
Multithreaded Community Monitoring for

Massive Streaming Graph Data

Jason Riedy David A. Bader

College of Computing

Georgia Institute of Technology

Atlanta, GA, USA

Abstract—Analyzing static snapshots of massive,

graph-structured data cannot keep pace with the

growth of social networks, financial transactions,

and other valuable data sources. Current state-of-

the-art industrial methods analyze these streaming

sources using only simple, aggregate metrics. There

are few existing scalable algorithms for monitor-

ing complex global quantities like decomposition

into community structure. Using our framework

STING, we present the first known parallel algo-

rithm specifically for monitoring communities in

this massive, streaming, graph-structured data. Our

algorithm performs incremental re-agglomeration

rather than starting from scratch after each batch

of changes, reducing the problem’s size to that

of the change rather than the entire graph. We

analyze our initial implementation’s performance

on multithreaded platforms for execution time and

latency. On an Intel-based multithreaded platform,

our algorithm handles up to 100 million updates per

second on social networks with one to 30 million

edges, providing a speed-up from 4× to 3700× over

statically recomputing the decomposition after each

batch of changes. Possibly because of our artificial

graph generator, resulting communities’ modularity

varies little from the initial graph.

I. INTRODUCTION

The world is awash in data of all forms. Highway

sensors generate continuous traffic information,

high-throughput sequencers produce vast quantities

of genetic information, people send text and images

constantly, and more. Everyone recognizes the

sheer volume of raw data already surpasses our

analysis capabilities and keeps growing. Much of

this data consists of relationships, providing a rich

and changing graph structure.

To derive insight from the mass of data requires

more than current high-performance, parallel au-

tomatic analysis. Applying static analysis to a

changing network of a billion Facebook users

sharing and communicating content produces in-

formation potentially long after the context has

changed. Tracking closely linked sets of accounts

in Twitter during the Euro 2012 final match between

Spain and Italy would have required analyzing a

graph representing messages arriving at rates up to

fifteen thousand times per second [1]. Analyzing

global computer networks for anomalous or suspect

behavior requires more rapid turn-around time than

static algorithms deliver. Emerging applications

require more complex graph analysis that adapts

quickly to changing graph data by working with

the stream of information as it arrives.

Much work on analysis of streaming, graph-

structured data focuses primarily on aggregate infor-

mation like counts and averages. These sufficient

statistics assist in diffusion models for accurate

trend prediction in power-law networks [2] and

other applications, but do not help with more

complex analysis like guiding sampling for ap-

proximate centrality measures. Here we build on

our previous work in both complex analysis of

streaming graph data [3], [4], [5] and community

detection in static graphs [6], [7], [8] to provide

the first algorithm for maintaining a community

decomposition of a changing, undirected social

network. On an Intel-based multithreaded platform,

our algorithm handles up to 100 million updates per

second on social networks with one to 30 million

edges, providing a speed-up from 4× to 3700×
over statically recomputing the decomposition after

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.229

1646

each batch of changes. On a Cray XMT2, our

algorithm provides provides a speed-up from 1.3×
to almost 3200× over static recomputation. In

all cases, the static recomputation uses a highly

scalable multithreaded algorithm[7], [8], [6].

Note that our use, analysis of streaming data,

differs from streaming algorithms and dynamic al-

gorithms in computer science. We optimize analysis

performance by using batches of streaming data

to reduce the problem size. Streaming algorithms

consider using a minimal amount of memory while

passing over a data set once or possibly many times.

Dynamic algorithms specialize data structures and

algorithms for completely dynamic operations. Our

approach maintains a single large data structure,

STINGER, and incrementally updates analysis

results using smaller, analysis-kernel-specific data

structures, adopting ideas from both bodies of

existing work.

A. STING, a Framework for Streaming, Graph-

Structured Data Analysis

To tackle analysis in these new situations, we

are developing the free STING (Spatio-Temporal

Interaction Networks and Graphs) framework1 [3],

[5], [4]. STING balances portability, productivity,

and performance for research and development.

Our young framework accumulates batches of

edge changes into a semantic graph data structure,

STINGER (STING Extensible Representation), and

runs analysis kernels to monitor graph properties.

STING is a C framework portable across POSIX

and OpenMP platforms as well as the Cray XMT.

STING includes kernels maintaining vertex-local

quantities like clustering coefficients [5] and global

information like connected component labeling [4].

Here we add maintaining a global community de-

composition through edge insertions and removals.

Edge insertions add new edges or increment the

weight of existing edges. Edge removals entirely

delete an edge from the graph if the edge exists.

B. Outline

This paper introduces the first community mon-

itoring analysis kernel for STING. To our knowl-

edge, this is not only the first parallel algorithm but

1Available at http://www.cc.gatech.edu/stinger/.

the first algorithm at all to update communities

rather than recompute them from scratch. Our

algorithm runs in time proportional to the amount

of the graph affected by the batch of changes plus

the size of a graph representing the community

structure, a much smaller graph than the entire

network. Section II describes the algorithm and

important implementation details. Section III spec-

ifies our test case generator. We begin with a real-

world graph and add artificial edges to measure our

implementation’s performance in Section IV.

II. RE-AGGLOMERATION ALGORITHM

We adapt our static parallel agglomerative com-

munity detection algorithm for streaming data by

re-agglomeration. The algorithm adapts the commu-

nity mapping by extracting affected vertices from

a contracted graph representing the communities

and then re-applying the static algorithm to this

much smaller graph. We briefly outline our static

parallel agglomerative community detection algo-

rithm and data structure [6], [7], [8], highlighting

adaptations to streaming data. Then we describe

the re-agglomeration in more detail, particularly the

process of modifying the community graph. Our

implementation’s source code is available in the

STING development repository.

A. Static Agglomerative Community Detection

The agglomerative algorithm takes an initial

graph as input and returns a contracted community

graph as well as a mapping from the initial graph’s

vertices to the community labels. The community

graph has a vertex for each community. An edge

between two communities exists when any vertex

in one community has a neighbor in the other. The

community edge weight is the sum of all edges

between the two communities.

Our algorithm for streaming data applies our

prior static agglomerative algorithm to an updated

community graph. If the community graph is

denoted by the pair GC = (C,EC), where C is the

set of communities and EC are the weighted edges

between communities, then each agglomeration step

requires O(|EC |) operations, both arithmetic and

memory [7].

1647

The static agglomerative algorithm works on a

simple edge list data structure. Each graph edge

{i, j;w} between vertices i 6= j with weight w
is stored exactly once in an array of all edges.

Self-edge weights are accumulated in a separate

array; a self-edge weight of zero implies there are

no self edges. This structure permits low-overhead

parallelization across the entire edge list.

The static algorithm repeats three phases until

the community metric stops improving: scoring,

matching, and contraction. Scoring assigns to each

edge the change in the community metric. Here we

use modularity for the community metric. Scoring

details are available in prior work; the important

feature is that the score of an edge relies only on

information local to the edge and its endpoints.

In matching, our algorithm computes a maximal

matching that greedily maximizes the sum of the

matching’s edges’ scores. A matching with large

score suffices for local metric optimization; we do

not require the maximum weight maximal matching.

Our algorithm provides a matching with total score

within a factor of two of the maximum score.

The matching identifies edges to contract. The

contraction phase implements this contraction from

one community graph to another. Community graph

vertices are relabeled with new vertex identifiers,

the edges are binned in parallel by the first stored

vertex, and each bin is collapsed to accumulate

redundant edges weights. To spread load, edges

between vertices i and j are stored in a hashed

order. If the vertices are both even or both odd,

i is stored first, otherwise j is stored first. This

seems sufficient to prevent any one vertex bin

from growing too large. We re-use the contraction

algorithm to incorporate graph changes from the

incoming data stream.

B. Agglomeration for Streaming Data

Our streaming re-agglomeration algorithm works

by de-agglomerating the community graph and then

applying the static agglomeration algorithm to the

expanded community graph. We extract vertices

affected by edge changes from their communities

and re-start the agglomeration process. The ex-

panded community graph is far smaller than the

full network. As before, the community graph is

GC = (C,EC). The full graph is G = (V,E) with

vertex set V and edge set E.

The algorithm uses the full graph G represented

with STINGER, the maintained community graph

GC represented in an edge list as in Section II-A,

and a handful of work arrays. Our current imple-

mentation uses O(|V |) storage for work arrays and

maintains GC using storage beyond the minimal

|C|+3|EC |, but this could be changed to reallocate

and copy as needed with some performance penalty.

The community updates occur after applying the

batch of changes to the STINGER graph structure.

We assume edges inserted within communities

or removed between communities will not cause

the communities to split or merge. This is true

for edge-local agglomeration using metrics like

modularity but may not be true for all metrics.

This assumption may reduce the number of changes

under consideration drastically.

To implement the reduction, we scan the batch

of changes for active vertices. We consider a vertex

active if it appears as an endpoint for a changed

edge that is either inserted between communities

or removed within a community. Let ∆V be the

set of active vertices represented in a list of size

at most |V |.

After the batch of actions is applied to the

STINGER structure, our algorithm executes the

following steps:

1) Collect active vertices as defined above into

∆V using a scatter/gather buffer and atomic

compare-and-swap operations.

2) Extract the vertices in ∆V from their existing

communities, appending edges to GC to ac-

count for the edge changes (see Algorithm 1).

3) Collapse GC to accumulate the edge changes

using a self-contraction.

4) Re-run agglomeration on GC .

Note that our algorithm will not necessarily

detect when a community is split into separate

components. Using a component tracking kernel [4]

as input is future work.

C. Modifying the Edge List

De-agglomerating the vertices in ∆V requires ex-

tracting graph vertices into new community vertices

1648

within GC , modifying existing edge weights, and in-

serting new edges touching the new community ver-

tices. This uses at small multiple of |V | workspace.

The final contraction and re-agglomeration require

5|C ′| + 3|E′

C
| space [7], where G′ = (C ′, E′

C
)

is the de-agglomerated graph. The edge list mod-

ification takes the community graph GC with

community vertex counts as input along with the

global STINGER graph G, the batch of edge

changes, and an |V |-long array cmap[] mapping

vertices in G to community labels. The workspace

holds the list ∆V of active vertices and an array

mark[] set to extracted vertex community ids or -1

for vertices not extracted into new communities.

The pseudo-code for extracting vertices and

adjusting edge weights is in Algorithm 1. Loops

are parallel across vertices in ∆V . With additional

atomic operations, loops across the adjacency lists

could be parallel, which may improve performance

on architectures with fine-grained threading.

After the edge list is updated with adjustment

edges, we commit the new community labels

in mark[] to cmap[] in parallel. We then call

our existing edge list contraction routine from

prior work to collapse duplicate edges, correcting

their weights for the extraction operations. Our

implementation slightly optimizes the case of self-

contraction, but otherwise the contraction algorithm

is the same as in [7], [8].

III. GENERATING TEST CASES

To test performance of the Section II’s algorithm,

we rely on artificial edge action streams applied

to topical real-world graphs. The generated test

cases are not intended to model real-world changes

perfectly but only well enough to verify and debug

our algorithm performance. Real-world data sets

like public actions at GitHub2 or Stack Exchange3

require significant data extraction and model cu-

ration. We test difficult-case performance using

artificial data.

Testing against artificial data suffices to demon-

strate rough algorithm performance. Our test cases

2http://www.githubarchive.org/
3http://www.clearbits.net/creators/146-stack-exchange-data-

dump

Data: community graph GC , array cmap
mapping vertices to old community ids, an

array with each old community size, and

array mark that, when non-negative,

maps vertices to new community ids

Result: GC with appended edges adjusting for

the batch changes

foreach vertex i ∈ ∆V (in parallel) do
Atomically subtract one from i’s
community’s size;

if the result is not zero then
Atomically obtain a new community id

(≥ 0) by incrementing the number of

communities;

Set mark[i] to the new community id;

Set the community size of mark[i] to

one;

else the last vertex stays in its old

community

Restore the community size to one.;

Set mark[i] to -1.;

foreach vertex i ∈ ∆V with mark[i] ≥ 0 (in

parallel) do
foreach neighbor j with weight w from

STINGER do

begin remove old edges
if cmap[i] 6= cmap[j] then append

{cmap[i], cmap[j];−w} to GC (only

once by requiring mark[j] < 0 or

cmap[i] < comm[j]);
else atomically subtract w from i’s
community weight (sum of all

internal edges);

begin append new edges
if mark[i] = mark[j] then i and j
are in the same new community so

accumulate w into the new

community weight;

else if mark[j] < 0 then append

{mark[i], cmap[j];w} to GC ;

else append {mark[i],mark[j];w} to

GC when mark[i] < mark[j];

Algorithm 1: Extracting individual vertices to

new communities (containing only those vertices)

and appending edges to account for the weight

changes.

are not entirely artificial. Each starts with a real-

1649

world graph from the 10th DIMACS Implemen-

tation Challenge4 [9] on graph partitioning and

clustering. We then generate a stream of edge

insertions between the initial graph’s vertices and

removals from initial or inserted graph edges. Each

action is an insertion with probability 15/16 and a

removal with probability 1/16.

Given a graph, the generator computes an initial

community decomposition. The decomposition is

both the starting community used in Section IV’s

experiments and also the source of edge actions.

The edge actions are generated based only on this

initial decomposition. The generator is memory-less

and does not update the graph based on previously

generated edges.

To generate an edge insertion, the generator

chooses two distinct communities without replace-

ment with probability proportional to their average

weighted volume, the average weight of all edges

adjacent to the community’s vertices. An endpoint

is chosen from each community with probability

inversely proportional to its degree. This adds

edges between lightly connected vertices in large

communities.

Generating edge removals emphasizes existing

edges within the graph, but occasional removals

of previously removed edges occur. We first fill

a queue of initial removals by sampling 2|V |/|E|
edges randomly from the original graph. Generated

removals are extracted from that queue until it is

empty. Afterwards, removals are sampled randomly

previously inserted edges. Neither case protects

against removing the same edge twice. Multiple

removals test correctness and performance in the

face of somewhat noisy data.

IV. EXPERIMENTS AND RESULTS

We apply our re-agglomeration algorithm to

data sets generated from three different real-world

graphs and consider total performance, parallel

scalability, and speed-up over static recomputation.

In each case, the modularity appears roughly similar

across all the changes. Further analysis of the

dynamic and static result communities is necessary

for detailed community quality comparisons.

4http://www.cc.gatech.edu/dimacs10/

A. Graphs and Generated Actions

We use the three graphs in Table I for our

initial experiments. These are drawn from the

10th DIMACS Implementation Challenge repository.

The graph caidaRouterLevel is a graph depicting a

router-level view of the Internet collected by the

Cooperative Association for Internet Data Analysis

(CAIDA) in 2003. The graph coPapersDBLP con-

nects papers in the Digital Bibliography and Library

Project by co-authorship [10]. And graph eu-2005

is a small web crawl of the .eu domain [11]. Table I

provides both the initial graph sizes and the sizes

of the contracted initial community graph.

Each experiment begins from the same initial

community graph. For each graph, we generate five

million edge actions as described in Section III.

All experiments for different batch sizes start

from the same initial community graph and use

the same edge actions. Experiments apply five

consecutive batches of actions individually to the

initial community graph, and each experiment is

repeated five times to capture system variability.

Our experiments use batch sizes of 1, 3, 10, 30, ...,
up to one million. Plots do not show all sizes to

reduce visual noise. Plots also are limited to the

Intel-based platform for space.

B. Multithreaded Platforms

We evaluate parallel performance on two differ-

ent threaded hardware architectures, an Intel-based

server and the Cray XMT2.

The Intel-based server platform is located at

Georgia Tech. It has four eight-core Intel Xeon

E7-4820 processors running at 2 GHz with 18 MiB

of L3 cache per processor. The processors support

HyperThreading, so the 32 physical cores appear

as 64 logical cores. This server is equipped with

1 TiB of 1 067 MHz DDR3 RAM.

The next generation Cray XMT2 is located at

the Swiss National Supercomputing Centre (CSCS).

Its 64 processors run at 500 MHz and support four

times the memory density of the Cray XMT for a

total of 2 TiB. These 64 processors support over

6 400 hardware thread contexts. The improvements

over the XMT also include additional memory

bandwidth within a node, but exact specifications

are not yet officially available.

1650

Name |V | |E| |C| |EC |

caidaRouterLevel 192 244 1 218 132 18 343 30 776

coPapersDBLP 540 486 30 866 466 1 401 205 856

eu-2005 862 664 16 138 468 55 624 194 971
TABLE I

TEST GRAPHS. ALL GRAPHS ARE UNDIRECTED AND COUNTS IGNORE SELF-LOOPS. |C| IS THE NUMBER OF COMMUNITIES,

AND |EC | IS THE NUMBER OF EDGES BETWEEN COMMUNITIES.

The Cray XMT allocates entire processors to

applications, each with at least 100 threads, while

the OpenMP platforms allocate individual threads

which are mapped to cores. Results are shown

per-Cray-XMT processor and per-OpenMP-thread.

We run up to the number of physical Cray XMT

processors or logical Intel cores. Intel cores are

allocated in a round-robin fashion across sockets,

then across physical cores, and finally logical

cores. The Intel-based system allocates 2 MiB large

memory pages interleaved across sockets.

C. Update Rates and Latencies

Different users may require different measures

of performance. Non-interactive uses may prefer

a large aggregate update rate, while interactive

queries may require rapid response. Rapid response

translates to a low latency between community

updates. Measured times include both updating the

STINGER data structure as well as the community

decomposition.

Table II provides the peak update rates achieved

on our three test cases. The peak update rates

require large batch sizes with relatively large

latency. Table III considers the lowest latency. The

lowest latencies are in microseconds but achieve a

peak update rates three to five orders of magnitude

below the peak. For both cases, the speed-ups

over repeating static global community detection

ranges from 4× to 3500×, showing the benefit of

incremental updates. The lowest speed-ups occur

with caidaRouterLevel and batch sizes nearly equal

to the number of edges in the original graph.

Figures 1 and 2 show the multithreaded scaling

of our update algorithm on a subset of batch sizes.

The incremental updates work on relatively little

data, limiting the total scalability. Small batch sizes

reduce the incremental work to moving a handful

of vertices with little room for parallelization. For

large updates, our algorithm effectively uses up to

16 threads. This provides fast updates while leaving

additional resources for applying other analysis

kernels to the same data. Figure 3 shows the speed-

up over static global re-computation by threads. The

speed-up over recomputation decreases as the batch

size and thread size increase; the static algorithm

scales very well with increasing thread count on

these graphs [8].

V. RELATED WORK

There is little work targeting incremental clus-

tering for community metrics like modularity in

a massive, changing graph. Existing work like

Nguyen, et al. [12] applies similar incremental tech-

niques but sequentially. Other work like Bourqui,

et al. [13] applies repeated static analysis instead of

updating the communities incrementally. A recent

survey by Fortunato [14] covers many aspects of

community detection with an emphasis on modu-

larity maximization. Fortunato covers on dynamic

communities from the perspective of community

characteristics. One notable earlier work, Hopcraft,

et al. [15], finds that agglomerative methods are

very sensitive to the order of agglomeration. They

apply static clustering to large, randomly selected

subsets to identify stable “natural communities.”

The implications on our method may become more

clear as we investigate the tracked community

quality.

Graph partitioning, graph clustering, and commu-

nity detection are tightly related topics. There is a

vast literature on adapting graph partitions for finite-

element, finite-volume and other physical applica-

tions. These established methods are incorporated in

state-of-the-art software packages like Zoltan [16]

and Trilinos [17]. They focus on equal-work or

-communication partitions for load balancing and

not on optimizing community clustering metrics.

1651

Graph Platform # threads Batch Size Updates/Sec Speed-up Latency (s)

caidaRouterLevel IA32-64 56 100000 1.20e+07 4.01e+01 8.34e-03

XMT 56 1000000 2.49e+06 4.28e+00 4.01e-01

coPapersDBLP IA32-64 20 1000000 2.89e+06 1.08e+01 3.46e-01

XMT 48 300000 2.23e+06 2.09e+01 1.35e-01

eu-2005 IA32-64 40 100000 4.79e+06 3.27e+02 2.09e-02

XMT 64 1000000 2.05e+06 4.26e+01 4.88e01
TABLE II

PEAK UPDATES PER SECOND. SPEED-UP MEASURES THE SPEED-UP OVER STATIC RECOMPUTATION AND NOT THE PARALLEL

SPEED-UP.

Graph Platform # threads Batch Size Updates/Sec Speed-up Latency (s)

caidaRouterLevel IA32-64 2 1 4.64e+02 4.28e+02 2.16e-03

caidaRouterLevel XMT 4 30 5.15e+03 2.29e+02 5.83e03

coPapersDBLP IA32-64 4 30 7.01e+03 1.85e+03 4.28e-03

coPapersDBLP XMT 40 1 1.40e+02 3.80e+02 7.12e03

eu-2005 IA32-64 12 1 4.17e+02 3.50e+03 2.40e-03

eu2005 XMT 20 10 1.53e+03 3.18e+03 6.54e03
TABLE III

LEAST LATENCY BETWEEN COMMUNITY UPDATES. SPEED-UP MEASURES THE SPEED-UP OVER STATIC RECOMPUTATION

AND NOT THE PARALLEL SPEED-UP.

caidaRouterLevel coPapersDBLP eu−2005

1e+03

1e+05

1e+07

IA
3
2
−

6
4

4 8 12 16 4 8 12 16 4 8 12 16

Threads (x86)

U
p
d
a
te

s
 p

e
r

s
e
c
o
n
d

Batch size

1

10

100

1000

10000

100000

300000

1000000

Fig. 1. Updates per second by threads for each test graph and batch size per platform. The solid line connects the median

points.

1652

caidaRouterLevel coPapersDBLP eu−2005

0.1

10.0

IA
3
2
−

6
4

4 8 12 16 4 8 12 16 4 8 12 16

Threads (x86)

L
a
te

n
c
y
:
s
e
c
o
n
d
s
 p

e
r

b
a
tc

h

Batch size

1

10

100

1000

10000

100000

300000

1000000

Static

Fig. 2. Latency (seconds per batch) by threads for each test graph and batch size per platform. The solid line connects

the median points. The best static algorithm execution time on the original graph is shown for comparison. The horizontal

dashed line represents 30 frames per second, or real-time animation speed. Note that the large batch size rewrites almost all of

caidaRouterLevel.

Many techniques are similar, but their physically-

based graphs often have sufficiently different struc-

ture from social networks that different performance

optimizations and parallel methods apply.

Our previous work [6], [7], [8] established and

extended the first parallel agglomerative algorithm

for community detection and provided results

on the Cray XMT. Prior modularity-maximizing

algorithms sequentially maintain and update priority

queues [18], and we replace the queue with a

weighted graph matching. Separately, Fagginger

Auer and Bisseling developed a similar modularity-

optimizing clustering algorithm [19] targeting

GPUs.

Gehweiler and Meyerhenke [20] proposed a dis-

tributed diffusive heuristic for implicit modularity-

based graph clustering. A diffusive heuristic could

be adapted for refining a community mapping.

Applying refinement after each batch would adapt

any such algorithm to streaming scenarios. Re-

finement needs targeted to the graph changes for

high performance, however. Work on sequential

multilevel agglomerative algorithms like [21] with

a focus on edge scoring and local refinement also

could be adapted to streaming settings.

VI. OBSERVATIONS AND DIRECTIONS

Our streaming community re-agglomeration al-

gorithm achieves high aggregate performance and

low-latency updates (although not simultaneously)

by working on a far smaller problem than global

community detection. The reduced problem size

limits parallel scalability of re-agglomeration but

still performs better than recomputing with a state-

of-the-art scalable static community detection code.

Further work needs to incorporate commu-

nity quality into the trade-off between aggregate

performance and latency. On initial inspection,

community quality as measured by modularity

1653

caidaRouterLevel coPapersDBLP eu−2005

10

1000

IA
3
2
−

6
4

4 8 12 16 4 8 12 16 4 8 12 16

Threads (x86)

S
p
e
e
d
−

u
p
 o

ve
r

s
ta

ti
c

Batch size

1

10

100

1000

10000

100000

300000

1000000

Fig. 3. Speed-up over static recomputation by threads for each test graph and batch size per platform. The solid line connects

the median points. The static, parallel algorithm scales very well, but the smaller data set with incremental updates remains

faster.

changes very little. Longer-scale experiments are

needed. Improvements may require repeated re-

agglomeration, cascading changes beyond the initial

affected vertex set ∆V . Refining communities

according to the metric also may prove interesting

not only for quality but also to remove the initial

global decomposition. However, refinement requires

investigating specific community metrics and is

not as agnostic as our current approach. Tracking

component changes is not necessary for optimizing

many community metrics but is important in prac-

tice. We are extending STING to support combining

our existing component tracker with community

monitoring.

ACKNOWLEDGMENTS

This work was supported in part by the Pacific

Northwest National Lab (PNNL) Center for Adap-

tive Supercomputing Software for MultiThreaded

Architectures (CASS-MT) and the Intel Labs Aca-

demic Research Office for the Parallel Algorithms

for Non-Numeric Computing Program. We thank

PNNL and the Swiss National Supercomputing

Centre for providing access to Cray XMT systems

and Oracle for the Intel-based server. We also thank

graduate students Rob McColl and David Ediger

for continuing maintenance of the STING software

framework.

The work depicted in this paper was partially

sponsored by Defense Advanced Research Projects

Agency (DARPA) under agreement #HR0011-13-2-

0001. The content, views and conclusions presented

in this document do not necessarily reflect the

position or the policy of DARPA or the U.S.

Government, no official endorsement should be

inferred. Distribution Statement A: “Approved for

public release; distribution is unlimited.”

REFERENCES

[1] M. Rios, “Euro 2012 recap,” 2012, http://blog.twitter.

com/2012/07/euro-2012-recap.html.

1654

[2] Y. Altshuler, W. Pan, and A. Pentland, “Trends

prediction using social diffusion models,” in Social

Computing, Behavioral - Cultural Modeling and

Prediction, ser. Lecture Notes in Computer Science,

S. Yang, A. Greenberg, and M. Endsley, Eds. Springer

Berlin Heidelberg, 2012, vol. 7227, pp. 97–104. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-29047-3

12

[3] D. Ediger, J. Riedy, D. A. Bader, and H. Meyerhenke,

“Computational graph analytics for massive streaming

data,” in Large Scale Network-Centric Computing Sys-

tems, ser. Parallel and Distributed Computing, H. Sarbazi-

azad and A. Zomaya, Eds. Wiley, Jul. 2013, ch. 25, (to

appear).

[4] D. Ediger, E. J. Riedy, D. A. Bader, and H. Meyerhenke,

“Tracking structure of streaming social networks,” in

Proc. Workshop on Multithreaded Architectures and

Applications (MTAAP), Anchorage, Alaska, May 2011.

[5] D. Ediger, K. Jiang, E. J. Riedy, and D. A. Bader,

“Massive streaming data analytics: A case study with clus-

tering coefficients,” in Proc. Workshop on Multithreaded

Architectures and Applications (MTAAP), Atlanta, Geor-

gia, Apr. 2010.

[6] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader,

“Parallel community detection for massive graphs,” in

Proceedings of the 9th International Conference on

Parallel Processing and Applied Mathematics, Torun,

Poland, Sep. 2011.

[7] E. J. Riedy, D. A. Bader, and H. Meyerhenke, “Scalable

multi-threaded community detection in social networks,”

in Workshop on Multithreaded Architectures and Appli-

cations (MTAAP), Shanghai, China, May 2012.

[8] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader,

“Parallel community detection for massive graphs,” 10th

DIMACS Implementation Challenge - Graph Partitioning

and Graph Clustering, Atlanta, GA, Tech. Rep., Feb. 2012.

[Online]. Available: http://www.cc.gatech.edu/dimacs10/

papers/[15]-dimacs10-community-detection.pdf

[9] D. Bader, H. Meyerhenke, P. Sanders, and D. Wagner,

“Competition rules and objective functions for the 10th DI-

MACS Implementation Challenge on graph partitioning

and graph clustering,” Sep. 2011, http://www.cc.gatech.

edu/dimacs10/data/dimacs10-rules.pdf.

[10] R. Geisberger, P. Sanders, and D. Schultes, “Better ap-

proximation of betweenness centrality,” in 10th Workshop

on Algorithm Engineering and Experimentation. San

Francisco: SIAM, 2008, pp. 90–108.

[11] P. Boldi, B. Codenotti, M. Santini, and S. Vigna,

“Ubicrawler: A scalable fully distributed web crawler,”

Software: Practice & Experience, vol. 34, no. 8, pp.

711–726, 2004.

[12] N. Nguyen, T. Dinh, Y. Xuan, and M. Thai, “Adaptive

algorithms for detecting community structure in dynamic

social networks,” in INFOCOM, 2011 Proceedings IEEE,

april 2011, pp. 2282 –2290.

[13] R. Bourqui, F. Gilbert, P. Simonetto, F. Zaidi, U. Sha-

ran, and F. Jourdan, “Detecting structural changes and

command hierarchies in dynamic social networks,” in

Social Network Analysis and Mining, 2009. ASONAM
’09. International Conference on Advances in, july 2009,

pp. 83 –88.

[14] S. Fortunato, “Community detection in graphs,” Physics

Reports, vol. 486, no. 3-5, pp. 75 – 174, 2010.

[15] J. Hopcroft, O. Khan, B. Kulis, and B. Selman, “Tracking

evolving communities in large linked networks,”

Proceedings of the National Academy of Sciences

of the United States of America, vol. 101, no.

Suppl 1, pp. 5249–5253, 2004. [Online]. Available:

http://www.pnas.org/content/101/suppl.1/5249.abstract

[16] K. Devine, E. Boman, R. Heaphy, B. Hendrickson,

and C. Vaughan, “Zoltan data management services for

parallel dynamic applications,” Computing in Science

and Engineering, vol. 4, no. 2, pp. 90–97, 2002.

[17] M. Heroux, R. Bartlett, V. H. R. Hoekstra, J. Hu,

T. Kolda, R. Lehoucq, K. Long, R. Pawlowski, E. Phipps,

A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring,

and A. Williams, “An Overview of Trilinos,” Sandia

National Laboratories, Tech. Rep. SAND2003-2927,

2003.

[18] A. Clauset, M. Newman, and C. Moore, “Finding

community structure in very large networks,” Physical

Review E, vol. 70, no. 6, p. 66111, 2004.

[19] B. O. Fagginger Auer and R. H. Bisseling, “Graph

coarsening and clustering on the GPU,” 10th DIMACS

Implementation Challenge - Graph Partitioning and

Graph Clustering, Atlanta, GA, Tech. Rep., Feb. 2012.

[Online]. Available: http://www.cc.gatech.edu/dimacs10/

papers/[16]-gpucluster.pdf

[20] J. Gehweiler and H. Meyerhenke, “A distributed diffusive

heuristic for clustering a virtual P2P supercomputer,” in

Proc. 7th High-Performance Grid Computing Workshop

(HGCW’10) in conjunction with 24th Intl. Parallel and

Distributed Processing Symposium (IPDPS’10). IEEE

Computer Society, 2010.

[21] A. Noack and R. Rotta, “Multi-level algorithms for

modularity clustering,” in Experimental Algorithms, ser.

Lecture Notes in Computer Science, J. Vahrenhold, Ed.

Springer Berlin / Heidelberg, 2009, vol. 5526, pp. 257–

268.

1655

