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Abstract—In this paper we propose a new methodology for
gaining insight into the temporal aspects of social networks. In
order to develop higher-level, large-scale data analysis methods
for classification, prediction, and anomaly detection, a solid
foundation of analytical techniques is required. We present a
novel approach to the analysis of these networks that leverages
time series and statistical techniques to quantitatively describe the
temporal nature of a social network. We report on the application
of our approach toward a real data set and successfully visualize
high-level changes to the network as well as discover outlying
vertices.

The real-time prediction of new connections given the previous
connections in a graph is a notoriously difficult task. The
proposed technique avoids this difficulty by modeling statistics
computed from the graph over time. Vertex statistics summarize
topological information as real numbers, which allows us to lever-
age the existing fields of computational statistics and machine
learning. This creates a modular approach to analysis in which
methods can be developed that are agnostic to the metrics and
algorithms used to process the graph.

We demonstrate these techniques using a collection of Twitter
posts related to Hurricane Sandy. We study the temporal nature
of betweenness centrality and clustering coefficients while pro-
ducing multiple visualizations of a social network dataset with
1.2 million edges. We successfully detect vertices whose triangle-
forming behavior is anomalous.

I. INTRODUCTION

Social networks such as Twitter and Facebook represent a

large portion of information transfer on the Internet today.

Each time a new post is made, we gain a small amount

of new information about the dynamics and structure of the

network of human interaction. New posts reveal connections

between entities and possibly new social circles or topics of

discussion. Social media is a large and dynamic service; at its

peak, Twitter recorded over 13,000 Tweets per second [1] and

revealed recently that the service receives over 400 million

Tweets per day on average [2].

Social media events – such as two users exchanging private

messages, one user broadcasting a message to many others, or

users forming and breaking interpersonal connections – can be

represented as a graph in which people are vertices and edges

connect two people representing the event between them. The

nature of the edge can vary depending on application, but one

common approach for Twitter uses edges to connect people in

which one person “mentions” the other in a post. Edges can be

directed or undirected; in this paper we analyze tweets using

an undirected graph. The edge is marked with a timestamp that

represents the time at which the post occurred. The format of

a Twitter post makes this information accessible.

In the massive streaming data analytics model [3], we view

the graph of social media events as an un-ending stream of new

edge updates. For a given interval of time, we have the static

graph, which represents the previous state of the network,

and a sequence of edge updates that represent the new events

that have taken place since the previous state was recorded.

An update can take the form of an insertion representing a

new edge, a change to the weight of an existing edge, or a

deletion removing an existing edge. Because of the nature of

Twitter, we do not use deletions, and the edge weights count

the number of times that one user has mentioned the other.

Previous approaches have leveraged traditional, static graph

analysis algorithms to compute an initial metric on the graph

and then a final metric on the graph after all updates. The

underlying assumption is that the time window is large and

the network changes substantially so that the entire metric

must be recomputed. In the massive streaming data analytics

model, algorithms react to much smaller changes on smaller

time-scales.

Given a graph with billions of edges, inserting 100,000 new

edges has a small impact on the overall graph. An efficient

streaming algorithm recomputes metrics on only the regions

of the graph that have experienced change. This approach

has shown large speed-ups for clustering coefficients and

connected components on scale-free networks [3], [4].

Despite an algorithmic approach to streaming data, we lack

statistical methods to reason about the dynamic changes taking

place inside the network. These methods are necessary to

perform reliable anomaly detection in an on-line manner. In

this paper, we propose analyzing the values of graph metrics

in order to understand the dynamic properties of the graph.

This allows us to leverage existing techniques from statistics

and data mining for analyzing time series.

A. Related Work

Previous research has shown that Twitter posts reflect valu-

able information about the real world. Human events, such

as breaking stories, pandemics, and crises, affect worldwide

information flow on Twitter. Trending topics and sentiment

analysis can yield valuable insight into the global heartbeat.

A number of crises and large-scale events have been exten-

sively studied through the observation of Tweets. Hashtags,

which are user-created metadata embedded in a Tweet, have
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been studied from the perspective of topics and sentiment.

Hashtag half-life was determined to be typically less than

24 hours during the London riots of 2011 [5]. The analysis

of Twitter behavior following a 2010 earthquake in Chile

revealed differing propagation of rumors and news stories [6].

Researchers in Japan used Twitter to detect earthquakes with

high probability [7]. Twitter can be used to track the prevalence

of influenza on a regional level in real time [8]. Betweenness

centrality analysis applied to the H1N1 outbreak and historic

Atlanta flooding in 2009 revealed highly influential tweeters

in addition to commercial and government media outlets [9].

Many attempts at quantifying influence have been made.

Indegree, retweets, and mentions are first-order measures, but

popular users with high indegree do not necessarily generate

retweets or mentions [10] These first-order metrics are tradi-

tional database queries that do not take into account topologi-

cal information. PageRank and a low effective diameter reveal

that retweets diffuse quickly in the network and reach many

users in a small number of hops [11]. Users tweeting URLs

that were judged to elicit positive feelings were more likely

to spread in the network, although predictions of which URL

will lead to increased diffusion were unreliable [12].

B. Graph Kernels and Statistics

We define a graph kernel as an algorithm that builds a data

structure or index on a graph.1 We define a vertex statistic as a

function from the vertex set to the real numbers that depends

on the edge set and any information contained by the edges, i.e.
edge weight. Specifically, a vertex statistic should not depend

on the vertex labels in the data structure that the graph is

stored in. For example, a connected components algorithm

is a graph kernel because it creates a mapping from the

vertex set to the component labels. The function that assigns

each vertex the size of its connected component is a vertex

statistic. Graph kernels can be used as subroutines for the

efficient computation of graph statistics. Any efficient parallel

implementation of a vertex statistic will depend on efficient

parallel graph kernels. Another example of a kernel/statistic

pair is breadth-first search (BFS) and the eccentricity of a

vertex, which is the maximum distance of v to any vertex in

the connected component of v. The eccentricity of v can be

computed by taking the height of the BFS tree rooted at v.

Vertex statistics are mathematically useful ways to summa-

rize the topological information contained in the edge set. Each

statistic compresses the information in the graph; however by

compressing it differently, an ensemble of statistics can extract

higher-level features and properties from the graph.

One implication of this framework for graph analysis is that

the computation of these vertex statistics will produce a large

amount of derived data from the graph. The data for each

statistic can be stored as an |V | × |T | array, which is indexed

by vertex set V and time steps T = t1, t2, . . . , tT . These dense

matrices are amenable to parallel processing using techniques

from high performance linear algebra. Once we have created

1This is distinct from a kernel function that compares the similarity of two
graphs.

these dense matrices of statistics, we can apply large scale data

analysis techniques in order to gain insight from the graph

in motion. These statistics can also be visualized over time,

which is a challenge for graphs with more than thousands of

vertices. These statistics can give an analyst a dynamic picture

of the changes in the graph without showing the overwhelming

amount of topological information directly.

Section II takes a stream of Twitter posts (“Tweets”) from

the time surrounding the landfall of Hurricane Sandy, a tropical

storm that hit the Northern Atlantic coast of the United

States, and forms a temporal social network. We compute

graph metrics, including betweenness centrality, in a streaming

manner for each batch of new edges arising in the network. A

traditional network analysis finds that betweenness centrality

selects news media and politicians as influential during an

emergency. This corroborates the prior work regarding the

historic Atlanta floods [9]. We show that the logarithm of be-

tweenness centrality follows an exponential distribution for the

more central vertices in the network. We show that the deriva-

tive of logarithm of betweenness centrality is also statistically

well-behaved. This informs our streaming statistical analyses,

and we quantify a linear relationship in statistic values over

time. Section III studies the changes in the network using

derivative analysis and the correlation of statistic with its past

values. Section IV uses triangle counts and local clustering

coefficients to find rare vertices by combining topological and

temporal information. Multivariate techniques are used to look

for anomalous behavior in the network. A related approach is

taken in [13] using non-negative matrix factorization; however,

we separate the graph computation from the statistical learning

computation.

II. GLOBAL VIEWS OF THE DATA

While it is straightforward to generate large, synthetic

social networks for exploring the scalability and performance

characteristics of new algorithms and implementations, there is

no substitute for studying data observed in the real world. For

the experiments presented in this work, we study real social

network data. Specifically, we assembled a corpus around a

single event maximizing the likelihood of on-topic interaction

and interesting structural features. At the time, there was great

concern about the rapid development of Hurricane Sandy.

Weather prediction gave more than one week of advanced

notice and enabled us to build a tool chain to observe and

monitor information regarding the storm on a social network

from before the hurricane made landfall through the first weeks

of the recovery effort.

In order to focus our capture around the hurricane, we

selected a set of hashtags (user-created metadata identifying a

particular topic embedded within an individual Twitter post)

that we identified as relevant to the hurricane. These were

#hurricanesandy, #zonea, #frankenstorm, #eastcoast, #hurri-
cane, and #sandy. Zone A is the evacuation zone of New York

City most vulnerable to flooding.

We used a third party Twitter client to combine our hashtags

into a single stream containing a Java Script Object Notation

2
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(JSON) representation of the Tweets along with any media

and geolocation data contained in the Tweets. Starting from

the day before the storm made landfall, we processed nearly

1.4 million public Twitter posts into an edge list. This edge

list also includes cases where a user "retweeted" or reposted

another user’s post, because retweets mention the author of the

original Tweet similar to a citation. The dataset included over

1,238,109 mentions from 662,575 unique users. We construct

a graph from this file in which each username is represented

as a vertex. The file contains a set of tuples containing two

usernames which are used to create the edges in the graph. The

temporal ordering of the mentions was maintained through the

processing tool chain resulting in a temporal stream of mention

events encoded as graph edges.
The edge stream is divided into batches of 10,000 edge

insertions. As each batch is applied to the graph, we compute

the betweenness centrality, local clustering coefficient, number

of closed triangles, and degree for each vertex in the graph.

Each algorithm (statistic) produces a vector of length |V |
that is stored for analysis. The computation after each batch

considers all edges in the graph up to the current time. As the

graph grows, the memory will eventually become exhausted,

requiring edges to be deleted before new edge insertions can

take place. We do not yet consider this scenario, but propose

a framework by which we can analyze the graph in motion at

a given moment in time. 2

A. Betweenness Centrality
Centrality metrics on static graphs provide an algorithmic

way to measure the relative importance of a vertex with respect

to information flow through the graph. Higher centrality values

generally indicate greater importance or influence. Between-

ness centrality [14] is a specific metric that is based on the

fraction of shortest paths on which each vertex lies. The

computational cost of calculating exact betweenness central-

ity can be prohibitive; however, approximating betweenness

centrality is tractable and produces relatively accurate values

for the highest centrality vertices [9], [15]. It is known that

betweenness centrality follows a heavy tail distribution. In

order to account for the heavy tail, we examine the logarithm

of the betweenness centrality score for each vertex. This is

analogous to measuring earthquakes on the Richter magnitude

scale. Since many vertices have zero or near zero betweenness

centrality we add one before taking the logarithm and discard

vertices with zero centrality.
For this data set at time 98 we find that the right half

of the distribution of logarithm of betweenness centrality

is exponential with location 5.715 and λ = 1.205 Since

betweenness centrality estimates are more accurate for the

high centrality vertices [16], we focus our analysis on the

vertices whose centrality is larger than the median. The cumu-

lative distribution function (CDF) is 1− exp [−λx]. Figure 1

shows both the empirical CDF and the modeled CDF for the

log(betweenness centrality). It is apparent in the figure that

2See http://www.stingergraph.com/ for code and data

Fig. 1. The cumulative distribution function for logarithm of betweenness
centrality empirical (solid) and exponential best fit (dashed)

Fig. 2. Traces of betweenness centrality value for selected vertices over time.

the exponential distribution is a good fit for the right tail. We

can use the CDF to assign a probability to each vertex, and

these probabilities can be consumed by an ensemble method

for a prediction task. This will allow traditional machine

learning and statistical techniques to be combined with high

performance graph algorithms while, maintaining the ability

to reason in a theoretically sound way.

III. TEMPORAL ANALYSIS

A. Observing a Sample of Vertices

In Figure 2, we trace the value of betweenness centrality

for a selection of vertices over time. Each series in this figure

is analogous to a seismograph, depicting the fluctuations in

centrality over time for a particular vertex. In the sociological

literature, this corresponds to a longitudinal study. It is clear

that there is a significant amount of activity for each vertex.

Such a longitudinal study of vertices can be performed for any

metric that can be devised for graphs.

B. Analysis of derivatives

Tracking the derivatives of a statistic can provide insight

into changes that are occurring in a graph in real time. We

3
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Fig. 3. The derivative of the logarithm of betweenness centrality values for
selected vertices.

define the (discrete) derivative of a vertex statistic for a

vertex v at time t using the following equation where b(t)
is the number of edges inserted during batch t. Note that the

derivative of a vertex statistic is also a vertex statistic.

df

dt
(v, t) =

f(v, t+ 1)− f(v, t− 1)

b(t) + b(t− 1)

When concerned about maximizing the number of edge

updates that can be processed per second, fixing a large batch

size is appropriate. However when attempting to minimize the

latency between an edge update and the corresponding update

to vertex statistics, the batch size might vary to compensate

for fluctuations in activity on the network. Dividing by the

number of edges per batch accounts for these fluctuations.

For numerical or visualization purposes one can scale the

derivative by a constant.

For example, Figure 3 shows the derivative of logarithm of

betweenness centrality. These traces indicate that changes in

the betweenness centrality of a vertex are larger and more

volatile at the beginning of the observation and decrease

in magnitude over time. The reason for taking logs before

differentiation is that it effectively normalizes the derivative

by the value for that vertex.

Because the temporal and topological information in the

graph is summarized using real numbers, we can apply tech-

niques that have been developed for studying measurements

of scientific systems to graphs. This includes modeling the

sequences of measurements for prediction. We can then use

robust statistics to determine when a vertex differs significantly

from the prediction produced by the model. Here we can apply

techniques from traditional time series analysis to detect when

the time series for a vertex has changed dramatically from its

previous state. This might indicate that the underlying behavior

of the vertex has also changed. Others have been able to

directly detect changes in a time series using streaming density

estimation [17]. This method makes weak assumptions about

the data and thus could be useful in practice. If the time series

of a vertex has a change point, then the vertex can be flagged

as interesting for this time step and processed by an analyst

or more sophisticated model.

One can model the time series for each vertex as a stochastic

process with a set of parameters for each vertex. These

stochastic processes could be used to predict future values of

the time series. These predictions would allow an advertiser to

strategize about the future of the network. Modeling vertices

in this fashion would also allow detection of when vertices

deviate from their normal behavior.

The data can be examined in a cross sectional fashion by

examining the distribution of the derivatives at a fixed point in

time. By grouping the vertices by the sign of their derivatives

and counting, we can see that more vertices decrease in

centrality than increase in a given round.

Since the derivative of a vertex statistic is another vertex

statistic, these derivatives can be analyzed in a similar fashion.

By estimating the distribution of df
dt for any statistic we can

convert the temporal information encoded in the graph into

a probability for each vertex. These probabilities can then

be used as part of an ensemble method to detect anomalous

vertices. Modeling these differences in aggregate allows for the

detection of vertices that deviate from the behavior of typical

vertices. When f is a measure of influence such as centrality,

these extreme vertices are in the process of “going viral”, since

their influence is growing rapidly.

C. Correlation

If we are to predict statistic values into the future based

on current and past history, then we must identify a pattern

in the temporal relationship that can be exploited. For any

statistic, we can look at the Pearson correlation between the

values at time t and time t + k for various values of k
and quantify the strength of a linear relationship. This is not

a method to predict statistic values into the future. Instead

this quantifies the success of linear regression. In order to

demonstrate that this technique is agnostic to the statistic

that has been measured on the graph, we proceed using the

local clustering coefficient metric [18]. Local Clustering of

a vertex v is the number of triangles centered at v divided

by degree(v)(degree(v) − 1). The clustering coefficient is a

measure of how tightly knit the vertices are in the graph.

We can leverage linear regression to find vertices that are

significant. Once we have computed the statistic at two distinct

time-steps, the line of best fit can be used to determine what

a typical change was due to the edges that were inserted.

The distance from each vertex to that best-fit surface could

be used as a score for each vertex. The vertices with large

scores could then be processed as anomalous. The correlation

function ρf (t, t+k) is a measure of how well a linear surface

fits the data.

Let ρf (t, t + k) denote the correlation between f(v) mea-

sured at time t and f(v) measured at time t+k. For this graph,

ρf (t, t+ k) is increasing in t and decreasing in k. There is a

linear decay in the Pearson correlation coefficient as the gap

size k increases.

We define relative impact of a set of insertions as the number

4
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Fig. 4. Pearson correlation of local clustering coefficient values for inter-
batch gaps of 10 (top) and a line of best fit.

of edge changes in the set divided by the average size of

the graph during the insertions. By fixing the batch size to

a constant b, and the initial graph size to 0, we obtain the

following equations for the relative impact of the batch at time

t after a gap of k batches.

RI(t, k) =
2bk

NEt +NEt+k
=

k

t+ k/2
=

(
t

k
+

1

2

)−1

Considering these equations enables reasoning about the corre-

lation of a statistic over time because relative impact measures

the magnitude of the changes to the graph. For a fixed gap k,

as t grows the relative impact of k batches converges to 0.

For a fixed time t, as the gap k grows, the relative impact

of those batches grows. If we assume that the correlation

between a statistic at time t and time t + k depends on

RI(t, k) then we expect ρf (t, t + k) to increase as t grows

and decrease as k grows. Figure 4 shows the correlation in

clustering coefficient for the graph under consideration. The

curves shown are ρf (t, t+ k) where the series labels indicate

t and the horizontal axis indicates the time of the second

measurement which is t + k. The dashed lines are the best

linear fits for each series. Since moving to the right decreases

the correlation and moving to increasing series increases the

correlation, the model is validated.

Another way to analyze a streaming graph using these

statistics, is to look at the derivative. We can measure the

overall activity of a graph according to a statistic such as

clustering coefficient by counting the number of vertices that

change their value in each direction. For clustering coefficient

this is shown in Figure 5. One observation is that more

vertices have increasing clustering coefficient than decreasing

clustering coefficient. We also learn that only a small fraction

of vertices change in either direction. Monitoring these time

series could alert an analyst or alarm system that there is

an uptick in clustering activity in the graph. The increase in

the number of vertices with increasing clustering coefficient

around batch 70 corresponds to October 30th, which is the

day after the storm passed through New Jersey.

Fig. 5. Counting vertices by sign of their derivative at each time step.

IV. MULTIVARIATE METHODS FOR OUTLIER DETECTION

Because anomaly detection is a vague problem, we focus on

outlier detection, which is a more well-defined problem. The

outliers of a data set are the points that appear in the lowest

density region of the data set.

One method for finding outliers is to assume that the data

are multivariate Gaussian and use a robust estimate of mean

and covariance [19] – a method known as the elliptic envelope.

This is appropriate when the data is distributed with light tails

and one mode. The one class support vector machine (SVM)

can be used to estimate the density of an irregular distribution

from a sample. By finding the regions with low density, we

can use an SVM to detect outliers [20].

We seek a method to apply these multivariate statistical

methods to our temporal graph data. Because we have been

computing the triangle counts and local clustering coefficient

for each vertex in an on-line fashion, each vertex has a time

series. This time series can be summarized by computing

moments.

We extract the mean and variance of the original local

clustering coefficient series. In order to capture temporal infor-

mation, we use the derivative of the local clustering coefficient

and extract the mean and variance. Summary statistics for

the derivatives are taken over non zero entries because most

vertices have no change in local clustering coefficient at each

time step. These summary statistics are used as features that

represent each vertex. This is an embedding of the vertices into

a real vector space that captures both topological information

and the temporal changes to the network. This embedding can

be used for any data mining task. Here we use outlier detection

to illustrate the usefulness of this embedding.

Once these features are extracted, the vertices can be

displayed in a scatter plot matrix. This shows the distribution

of the data for each pair of features. These scatter plots

reveal that the data is not drawn from a unimodal distribution.

Because the robust estimator of covariance requires a unimodal

distribution this eliminates the elliptic envelope method for

outlier detection.

Using a single class support vector machine with the Gaus-

5
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sian Radial Basis Kernel, we are able to estimate the support

of the data distribution. The ν parameter of the SVM selects

a fraction of the data to label as outliers. Because the SVM is

sensitive to scaling of the data, we whiten the data so that is

has zero mean and unit standard deviation. By grouping the

data into inliers and outliers, we see that the two distributions

are distinct in feature space.

Figure 6 shows a scatter matrix with the inlying vertices in

blue and the outliers in red. We can see that in any pair of

dimensions some outliers are mixed with inliers. This indicates

that the SVM is using all of the dimensions when forming

a decision boundary. The diagonal plots show normalized

histograms in each dimension with inliers in blue and outliers

in red. These histograms show that the distribution of the

inliers differs significantly from the distribution of the outliers.

This indicates that the SVM is capturing a population that is

distinct from the majority population.

V. CONCLUSION AND FUTURE WORK

Social media events are an insight into events occurring

in the real world. Processing data in a streaming, or on-line,

manner adds value to the insight. The goal of this research is

to quickly provide actionable intelligence from the stream of

graph edges. Modeling the graph directly using standard ma-

chine learning techniques is difficult because of the enormous

size, volume, and rate of the incoming data. Rather, we embed

the graph in a Real vector space by computing multiple graph

algorithms that each capture a different aspect of the network

topology. Then we can apply computational statistics and

machine learning in order to extract insight. Our contribution

is a framework for connecting machine learning techniques

with graphs arising from massive social networks using high

performance graph algorithms that combines topological and

temporal information.

We studied a collection of Tweets observed during Hur-

ricane Sandy. A preliminary study of the entire corpus of

Tweets revealed that betweenness centrality isolated local

news and government agencies. A parametric analysis revealed

an exponential distribution for logarithmic of betweenness

centrality for vertices greater than the median.

Taking discrete derivatives of the values over time encodes

temporal graph information in an efficient manner. We exposed

an opportunity to model individual vertices. From the deriva-

tives, we determined that the distribution of positive changes

differs from negative changes for betweenness centrality and

clustering coefficients. We reveal that relatively few vertices

change their values for any given batch of edge insertions.

We defined the relative impact of a batch of edge updates on

a graph and postulated that this will measure the relationship

between a vertex statistic and its future values. This analysis

predicted two trends in correlation of local clustering coef-

ficient, and we observed these trends in the Twitter corpus.

This suggests that it is possible to develop predictive models

for vertex statistics.

Detecting anomalous activity in a network is a key capa-

bility for streaming graph analysis. Two approaches include

labeling events or actors as anomalous; we focus on labeling

actors in a statistically rigorous manner. One difficulty is

giving a precise definition of anomalous behavior. We use

vertex statistics (and their derivatives) to define vertex be-

havior, and then use outlier detection in the traditional way

to detect vertices whose behavior differs significantly from

the majority. We demonstrate this approach on a Twitter

corpus by using a one class support vector machine where the

behavior of interest is formation of triangles. This approach

finds a partition of the vertices such that the inliers are tightly

clustered and the outliers are diffuse.
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