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Abstract—The digital world has given rise to massive quantities of data that include rich semantic and complex networks. A social
graph, for example, containing hundreds of millions of actors and tens of billions of relationships is not uncommon. Analyzing these
large data sets, even to answer simple analytic queries, often pushes the limits of algorithms and machine architectures. We present
GraphCT, a scalable framework for graph analysis using parallel and multithreaded algorithms on shared memory platforms. Utilizing
the unique characteristics of the Cray XMT, GraphCT enables fast network analysis at unprecedented scales on a variety of input data
sets. On a synthetic power law graph with 2 billion vertices and 17 billion edges, we can find the connected components in 2 minutes.
We can estimate the betweenness centrality of a similar graph with 537 million vertices and over 8 billion edges in under 1 hour.

GraphCT is built for portability and performance.

Index Terms—Graph algorithms, network analysis, Cray XMT, multithreaded architectures, high-performance computing

1 INTRODUCTION

THE vast quantity of data being created by social
networks [1], sensor networks [2], healthcare records
[3], bioinformatics [4], computer network security [5],
computational sciences [6], and many other fields offers
new challenges for analysis. When represented as a graph,
this data can fuel knowledge discovery by revealing
significant interactions and community structures. Current
network analysis software packages (e.g., Pajek [7], R
(igraph) [8], Tulip [9], UCInet [10]) can handle graphs up
to several thousand vertices and a million edges. These
applications are limited by the scalability of the supported
algorithms and the resources of the workstation. To analyze
today’s graphs and the semantic data of the future, scalable
algorithms and machine architectures are needed for data-
intensive computing. GraphCT [11] is a collection of new
parallel and scalable algorithms for static graph analysis.
These algorithms, running atop multithreaded architectures
such as the Cray XMT, can analyze graphs with hundreds
of millions of vertices and billions of edges in minutes,
instead of days or weeks. GraphCT is able to, for the first
time, enable analysts and domain experts to conduct in-
depth analytical workflows of their data at massive scales.

The foundation of GraphCT is a modular kernel-based
design using efficient data representations in which an
analysis workflow can be expressed through a series of
function calls. Fig. 1 illustrates the high-level framework.
All functions are required to use a single graph data
representation. The use of a single common data structure
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enables plug-and-play capability as well as ease of im-
plementation and sharing new kernels. Basic data input/
output as well as fundamental graph operations such as
subgraph extraction are provided to enable domain
scientists to focus on conducting high-level analyses. A
wide variety of multithreaded graph algorithms are
provided including clustering coefficients, connected com-
ponents, betweenness centrality, k-core, and others, from
which workflows can easily be developed. Fig. 2 illustrates
an example workflow. Analysis can be conducted on
unweighted and weighted graphs, undirected and directed.
Limited sections of GraphCT are parallelized for parallel
platforms other than the Cray XMT.

The near-exponential growth of massive social networks
on the Internet over the last several years has been
staggering. Facebook has more than 845 million users,
over half of which are active daily [1]. Twitter has tens of
millions of users, and the blogosphere has an estimated
hundreds of millions of English language blogs. In each
case, the network contains both topological information
(actors and links) as well as a rich semantic network of
interactions. If the topology information of Facebook alone
was represented with a compressed sparse row (CSR) plus
edge list and edge weights using 64-bit data types, the data
structure alone would cost over 2.4 TB of memory. If a
machine could iterate over 1 billion edges per second, it
would take 2 minutes to read each edge one time. The scale
of these social networks necessitates specialized computer
architecture and massively parallel algorithms for analysis.

Real-world networks of this kind challenge modern
computing in several ways. These graphs typically exhibit
“small-world” [12] properties such as small diameter and
skewed degree distribution. The low diameter implies that
all reachable vertices can be found in a small number of
hops. A highly skewed degree distribution, where most
vertices have a few neighbors and several vertices have
many neighbors, often leads to workload imbalance among
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Fig. 1. GraphCT is an open-source framework for developing scalable
multithreaded graph analytics in a cross-platform environment.

threads. One proposed solution is to handle high- and low-
degree vertices separately; parallelize work across low-
degree vertices and within high-degree vertices. A runtime
system must be able to handle dynamic, fine-grained
parallelism among hundreds of thousands of threads with
low overhead. Executing a breadth-first search from a
particular vertex quickly consumes the entire graph. The
memory access pattern of a search operation is unpredict-
able with little spatial or temporal locality. Caches are
ineffective for lowering memory access latency in this case.
The Cray XMT relies on hardware multithreading with low
overhead context switches, rather than caches, to tolerate
the latency to memory [13]. Lightweight and fine-grained
synchronization enable algorithm designers to expose large
quantities of parallelism in the application.

In our previous work [14], [15], [16], [17], we presented
new parallel algorithms for the analysis of online social
networks and implementations on small multithreaded
architectures, such as Intel Nehalem, Sun Niagara, and
small Cray XMTs. We have extended our work to scale up to
larger machines (up to 128 processors) using a wider range
of graph types including larger graph data sets and graphs
originating from real-world data sources. We have added a
number of new multithreaded algorithms for massive graph
analysis in a simple, yet powerful framework.

The main contributions of this work are as follows:

e Unprecedented scalability of complex analytics to

128 processors.

s

Load the Graph Data

Find Connected Components
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e The first analysis framework to enable a workflow
of analytics on graphs with billions of vertices
and edges.

e  k-Betweenness Centrality, a new parallel algorithm
for finding important vertices in a network that is
robust to edge deletions.

In the remainder of the paper, we will present the design
challenges and experimental results for GraphCT. Section 2
will cover the requirements for this graph application.
Section 3 will explain the various kernels and key features
that have been developed. Sections 4 and 5 will present the
implementation and performance of connected components
and clustering coefficients, respectively. The design and
implementation of the k-betweenness centrality algorithm is
described in the supplemental section, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2012.323.

2 MOTIVATION AND REQUIREMENTS

A number of software applications have been developed for
analyzing and visualizing graph data sets. Among them,
Pajek is one of the most widely used, along with R (igraph),
Tulip, UCInet, and many others [7], [8], [9], [10]. While each
application has its differences, all are limited by the size of
workstation main memory and do not take advantage of
parallel systems. Pajek has been known to run complex
graph analytics on inputs with up to two million vertices,
but many other applications are limited to tens or hundreds
of thousands of vertices.

Table 1 describes several graph analytic applications and
several high performance graph frameworks that are under
active development. For each project, we list the largest
graph size computation published in the literature by the
project developers. Of the packages that include an end-to-
end analytics solution, GraphCT is able to process the
largest graphs.

The development of new scalable algorithms and frame-
works for massive graph analysis is the subject of many
research efforts. The Parallel Boost Graph Library (PBGL)
[19] is a C++ library for distributed memory graph
computations. The API is similar to that of the boost graph
library. The authors report scalable performance up to about
100 processors. Distributed memory graph processing often
requires partitioning and data replication, which can be
challenging for some classes of graphs. Google’s Pregel [18]

$

Run k-Betweenness Centrality
on the largest component

Fig. 2. An example user analysis workflow in which the graph is constructed, the vertices are labeled according to their connected components, and
a single component is extracted for further analysis using several complex metrics, such as betweenness centrality.
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TABLE 1
Graph Analysis Packages and Frameworks Currently under Active Development

Package Interface ~ Parallel Memory O(Edges) | Analytics Frameworks
Pregel [18] C++ X Distributed on-disk 127 billion X
MTGL [13] C++ X Shared (Cray XMT) 35 billion X
GraphCT C X Shared (Cray XMT) 17 billion X X
PBGL [19] C++ X Distributed in-memory 17 billion X
KDT [20] Python X Distributed in-memory 8 billion X X
Pegasus [21] Hadoop X Distributed on-disk 6.6 billion X
NetworkX [22] | Python Shared 100 million X

SNAP [23] C X Shared 32 million X

Pajek [7] Windows Shared 16 million X

igraph [8] R Shared Millions X

uses a MapReduce-like programming model for describing
vertex-centric graph computations on large, distributed
memory clusters. Bulu¢ and Madduri [24] have demon-
strated high performance techniques for scaling breadth-
first search on distributed memory supercomputers.

SNAP [23] is an open-source parallel library for network
analysis and partitioning using multicore workstations. It is
parallelized using OpenMP and provides a simple API with
support for very large-scale graphs. It is one of the only
libraries that provides a suite of algorithms for community
detection. The Knowledge Discovery Toolbox (KDT) [20]
enables high performance graph analysis in Python by
leveraging highly tuned sparse linear algebra kernels.

Sandia’s Multithreaded Graph Library (MTGL) [13] is a
C++ library for implementing graph applications on multi-
threaded architectures, particularly the Cray XMT. MTGL
uses the notion of a “visitor” class to describe operations
that take place when a vertex is visited, such as during a
breadth-first search.

Other approaches to large graph problems include the
NoSQL graph databases used by the Semantic Web com-
munity. These graph databases implement RDF triple stores
that support ACID properties. They lack relational database
schemas, but include query languages such as SPARQL [25].
Also, WebGraph is a graph compression technique for large
graphs generated through web crawls [26].

Given the immense size in memory of the graphs of
interest, it is not possible to store a separate representation
for each analysis kernel. Since the key capability of
GraphCT is running a number of analytics against an
unknown data source, we employ a simple, yet powerful
framework for our computation. Each kernel implementa-
tion is required to use a common graph data structure. By
using the same data structure for each kernel, all kernels
can be run in succession (or even in parallel if resources
allow) without the need to translate the graph between data
structures. In the client/server model, a GraphCT server
process loads the graph into memory and shares it in read-
only mode with all client analytic processes, amortizing the
time required to load the data and generate the graph. The
results of one computation can easily influence the next
computation, such as the extraction of one or more
connected components for more in-depth study.

Efficient representation of networks is a well-studied
problem with numerous options to choose from depending

on the size, topology, degree distribution, and other
characteristics of a particular graph. If these characteristics
are known a priori, one may be able to leverage this
knowledge to store the graph in a manner that will provide
the best performance for a given algorithm. Because we are
unable to make any assumptions about the graph under
study and will be running a variety of algorithms on the
data, we must choose a representation that will provide
adequate performance for all types of graphs and analytics.

2.1 The Cray XMT

To facilitate scaling to the sizes of massive data sets
previously described, GraphCT utilizes the massive shared
memory and multithreading capabilities of the Cray XMT.
Large planar graphs, such as road networks, can be
partitioned with small separators and analyzed in distrib-
uted memory with good computation-to-communication
ratios at the boundaries. Graphs arising from massive social
networks, on the other hand, are challenging to partition
and lack small separators [23], [27]. For these problems,
utilizing a large global shared memory eliminates the
requirement that data must be evenly partitioned. The
entire graph can be stored in main memory and accessed by
all threads. With this architectural feature, parallelism can
be expressed at the level of individual vertices and edges.
Enabling parallelism at this level requires fine-grained
synchronization constructs such as atomic fetch-and-add
and compare-and-swap.

The Cray XMT offers a global shared memory using
physically distributed memories interconnected by a high
speed, low latency, proprietary network. Memory ad-
dresses are hashed to intentionally break up locality,
effectively spreading data throughout the machine. As a
result, nearly every memory reference is a read or write to a
remote memory. Graph analysis codes are generally a series
of memory references with very little computation in
between, resulting in an application that runs at the speed
of memory and the network.

On the Cray XMT, hardware multithreading is used to
overcome the latency of repeated memory accesses. A
single processor has 128 hardware contexts and can switch
threads in a single cycle. A thread executes until it reaches a
long latency instruction, such as a memory reference.
Instead of blocking, the processor will switch to another
thread with an instruction ready to execute on the next
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#pragma mta assert no dependence

for (k = 0; k < numEdges; k++) {
int 1 = sV[k];
int j = eV[k];
if (D[i] < DI[3J])
D[j] = D[i];

Fig. 3. This MTA pragma instructs the Cray XMT compiler that the loop
iterations are independent.

cycle. Given sufficient parallelism and hardware contexts,
the processor’s execution units can stay busy and hide some
or all of the memory latency.

Since a 128-processor Cray XMT contains about 12,000
user hardware contexts, it is the responsibility of the
programmer to reveal a large degree of parallelism in
the code. Coarse- as well as fine-grained parallelism can be
exploited using Cray’s parallelizing compiler. The pro-
grammer inserts #pragma statements to assert that a loop’s
iterations are independent (see Fig. 3). Often iterations of a
loop will synchronize on shared data. To exploit this
parallelism, the Cray XMT provides low-cost fine-grained
synchronization primitives such as full-empty bit synchro-
nization and atomic fetch-and-add [28]. Using these con-
structs, it is possible to expose fine-grained parallelism,
such as operations over all vertices and all neighbors, as
well as coarse-grained parallelism, such as multiple
breadth-first searches in parallel.

3 FEATURES

3.1 Data Representation

The design model for GraphCT dictates that all analysis
kernels should be able to read from a common data
representation of the input graph. A function can allocate
its own auxiliary data structures (queues, lists, etc.) to
perform a calculation, but the edge and vertex data should
not be duplicated. This design principle allows for efficient
use of the machine’s memory to support massive graphs
and complex queries. We refer the reader to [29] for an in-
depth study of graph algorithms.

The data representation used internally for the graph is
an extension based on CSR format. In CSR, contiguous
edges originating from the same source vertex are stored by
destination vertex only. An offset array indicates at which
location a particular vertex’s edges begin. The common
access pattern is two-deep loop nest in which the outer loop
is over all vertices, and the inner loop identifies the subset
of edges originating from a vertex and performs a
computation over its neighbors. We build upon the CSR
format by additionally storing the source vertex, thus also
expressing an edge list directly. Although redundant, some
kernels can be expressed efficiently by parallelizing over the
entire edge list, eliminating some load balance issues using
a single loop. In this way, the internal graph data
representation allows for the easy implementation of
edge-centric kernels as well as vertex-centric kernels.

For weighted graphs, we store the given weight of each
edge represented with a 64-bit integer. We allocate an
additional array with length of the number of vertices that
each function can use according to its own requirements. In
some cases, such as breadth-first search, a kernel marks
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vertices as it visits them. This array can be used to provide a
coloring or mapping as input or output of a function. This
coloring could be used to extract individual components, as
an example.

In this format, we can represent both directed and
undirected graphs. The common data representation
between kernels relieves some of the burden of allocating
frequently used in-memory data structures. With the graph
remaining in-memory between kernel calls, we provide a
straightforward API through which analytics can commu-
nicate their results.

3.2 Client/Server Mode

GraphCT supports multiple client processes connecting to
multiple server processes that store graph data. Each server
process computes a graph data structure in shared memory.
The server process advertises its graph with a unique
identifier. Clients reference the unique identifier in lieu of a
graph file on disk. A client process maps the shared graph
into its own memory space and computes on it normally.
This approach can amortize the cost of building a large
graph, allowing many analytics to be run in parallel.

3.3 Clustering Coefficients
Clustering coefficients measure the density of closed
triangles in a network and are one method for determining
if a graph is a small-world graph [12]. For undirected
graphs, we can compute the global clustering coefficient,
which is a single number describing the entire graph, or the
local clustering coefficients, which is a per-vertex measure
of triangles. For directed graphs, several variations have
been proposed, and we have adopted the transitivity
coefficients, which is a natural extension of the local
clustering coefficient.

Section 5 contains a detailed case study of our imple-
mentation on the Cray XMT and performance results on
large synthetic networks.

3.4 Connected Components

The connected components of the graph is the maximal set
of vertices such that any vertex is reachable from any vertex
in the component. If two vertices are in the same component,
then there exists a path between them. Likewise, if two
vertices reside in different components, a search from one
vertex will not find the other. If the connected components
of the graph are known, determining the st connectivity for a
pair of vertices can be calculated easily.

In Section 4, we will offer in-depth coverage of the
algorithm, implementation, and performance of our con-
nected components routine. We use a shared memory
version of the classical Shiloach and Vishkin algorithm. On
the Cray XMT, we determine the connected components of
a scale-free undirected graph with 135 million vertices and
2 billion edges in about 15 seconds.

3.5 Distributions

When the nature of the input graph is unknown, the degree
distribution is often a metric of interest. The degree
distribution will indicate how sparse or dense the graph
is, and the maximum degree and variance will indicate how
skewed the distribution is. A skewed distribution may
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actually be a power-law distribution or indicate that the
graph comes from a data source with small-world proper-
ties. From a programmer’s perspective, a large variance in
degree relative to the average may indicate challenges in
parallelism and load balance.

The maximum degree, average degree, and variance are
calculated using a single loop and several accumulators
over the vertex offset array. On the Cray XMT, the compiler
is able to automatically parallelize this loop. Given a
frequency count, GraphCT produces a histogram of values
and the distribution statistics.

3.6 Graph Diameter

The diameter of the graph is an important metric for
understanding the nature of the input graph at first glance.
If interested in the spread of disease in an interaction
network, the diameter is helpful to estimate the rate of
transmission and the time to full coverage. Calculating the
diameter exactly requires an all-pairs shortest path compu-
tation, which is prohibitive for the large graphs of interest.

In GraphCT, we estimate the diameter by random
sampling. Given a fixed number of source vertices (ex-
pressed as a percentage of the total number of vertices), a
breadth-first search is executed from each chosen source. The
length of the longest path found during that search is
compared to the global maximum seen so far and updated if
it is longer. With each sample, we more closely approximate
the true diameter of the graph. Ignoring the existence of long
chains of vertices, we can obtain a reasonable estimate with
only a small fraction of the total number of breadth-first
searches required to get an exact diameter [30]. However,
GraphCT leaves the option of the number of samples to the
user, so an exact computation can be requested.

Obtaining a reasonable estimate of the graph diameter
can have practical consequences for the analysis kernels. A
kernel running a level-synchronous breadth-first search will
require a queue for each level. The total number of items in
each of the queues is bounded by the number of vertices,
but the number of queues is bounded by the graph
diameter. If the diameter is assumed to be on the order of
the square root of the number of vertices (a computer
network perhaps) and the same kernel is run on an input
graph where the diameter is much larger (a road network),
the analysis will run out of memory and abort. On the other
hand, allocating a queue for the worst-case scenario of a
long chain of vertices is overly pessimistic. By quickly
estimating the diameter of the graph using a small number
of breadth-first searches, we can attempt to allocate the
“right” amount of memory upfront.

3.7 Graph Parsing and Generation

Given that graphs of interest are so large as to require
machines with terabytes of main memory, we expect the
input data files to also be of massive size. GraphCT is the
only graph application for the Cray XMT that parses input
text files in parallel in the massive shared memory.
GraphCT supports the common DIMACS format, where
each line consists of a letter “a” (indicating it is an edge), the
source vertex number, destination vertex number, and an
edge weight. To leverage the large shared memory of the
Cray XMT, we copy the entire file from disk into main
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memory. In parallel, each thread obtains a block of lines to
process. A thread reserves a corresponding number of
entries in an edge list. Reading the line, the thread obtains
each field and writes it into the edge list. Once all threads
have completed parsing the text file, it is discarded and the
threads cooperatively build the graph data structure. In this
manner, we are able to process text files with sizes ranging
in the hundreds of gigabytes in just a few seconds.

For instances when real data are not available with the
scale or characteristics of interest, GraphCT is able to provide
graph generators that will provide an output file on disk that
can be read in for kernel testing. GraphCT includes an
implementation of the RMAT graph generator, which was
used in the DARPA High Productivity Computing Systems
(HPCS) Scalable Synthetic Compact Applications bench-
mark #2 (SSCA2). This generator uses repeated sampling
from a Kronecker product to produce a random graph with a
degree distribution similar to those arising from social
networks. The generator takes as input the probabilities
a, b, ¢, and d that determine the degree distribution, the
number of vertices (must be a power of two), and the number
of edges. Duplicate and self edges are removed.

3.8 Modularity and Conductance

In graph partitioning and community detection, a variety of
scoring functions have been proposed for evaluating the
quality of a cut or community. Among the more popular
metrics is modularity and conductance. Modularity is a
measure of interconnectedness of vertices in a group. A
community with a high modularity score is one in which
the vertices are more tightly connected within the commu-
nity than with the rest of the network. Formally, modularity
is defined as

1 kik;
Q_%Z<Az]7%)515]7 (1)

ij

where i and j are vertices in the graph, m is the total
number of edges, k; is the degree of vertex i, and s;
expresses the community to which vertex i belongs [31].

Given a community mapping of vertices, modularity is
calculated using two parallel loops over all vertices. The
first calculates the total number of edges in each commu-
nity. The second loop gives credit for neighbors of vertices
that are in the same community and subtracts credit for the
external connections. The modularity score is reported and
returned at the end. This function is used as a scoring
component of a clustering method. For example, in greedy
agglomerative clustering, after each component merge the
modularity is evaluated and stored in the merge tree.

Conductance is a scoring function for a cut establishing
two partitions. The conductance over a cut measures the
number of edges within the partition versus the number of
edges that span the partition. Conductance can be applied
to both directed and undirected graphs, although the
undirected version is simplified. Formally, conductance is
defined as

e(S, S)

= Zmin{|SL]3]) @)
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where S is the set of vertices not in S and ¢(S, S) is the
number of edges between S and S. The total number of
edges that could span the cut is expressed as d|S|=
> esd(v) where d(v) is the degree of vertex v [32]. The
value of ® ranges from 0 to 1. While the formula above is for
an unweighted graph, it can be generalized to weighted
networks by summing edge weights instead of degrees.

Given an edge cut expressed as a 2-coloring of vertices,
the conductance is computed by iterating over all edges.
Each edge is placed in one of three buckets: 1) both
endpoints belong to the same partition, 2) the endpoints are
in Partitions A and B, respectively, or 3) the endpoints are
in Partitions B and A, respectively. The total number of
items in each bucket is counted and the conductance is
computed according to the formula based on the larger of
the two partitions.

3.9 Betweenness Centrality

Betweenness centrality has proved a useful analytic for
ranking important vertices and edges in large graphs.
Betweenness centrality is a measure of the number of
shortest paths in a graph passing through a given vertex
[33]. For a graph G(V,E), let o, denote the number of
shortest paths between vertices s and ¢, and o, (v) the count
of shortest paths that pass through a specified vertex v. The
betweenness centrality of v is defined as

ost(v)

BC()= Y : (3)

s#EvELEV Ost

GraphCT on the 128-processor Cray XMT recorded
606 million traversed edges per second on a scale-free
graph with 135 million vertices and 2.14 billion edges. KDT
implements betweenness centrality on a distributed-mem-
ory cluster using Combinatorial BLAS. The authors demon-
strate performance results on a scale-free graph with
approximately 262,000 vertices and 4 million edges. They
report 125 million traversed edges per second using
256 cores (24 cores per node) [20].

We present k-betweenness centrality, an extension of
Freeman’s betweenness centrality metric considering addi-
tional paths in the graph, in the online supplemental
section. We give a parallel, multithreaded algorithm and
compute it on the Cray XMT demonstrating scalable
performance for massive graphs.

4 CoNNECTED COMPONENTS

Finding the connected components of the graph determines
a per-vertex mapping such that all vertices in a component
are reachable from each other and not reachable from
those vertices in other components. A sampling algorithm
may sample vertices according to the distribution of
component sizes such that all components are appropriately
represented in the sampling. An analysis may focus on just
the small components or only the biggest component to
isolate those vertices of greatest interest.

The Shiloach and Vishkin algorithm [34] is a classical
algorithm for finding the connected components of an
undirected graph. This algorithm is well suited for
shared memory and exhibits per-edge parallelism that
can be exploited.
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Fig. 4. Scalability of Shiloach-Vishkin connected components with and
without tree-climbing optimization on the Cray XMT. The input graph is
an RMAT generated graph with approximately 2 billion vertices and
17 billion edges. The speedup is 113x on 128 processors.

In Algorithm 1, each vertex is initialized to its own
unique color (Line 3). At each step, neighboring vertices
greedily color each other such that the vertex with the
lowest ID wins (Lines 7 and 8). The process ends when each
vertex is the same color as its neighbors. The number of
steps is proportional to the diameter of the graph, so for
small-world networks the algorithm converges quickly.

Algorithm 1. Parallel multithreaded version of Shiloach-
Vishkin algorithm for finding the connected components of
a graph.
Input: G(V, E)
Output: M([1..n], where M[v] is the component to which
vertex v belongs
1: changed «— 1
2: for all v € V in parallel do

30 Mp]—w

4: while changed # 0 do

5: changed := 0

6:  for all (i,j) € E in parallel do
7: if M[i] < M[j] then

8: M[MT[j]] := M]i]

9: changed := 1

10: for all v € V in parallel do
11:  while M[v] # M[M]v]] do
12: M{v] := M[M]v]]

Using the fine-grained synchronization of the Cray XMT,
the colors of neighboring vertices are checked and updated
in parallel. A shared counter recording the number of
changes is updated so as to detect convergence.

In Lines 10 through 12 of Algorithm 1, each vertex climbs
the component tree, relabeling itself. This optimization can
reduce the number of iterations required. In Fig. 4, we plot
the execution time for an RMAT graph with 2 billion vertices
and 17 billion edges as a function of the number of Cray
XMT processors. At low processor counts, the optimization



2226 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 24, NO. 11, NOVEMBER 2013
TABLE 2
Running Times in Seconds for Connected Components on a 128-Processor Cray XMT
Name V] |E| | P=16 P=32 P=64 P=128
USA Road Network 23,947,347 58,333,344 | 4.13 317 264 4.26
RMAT (nasty) 33,554,432 266,636,848 8.60 4.47 2.59 1.89
RMAT 134,217,727  1,071,420576 | 59.7  30.7  16.1 8.98
RMAT 134,217,727  2,139,802,777 | 101.8 522 316 14.8
RMAT 134,217,727  4,270,508,334 | 172.7 1466 1250 1163
RMAT 2,147,483,647 17,179,869,184 | 618.8 314.8 163.1 86.6

on Lines 10 through 12 shortens the execution time.
However, it creates a memory hotspot and the additional
contention at large processor counts produces a less scalable
implementation. Removing Lines 10 through 12 from the
algorithm results in a 113x speedup on 128 processors.

In Table 2, we present execution times for connected
components on several massive undirected graphs using a
128-processor Cray XMT. The first graph is a sparse, planar
graph of the US road network. The rest of the graphs are
synthetic RMAT graphs with small-world properties. Using
128 processors, we can determine the connected compo-
nents of the graph in 2 minutes.

In [35], MTGL running on a 128-processor Cray XMT
computes the connected components of an RMAT graph
(with so-called “nasty” parameters) with 33.5 million
vertices and an average degree of 8 in approximately
8 seconds. On a generated graph with the same RMAT
parameters on the same size machine, GraphCT is able to
compute the connected components in 1.89 seconds.

5 CLUSTERING COEFFICIENTS

Clustering coefficients measure the density of closed
triangles in a network and are one method for determining
if a graph is a small-world graph [12]. We adopt the
terminology of Watts and Strogatz [12] and limit our focus
to undirected and unweighted graphs. A triplet is an
ordered set of three vertices, (i,v, j), where v is considered
the focal point and there are undirected edges (i,v) and
(v,7). An open triplet is defined as three vertices in which
only the required two are connected, for example, the triplet
(m,v,n) in Fig. 5. A closed triplet is defined as three vertices
in which there are three edges, or Fig. 5’s triplet (4, v, j). A
triangle is made up of three closed triplets, one for each
vertex of the triangle.

The global clustering coefficient C' is a single number
describing the number of closed triplets over the total
number of triplets

Fig. 5. There are two triplets around v in this undirected graph. The
triplet (m,v,n) is open, there is no edge (m,n). The triplet (i,v,j) is
closed.

__number of closed triplets

4
number of triplets )

The local clustering coefficient C, is defined similarly for
each vertex v,

number of closed triplets around v

v

5
number of triplets around v )

Let e, be the set of neighbors of vertex k, and let |e| be the
size of set e. Also, let d, be the degree of v, or d, = |e,|. We
show how to compute C, by expressing it as

Dice, 1€ N (e \ {0})]
dv(dv - 1) - 1) .

For the remainder of this section, we concentrate on the
calculation of local clustering coefficients. Computing the
global clustering coefficient requires an additional sum
reduction over the numerators and denominators.

The clustering coefficients algorithm simply counts all
triangles. For each edge (u,v), we count the size of the
intersection |e, Ne,|. The algorithm runs in O(}, d?) time
where v ranges across the vertices and the structure is
presorted. The multithreaded implementation also is
straightforward; we parallelize over the vertices.

Fig. 6 plots the scalability of the local clustering coeffi-
cients implementation on the Cray XMT. On an undirected,
synthetic RMAT graph with over 16 million vertices and
135 million edges (left), we calculate all clustering coeffi-
cients in 87 minutes on a single processor and 56 seconds on
128 processors. The speedup is 94x. Parallelizing over the
vertices, we obtain the best performance when instructing
the compiler to schedule the outer loop using futures.
The implementation scales almost linearly through 80 pro-
cessors, and then increases more gradually.

In the plot on the right, the same kernel is run on the
USA road network, a graph with 24 million vertices and
58 million edges. The graph is nearly planar with a small,
uniform degree distribution. Because the amount of work
per vertex is nearly equal, the algorithm scales linearly to
128 processors. The total execution time is about 27 seconds.

These results highlight the challenges of developing
scalable algorithms on massive graphs. Where commodity
platforms often struggle to obtain a speedup, the latency
tolerance and massive multithreading of the Cray XMT
enables linear scalability on regular, uniform graphs. The
discrepancy between the RMAT scalability (left) and the
road network (right) is an artifact of the power law degree
distribution of the former. Despite the complex and

T,
dw (d1) -

Cv = (6)
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Clustering Coefficients

RMAT(24)

55.8s

USA Road Network

3200.0s

0 20 40 60 80 100 120

Processors

Fig. 6. Scalability of the local clustering coefficients kernel on the Cray XMT. On the left, the input graph is an undirected RMAT generated graph with
approximately 16 million vertices and 135 million edges. The speedup is 94x on 128 processors. On the right, the input graph is the USA road
network with 24 million vertices and 58 million edges. The speedup is 120x on 128 processors. Execution times in seconds are shown in blue.

irregular graph topology, GraphCT is still able to scale up to
128 processors.

There are several variations of clustering coefficients for
directed graphs. A straightforward approach is to apply the
definition directly and count the number of triangles, where
a triangle now requires six edges instead of three. A more
sophisticated approach is called the transitivity coefficients.
Transitivity coefficients count the number of transitive
triplets in the numerator. A transitive triplet is one in which
edges exist from vertex a to vertex b and from vertex b to
vertex ¢, with a shortcut edge from vertex a to vertex c [36].

Fig. 7 plots the scalability of the transitivity coefficients
kernel on the Cray XMT. The input graph is a directed
RMAT graph with 16 million vertices and 135 million edges.
We do not use loop futures to schedule the outer loop in
this case. On a single processor, the calculation requires
20 minutes. On 128 processors, the execution time is under
13 seconds. The speedup is 90x.

Transitivity, RMAT(24)

120 -

12.9s

o 1 1 1 1 1 I

0 20 40 60 80 100 120

Processors

Fig. 7. Scalability of the transitivity coefficients kernel on the Cray XMT.
The input graph is a directed RMAT generated graph with approximately
16 million vertices and 135 million edges. Execution times in seconds
are shown in blue. On 128 processors, we achieve a speedup of 90x.

6 CONCLUSIONS

The computational and storage requirements of large data
sets have brought about parallel, multithreaded super-
computers like the Cray XMT. GraphCT leverages multi-
threaded implementations of cutting edge graph algorithms
and traditional analytics. Running on the 128-processor
Cray XMT with 1-TB main memory, GraphCT calculates the
local clustering coefficients of a scale-free graph with
135 million edges in one minute. The connected compo-
nents of a scale-free graph with 4.27 billion edges are
determined in 2 minutes. The betweenness centrality of a
scale-free graph with 2.14 billion edges can be approxi-
mated (using 256 randomly sampled vertices) in 15 minutes.
These algorithms exploit fine-grained parallelism and low-
overhead synchronization to overcome the challenges of
workload imbalance and hotspotting that are inherent in
scale-free graph analytics.

The processing framework used in GraphCT enables a
series of complex analytics to run with the option of passing
the results of one to the input of the next. A researcher with
an unknown data set is able to prepare a custom workflow of
routines that will produce a report on the graph character-
istics. Our tool has been used successfully in prior work [17]
to uncover hidden relationships in Twitter.

GraphCT has the capability to run on billion-scale graphs
with better performance than leading distributed memory
and MapReduce-like frameworks. Unlike these frame-
works, GraphCT is an end-to-end graph characterization
toolkit that provides high performance, multithreaded
graph analysis algorithms as well as a C language
environment for working with graph data.
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