed. A component splitting in half is a
very different scenario from a few vertices disconnecting. We define the error in
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connectivity as the proportion of pairs of vertices that were in the same com-
ponent in the original graph and remain in the same component in the sampled
graph. Only vertices with nonzero degree in the sampled graph are considered.
Let c(G, u, v) be an indicator function whose value is one when vertices u and
v are in the same component in graph G and zero otherwise. The connectivity
retained is then given by Eq. (2). Using the Shiloach-Vishkin algorithm [16], the
estimated cost of computing connected components is mlog(n) where m is the
number of edges and n vertices.

ConnectivityRetained =

∑
v,u∈Gsampled

c(Gsampled, u, v)
∑

v,u∈Gsampled
c(G, u, v)

(2)

The clustering coefficient measures the density of triangles in a graph and is
one measure of the degree to which the graph is clustered. The local cluster-
ing coefficient of v is the ratio of closed triplets to open triplets of v and the
global clustering coefficient is the ratio of total triangles to total triplets in the
graph. High clustering coefficients suggest a small-world graph [17]. The global
clustering coefficient can be used to characterize the entire graph, while local
coefficients can reveal entities that engage in the most or least clustered activity.
We measure the absolute and relative error in global clustering coefficient. To
measure the sensitivity of local clustering coefficients, we calculate the Spear-
man correlation coefficient of the per-vertex rank in local clustering coefficient.
Each vertex compares its list of adjacent vertices with the adjacency list of each
of its neighbors, searching for intersections. Thus, the adjacency list of vertex v
is accessed dv + 1 times, once for itself, and once for each neighbor. Thus, the
energy cost is given by E = εmem ∗ ∑

v d2v.

4 Results

The proportion of connectivity retained for each graph against energy required
is plotted in Fig. 1. For each dataset, the energy value on the x-axis is the ratio
of energy needed for Gsampled to the energy needed for G. For all sampling types,
the connected components of synthetic graphs are far more robust to missing
data than those of real ones, which can be explained by the regular structure of
RMAT graphs. Of the synthetic graphs, random graphs are the most robust with
almost no error, while small-world graphs behave more similarly to real data.
Removing low degree vertices causes the least amount of error across datasets.
Removing high degree vertices, random vertices, and random edges provides
diminishing returns as can be seen by the change in slope of the curves in Fig. 1.

The clustering coefficient of a graph also affects the sensitivity of its con-
nected components. Among datasets studied, networks with a high global clus-
tering coefficient require a higher proportion of energy to retain their connec-
tivity structure. Figure 2 plots the clustering coefficient against the proportion
of energy necessary to retain a connectivity of 0.85 and 0.95. For random edge,
random vertex, and high degree vertex removal, the connected components of
highly clustered graphs are least robust.
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Fig. 1. The connectivity retained, or proportion of pairs of vertices that remain in the
same connected component after sampling

Fig. 2. Graph global clustering coefficient versus percentage of energy needed for 0.85
and 0.95 connectivity

Figure 3 plots the local clustering rank correlation coefficient against energy
required. Real graphs are least sensitive to low and high degree vertex removal
and most sensitive to random edge and vertex removal. In order to achieve a
correlation coefficient of at least 0.85, the real graphs, in order listed in Table 1,
need a 0.28, 0.47, 0.45, 1.0, and 0.13 proportion of energy with high degree
vertex removal and 0.47, 0.48, 0.48, 0.2, and 0.86 with low degree vertex removal.
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Fig. 3. Clustering coefficient rank correlation

With random edge and vertex removal, the real graphs need from 0.81 to 0.9
and from 0.62 to 0.73 energy, respectively. These relatively narrow bands show
that random missing data may produce more consistent results, but at the cost
of more energy usage. Random graphs are least sensitive to missing low degree
vertices, requiring 0.61 to 0.7 energy for 0.85 correlation and most to missing
random edges, requiring 0.81 to 0.9. Unlike random or real graphs, synthetic
small-world graphs showed the most sensitivity when low degree vertices are
removed. Despite these differences between the three network categories, Fig. 3
shows similar behavior for all types. As with connectivity error, data removal
provides diminishing returns across the graphs studied. As the removal rate
increases and the energy use decreases, the rate at which the clustering rank
correlation coefficient falls increases. This suggests that significant energy savings
could be achieved at relatively low error levels. It is interesting to note that for
all graphs, this behavior is least prominent with random edge removal, where
the curves are closer to linear.

Figure 4 plots the degree centrality rank correlation coefficient against energy
used. A clear distinction can be seen between the sensitivity of real graphs, syn-
thetic small-world graphs, and synthetic random graphs. Synthetic small-world
graphs are most robust to all sampling methods, random graphs are the least
robust, and the behavior of real graphs is in between the two. The robustness of
small-world graphs compared to random ones can be explained by their skewed
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Fig. 4. Degree rank correlation

Fig. 5. Graph density versus energy needed to retain degree rank correlation of 0.95
using random edge removal (left) and random vertex removal (right)

degree distribution. Since there is little variation in vertex degree centrality in
random graphs, this metric is very sensitive to missing data. Small-world graphs
exhibit a large variation in degree centrality and so more data must be removed
to change the metric. However, the results cannot be explained solely by a skewed
degree distribution. The top 1% of vertices contain a greater proportion of net-
work edges in the real graphs than in the synthetic small-world graphs. Thus,
the real graphs may have the most skewed degree distribution, but their degree
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centrality is not most robust. Although the real datasets come from a variety
of sources, their degree centrality values are affected similarly by missing data.
As with connected components and local clustering coefficients, the gradient of
the curves across datasets increases from right to left, suggesting that significant
energy savings can be initially achieved with relatively low error, but that the
error cost grows as more data is removed. Four of the five real graphs use less
than a third of total energy to retain a degree centrality rank correlation coeffi-
cient of 0.85 with random vertex removal and less than 0.55 energy with random
edge or high degree vertex removal.

The density of a graph, its ratio of edges to vertices, does affect its sensi-
tivity to random edge and vertex sampling. In Fig. 5, density is plotted against
the energy required to retain a degree centrality rank correlation coefficient of
0.95. Red stars denote synthetic small-world graphs and blue circles denote real
graphs. For both of these categories, as the graph density increases, the propor-
tion of energy needed decreases. This trend does not hold for random graphs,
which are represented in the scatter plots with black diamonds.

5 Conclusion

We have investigated an approach for reducing the energy consumption of sparse
graph algorithms with edge and vertex sampling. Such data removal will nat-
urally result in errors which may or may not be tolerable, depending on the
metric and application. We have examined the sensitivity of clustering coeffi-
cients, degree centrality, and connected components to various sampling strate-
gies and analyzed the trade-off between energy reduction and error. Synthetic
random graphs, synthetic small-world graphs, and real small-world graphs each
tended to react distinctly. The structure of the graph is important in predict-
ing the sensitivity to missing data and in choosing the best sampling technique
and conclusions drawn from synthetic graphs may not be applicable to real data.
Although the real networks came from a variety of sources, they tended to exhibit
similar behavior that was distinct from that of either type of synthetic graph.
Structural features such as the degree of clustering and density also have an
effect on a network’s robustness. It is interesting to note that in most cases, a
similar pattern exists in the trade-off between energy savings and metric error.
The gradient of the curve increases as energy use decreases, showing that the
error cost of power saving is initially low, but grows at an increasing rate. This
pattern suggests that significant energy savings might be achieved with relatively
low error levels.
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