
Investigating Graph Algorithms in the

BSP Model on the Cray XMT

David Ediger David A. Bader
Georgia Institute of Technology

Atlanta, GA, USA

Abstract—Implementing parallel graph algorithms in large,
shared memory machines, such as the Cray XMT, can be
challenging for programmers. Synchronization, deadlock, hot-
spotting, and others can be barriers to obtaining linear scalability.
Alternative programming models, such as the bulk synchronous
parallel programming model used in Google’s Pregel, have been
proposed for large graph analytics. This model eases programmer
complexity by eliminating deadlock and simplifying data sharing.
We investigate the algorithmic effects of the BSP model for
graph algorithms and compare performance and scalability with
hand-tuned, open source software using GraphCT. We analyze
the innermost iterations of these algorithms to understand the
differences in scalability between BSP and shared memory
algorithms. We show that scalable performance can be obtained
with graph algorithms in the BSP model on the Cray XMT. These
algorithms perform within a factor of 10 of hand-tuned C code.

I. INTRODUCTION

Internet-scale graphs are motivating research into algo-

rithms and systems for large-scale, data-intensive analytics.

A parallel system with hundreds of thousands of threads can

be a challenge to program complex analytics. Sophisticated

synchronization protocols are used to avoid deadlock. Overuse

of a single memory location for coordination leads to hot-

spotting and sequentialization. In the search for easier parallel

frameworks, the programming model can influence the execu-

tion and scalability of an algorithm in a subtle manner.

Cray XMT programmers leverage the large global shared

memory and loop-level parallelism to obtain good performance

and unprecedented scalability on graph algorithms. To the best

of our knowledge, alternative styles of programming have not

yet been investigated on the Cray XMT for these problems. In

this paper, we will examine three common graph algorithms

in the traditional shared memory programming model and

how they can be expressed using bulk synchronous parallel

programming (BSP). We will show that BSP graph algorithms

can be efficiently implemented on the Cray XMT with scalable

performance.

II. BACKGROUND

Real world networks challenge modern computing in several

ways. These graphs are often “small-world” [1] networks

with small diameters and skewed degree distributions. All

reachable vertices are found in a small number of hops. A

highly skewed degree distribution, where most vertices have

a few neighbors and several vertices have many neighbors,

is challenging to parallelize. A parallel runtime system must

be able to handle dynamic, fine-grained parallelism among

hundreds of thousands of lightweight threads. A breadth-first

search from a single vertex quickly touches the entire graph,

with the size of the frontier (and parallelism) varying greatly

from level to level.

The Cray XMT [2] is a supercomputing platform designed

to accelerate massive graph analysis codes. The architec-

ture tolerates high memory latencies using massive hardware

multithreading. Fine-grained synchronization constructs are

supported through full-empty bits as well as atomic fetch-and-

add instructions. A large, fully shared memory enables the

analysis of graphs on the order of one billion vertices using a

well-understood programming model.

Each Threadstorm processor within a Cray XMT contains

128 hardware streams. Streams may block temporarily while

waiting for a long-latency instruction, such as a memory

request, to return. The processor will execute one instruction

per cycle from hardware streams that have instructions ready

to execute. The Cray XMT does not require locality to obtain

good performance. Instead, latency to memory is tolerated

entirely by hardware multithreading, making this machine a

good candidate for memory-intensive codes like those found

in graph analysis.

The Cray XMT located at Pacific Northwest National Lab

contains 128 Threadstorm processors running at 500 MHz.

These 128 processors support over 12 thousand hardware

thread contexts. The globally addressable shared memory

totals 1 TiB. Memory addresses are hashed globally to break

up locality and reduce hot-spotting.

A global shared memory provides an easy programming

model for the graph application developer. Due to the “small-

world” nature of the graphs of interest, finding a balanced

partition of vertices or edges across multiple distinct memories

can be difficult. The Cray XMT has proved useful in a

number of irregular applications including string matching [3],

document clustering [4], triangle counting [5], hash tables [6],

static graph analysis [7], [8], [9], [10], [11] and streaming

graphs [12], [13].

GraphCT [14] is a framework for developing parallel and

scalable static graph algorithms on multithreaded platforms. It

is designed to enable a workflow of graph analysis algorithms

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.107

1638

to be developed through a series of function calls. Graph

kernels utilize a single, efficient graph data representation

that is stored in main memory and served read-only to

analysis applications. Graph data-file input and output, utility

functions such as subgraph extraction, and many popular

algorithms are provided. These algorithms include clustering

coefficients, connected components, betweenness centrality, k-

core, and others, from which workflows can easily be devel-

oped. GraphCT supports weighted and unweighted graphs with

directed or undirected edges. It is freely available as open

source, and can be built on the Cray XMT with XMT-C or

on a commodity workstation using OpenMP. Our experiments

build on top of GraphCT’s existing capabilities.

Pregel is a distributed graph processing system with a

C++ API developed by Google [15]. To avoid issues of

deadlock and data races, Pregel uses a bulk synchronous

parallel programming style. A graph computation is broken

up into a sequence of iterations. In each iteration, a vertex is

able to 1) receive messages from the previous iteration, 2) do

local computation or modify the graph, and 3) send messages

to vertices that will be received in the next iteration. Similar

to MapReduce in many ways, chains of iterations are used to

solve a graph query in a fault-tolerant manner across hundreds

or thousands of distributed workstations. Unlike MapReduce,

however, vertices in Pregel can maintain state between itera-

tions, reducing the communication cost. Apache Giraph is an

open source project implementing a Pregel-like environment

for graph algorithms on top of Apache Hadoop [16].

To support this model of computation in a distributed cluster

environment, Pregel assigns vertices to machines along with

all of their incident edges. A common operation is for a vertex

to send a message to its neighbors, which are readily available,

but the model allows for sending messages to any vertex that

is known by the sender through other means. By default, the

assignment of vertex to machine is based on a random hash

function yielding a uniform distribution of the vertices. Real-

world graphs, however, have the scale-free property. In this

case, the distribution of edges will be uneven with one or

several machines acquiring high-degree vertices, and therefore

a disproportionate share of the messaging activity.

We will consider the bulk synchronous parallel (BSP) style

of programming, rather than the BSP computation model

or BSPlib [17]. Bulk synchronous parallel programming is

popular in the scientific community and is the basis for

many large-scale parallel applications that run on today’s

supercomputers. An application is composed of a number of

supersteps that are run iteratively. Each superstep consists

of three phases. In the first phase, compute nodes process

incoming messages from the previous superstep. In the second

phase, nodes compute local values. In the third phase, nodes

send messages to other nodes that will be received in the next

superstep. The restriction that messages must cross superstep

boundaries ensures that the implementation will be deadlock-

free.

Applying bulk synchronous parallel programming to graph

analytics is straightforward. Each vertex becomes a first-class

citizen and an independent actor. The vertex implicitly knows

its neighbors (they do not have to be read from disk each

iteration). Each vertex is permitted to maintain state between

supersteps. A vertex can send a message to one or all of its

neighbors or to any other vertex that it can identify (such as

through a message that it has received). If a vertex has no

messages to send or nothing to compute, it can vote to stop

the computation, and will not be re-activated until a future

superstep in which it has messages to receive.

In the following sections, we will compare and contrast pop-

ular graph algorithms in the shared memory and BSP models.

We will present performance results of connected components,

breadth-first search, and triangle counting algorithms on a

128-processor Cray XMT. Shared memory algorithms from

GraphCT will be examined as the baseline. We implemented

BSP variants of these graph algorithms with GraphCT in order

to obtain a comparison with fewer variables. Our results will

show that graph algorithms are relatively easy to express in

the BSP model and can be parallelized easily on the Cray

XMT. Performance is within a factor of 10 of the hand-tuned

C code.

III. CONNECTED COMPONENTS

Connected components is a reachability algorithm that la-

bels all vertices in a connected component with the same label.

An algorithm for connected components in the BSP model is

shown in Algorithm 1. Each active vertex will execute this

algorithm for each superstep. For this algorithm, the vertex

state will store the component label of the component to which

each vertex belongs. In the first superstep, each vertex will

set its state (label) to be itself, or each vertex will begin by

belonging to its own component, as in the Shiloach-Vishkin

approach [18]. Each vertex then sends its component label to

all neighbors.

In each subsequent superstep, all active vertices (those

vertices with at least 1 waiting message) will receive their

incoming messages and check each one to see if it contains

a component label that is smaller than the current state. If it

finds such a new component label, it will update the current

state and send the new component label to all of its neighbors,

to be received in the next superstep. When all vertices have

found no changes and have voted to stop the computation,

the algorithm terminates with the correct vertex-component

mapping.

The shared memory algorithm in GraphCT, based on

Shiloach-Vishkin, considers all edges in all iterations. When

a new component label is found, the label is updated and

available to be read by other threads. In this way, new

component labels can propagate the graph within an iteration.

Label propagation in shared memory decreases the number of

iterations required, as seen in Figure 1.

1639

Superstep Number

T
im

e
(s

ec
)

0.3

1

3

10

BSP

● ● ● ●

●

●

●

●

● ● ● ● ●

0 2 4 6 8 10 12

GraphCT

●
● ● ● ● ●

0 2 4 6 8 10 12

Processors

● 8

16

32

64

128

Fig. 1. Connected components execution time by iteration for an undirected, scale-free graph with 16 million vertices and 268 million edges. On the
128-processor Cray XMT, BSP execution time is 5.40 seconds and GraphCT execution time is 1.31 seconds.

Algorithm 1 A parallel algorithm for connected components

in the BSP model
Input: Superstep s, Vertex v, Current label L, Set of Mes-

sages Mv

Output: Outgoing message set M ′
v

1: V ote← 0
2: for all m ∈Mv do
3: if m < L then
4: L← m
5: V ote← 1
6: if s = 0 then
7: L← min(Mv)
8: for all n ∈ Neighbors(v) do
9: Send L to n

10: else
11: if V ote = 1 then
12: for all n ∈ Neighbors(v) do
13: Send L to n

Figure 1 plots the execution time on the Cray XMT for

each iteration of connected components. The input graph is

an undirected, scale-free RMAT [19] graph with 16 million

vertices and 268 million edges. On the left, the BSP algorithm

completes in 13 iterations. In the first four iterations, almost

all vertices are active, sending and receiving label updates. As

the labels begin to converge, the number of active vertices, and

execution time, drops significantly. In the last six iterations,

only a small fraction of the graph is active.

On the right, the shared memory algorithm in GraphCT

completes in 6 iterations. The amount of work per iteration

is constant, and the execution time reflects this. Label propa-

gation early in the algorithm reduces the number of iterations

compared to the BSP algorithm, which uses four iterations

to resolve the majority of the graph. In the shared memory

algorithm, most labels are fixed by the end of the first iteration.

Each line in Figure 1 plots performance for a different

Cray XMT processor count. Time is on a log scale and the

number of processors doubles with each line. Even vertical

spacing between points indicates linear scaling for a given

iteration. All iterations of the shared memory algorithm in

GraphCT demonstrate linear scaling. In the BSP algorithm,

the first iterations that involve the entire vertex set also have

linear scaling. As the number of active vertices becomes small,

the parallelism that can be exposed also becomes small and

scalability reduces significantly.

The total time to compute connected components on a 128-

processor Cray XMT using GraphCT is 1.31 seconds. The time

to compute connected components using the BSP algorithm on

the Cray XMT is 5.40 seconds.

In a recent presentation, Sebastian Schelter discussed the

application of Apache Giraph on real-world networks [20].

Giraph is an open-source alternative to Pregel that executes

vertex-centric graph algorithms in a BSP style on distributed

systems. On a graph from Wikipedia containing 6 million

vertices and 200 million edges, in-memory processing using

Giraph was 10 times faster than Hadoop MapReduce. The

test cluster contains 6 compute nodes, each having two 8-

1640

Breadth−first Search Level

S
iz

e
of

 F
ro

nt
ie

r
/ N

um
be

r
of

 M
es

sa
ge

s

100

102

104

106

108

2 4 6 8 10 12 14

Type

GraphCT

BSP

Fig. 2. Size of the breadth-first search frontier (red) or number of messages
generated (green) by the BSP superstep.

core AMD Opteron processors and 32 GiB main memory for

an aggregate memory of 192 GiB. Connected components on

this system runs in approximately 4 seconds. Schelter also

notes that the connected components algorithm on Wikipedia

requires 12 supersteps to converge with steps 6 to 12 running

several orders of magnitude faster than 1 through 5.

IV. BREADTH-FIRST SEARCH

Breadth-first search, the classical graph traversal algorithm,

is used in the Graph500 benchmark [21]. In the BSP algorithm,

the vertex state stores the current distance from the source

vertex. In the first superstep, the source vertex sets it distance

to zero, and then sends its distance to all of its neighbors. All

other vertices begin with a distance of infinity. Algorithm 2

gives a description in the BSP model. Each active vertex will

execute this algorithm for each superstep.

In each subsequent superstep, all vertices that are potentially

on the frontier will receive messages from the previous super-

step and will become active. If the current distance is infinity,

the vertex will process the incoming messages and set the

distance appropriately. The vertex then sends its new distance

to all of its neighbors, and votes to stop the computation.

The computation continues to iterate as long as vertices have

a distance that is infinity. Once all vertices have computed their

distance, the computation can terminate.

The BSP algorithm closely mimics the parallel level-

synchronous, shared memory breadth-first search algo-

rithm [22] with the exception that messages are sent to vertices

Algorithm 2 A parallel algorithm for breadth-first search in

the BSP model
Input: Superstep s, Vertex v, Current distance D, Set of

Messages Mv

Output: Outgoing message set M ′
v

1: V ote← 0
2: for all m ∈Mv do
3: if m+ 1 < D then
4: D ← m+ 1
5: V ote← 1
6: if s = 0 then
7: if D = 0 then
8: V ote← 1
9: for all n ∈ Neighbors(v) do

10: Send D to n
11: else
12: if V ote = 1 then
13: for all n ∈ Neighbors(v) do
14: Send L to n

that may be on the frontier, while the shared memory algorithm

enqueues only those vertices that are definitively unmarked

and on the frontier. The level-synchronous shared memory

breadth-first search algorithm is the comparison in GraphCT

in Figures 2 and 3.

In contrast, the number of messages generated by each BSP

superstep is plotted in Figure 2. In the BSP algorithm, a

message is generated for every neighbor of a vertex on the

frontier, or alternatively every edge incident on the frontier.

Initially, almost every neighbor of the frontier is on the next

frontier, and the number of messages is approximately equal

to the size of the frontier. As the majority of the graph is

found, messages are generated to vertices that have already

been touched. The number of messages from superstep four

to the end is an order of magnitude larger than the real frontier.

However, the number of messages does decline exponentially.

Scalability is directly related to parallelism, which is itself

related to the size of the frontier. In Figure 2, the frontier

begins small, grows quickly, reaches an apex in iteration 6,

and then contracts. Figure 3 plots the scalability of iterations

3 through 8. The early and late iterations show flat scaling

and are omitted. On the right, the GraphCT breadth-first

search has flat scalability in levels 3 and 4. Levels 5 and

8 have good scalability to 64 processors, but reduce at 128,

implying contention among threads. Levels 6 and 7 have linear

scalability, which matches the apex of the frontier curve.

Likewise, the BSP scalability on the left of the figure

shows flat scaling in levels 3 and 8. Levels 4 and 8 have

good scalability at 32 processors, but tails off. Levels 5, 6

and 7 have almost linear scalability. Because the number of

messages generated is an order of magnitude larger than the

1641

Number of Processors

T
im

e
(s

ec
)

10−2.5

10−2

10−1.5

10−1

10−0.5

100

100.5

BSP

● ●
●

● ●

8 16 32 64 128

GraphCT

● ●
● ● ●

8 16 32 64 128

Level

● 3

4

5

6

7

8

Fig. 3. Scalability of breadth-first search levels 3 to 8 on an undirected, scale-free graph with 16 million vertices and 268 million edges. Total execution
time on the 128-processor Cray XMT is 3.12 seconds for BSP and 310 milliseconds for GraphCT.

size of the frontier, the contention on the message queue is

higher than in the GraphCT breadth-first search and scalability

is reduced as a result. Overall, the innermost BSP levels

have similar execution times and scalability as the shared

memory algorithm. However, the overhead of the early and

late iterations is two orders of magnitude larger.

The total time to compute a single breadth-first search on a

128-processor Cray XMT using GraphCT is 310 milliseconds.

The time to compute a breadth-first search from the same

vertex using the BSP algorithm on the Cray XMT is 3.12

seconds. The input graph is an RMAT graph with 16 million

vertices and 268 million edges.

Kajdanowicz et al. computes Single Source Shortest Path

on a graph derived from Twitter with 43.7 million vertices

and 688 million edges. On a cluster with 60 machines, Giraph

completes in the algorithm in an average of approximately 30

seconds [23]. Scalability is flat from 30 to 85 machines.

Microsoft Research implements a BSP-style, vertex-centric

graph analysis framework called the Trinity Graph En-

gine [24]. Trinity is also a distributed, in-memory graph en-

gine. In this technical report, researchers describe performance

varying number of edges and number of machines in the

cluster. On an RMAT graph with 512 million vertices and

approximately 6.6 billion edges, breadth-first search completes

in approximately 400 seconds on 14 machines.

V. TRIANGLE COUNTING

The computationally challenging aspect of computing the

clustering coefficients of a graph is counting the number of

triangles. In a shared memory model, this is the intersection

of each vertex’s neighbor list with the neighbor list of each of

its neighbors, for all vertices in the graph.

The BSP algorithm takes a different approach. First, a

total ordering on the vertices is established such that V =
v1, v2, v3, . . . vN . We define a triangle as a triple of vertices

〈vi, vj , vk〉 such that i < j < k. We will count each triangle

exactly once. The algorithm details are given in Algorithm 3.

Each active vertex will execute this algorithm for each super-

step.

In the first superstep, all vertices send a message to all

neighbors whose vertex ID is greater than theirs. In the second

superstep, for each message received, the message is re-

transmitted to all neighbors whose vertex ID is greater than the

vertex that received the message. In the final step, if a vertex

receives a message that originated at one of its neighbors, a

triangle has been found. A message can be sent to itself or to

another vertex to indicate that a triangle has been found.

Although this algorithm is easy to express in the model, the

number of messages generated is much larger than the number

of edges in the graph. This has practical implications for im-

plementing such an algorithm on a real machine architecture.

We calculate the clustering coefficients of an undirected,

scale-free graph with 16 million vertices and 268 million

edges. This algorithm is not iterative. In the shared memory

1642

Algorithm 3 A parallel algorithm for triangle counting in the

BSP model
Input: Superstep s, Vertex v, Set of Messages Mv

Output: Outgoing message set M ′
v

1: if s = 0 then
2: for all n ∈ Neighbors(v) do
3: if v < n then
4: Send v to n
5: if s = 1 then
6: for all m ∈Mv do
7: for all n ∈ Neighbors(v) do
8: if m < v < n then
9: Send m to n

10: if s = 2 then
11: for all m ∈Mv do
12: if m ∈ Neighbors(v) then
13: Send m to m

GraphCT implementation of triangle counting, the algorithm

is expressed as a triply-nested loop. The outer loop iterates

over all vertices. The middle loop iterates over all neighbors

of a vertex. The inner-most loop iterates over all neighbors of

the neighbors of a vertex.

The BSP algorithm replaces the triply-nested loop with three

supersteps. The first two supersteps enumerate all possible

triangles (restricted by a total ordering). The third and final

superstep completes the neighborhood intersection and enu-

merates only the actual triangles that are found in the graph.

Both algorithms perform the same number of reads to

the graph. The BSP algorithm must emit all the possible

triangles as messages in the second superstep. For the graph

under consideration, this results in almost 5.5 billion messages

generated. In the last superstep, we find that these 5.5 billion

possible triangles yield only 30.9 million actual triangles. It

is worth noting that the RMAT graph under consideration

contains far fewer triangles than a real-world graph. The

number of intermediate messages will grow quickly with a

higher triangle density.

The shared memory implementation, on the other hand,

only produces a write when a triangle is detected. The total

number of writes is 30.9 million, compared with 5.6 billion

for the BSP implementation. The BSP clustering coefficient

implementation produces 181 times as many writes as the

shared memory implementation.

Figure 4 plots execution time and scalability of the GraphCT

and BSP triangle counting algorithms on a 128-processor Cray

XMT. The BSP implementation scales linearly and completes

in 444 seconds on 128 processors. The shared memory imple-

mentation completes in 47.4 seconds on 128 processors.

Number of Processors

T
im

e
(s

ec
)

100

300

1000

3000

●

●

●

●

●

8 16 32 64 128

Type

● BSP

GraphCT

Fig. 4. Scalability of triangle counting algorithms on an undirected, scale-
free graph with 16 million vertices and 268 million edges. Execution time on
the 128-processor Cray XMT is 444 seconds for BSP and 47.4 seconds for
GraphCT.

TABLE I
EXECUTION TIMES ON A 128-PROCESSOR CRAY XMT FOR AN

UNDIRECTED, SCALE-FREE GRAPH WITH 16 MILLION VERTICES AND 268
MILLION EDGES.

Time (sec.)

Algorithm BSP GraphCT Ratio

Connected Components 5.40 1.31 4.1:1

Breadth-first Search 3.12 0.31 10.0:1

Triangle Counting 444 47.4 9.4:1

VI. DISCUSSION

By implementing BSP in a C-language environment on

the same shared memory platform on which we conduct our

GraphCT experiments, we can observe the algorithmic differ-

ences imposed by the bulk synchronous parallel programming

model. Table I compares the total execution times for each

algorithm on the Cray XMT. The Cray XMT enables scalable,

parallel implementations of graph algorithms in both program-

ming models. In some cases, such as connected components,

the scalability and execution profiles are quite different for

the same algorithm. In others, such as breadth-first search and

triangle counting, the main execution differences are in the

overheads, both memory and time.

Breadth-first search is the BSP algorithm that bears the most

resemblance to its shared memory counterpart. Both operate in

an iterative, synchronous fashion. The only real difference lies

in how the frontier is expressed. The shared memory algorithm

1643

only places vertices on the frontier if they are undiscovered,

and only places one copy of each vertex. The BSP algorithm

does not have this knowledge, so it must send messages to

every vertex that could possibly be on the frontier. Those

that are not will discard the messages. As a result, the two

algorithms perform very similarly. In fact, many of the fastest

performing Graph500 [21] entries on large, distributed clusters

perform the breadth-first search in a bulk synchronous fashion

with varying 1-D and 2-D decompositions [25].

In the connected components algorithms, we observe differ-

ent behavior. Since messages in the BSP model cannot arrive

until the next superstep, vertices processing in the current

superstep are processing on stale data. Because data cannot

move forward in the computation, the number of iterations

required until convergence is at least a factor of two larger than

in the shared memory model. In the shared memory algorithm,

once a vertex discovers its label has changed, that new

information is available to all of its neighbors immediately and

can be further consumed. While the shared memory algorithm

requires edges and vertices to be read and processed that will

not change, the significantly lower number of iterations results

in a significantly shorter execution time.

In the clustering coefficients algorithms, we observe very

similar behavior in reading the graph. Each vertex is consid-

ered independently and a doubly-nested loop of the neighbor

set is required (although the exact mechanisms of performing

the neighbor intersection can be varied–see [12]). The most

significant difference between the algorithms is the nature of

the possible triangles. In the shared memory algorithm, the

possible triangles are implicit in the loop body. In the BSP

algorithm, the possible triangles must be explicitly enumerated

as messages. The result is an overwhelming number of writes

that must take place. Despite 181 times greater number of

writes, the Cray XMT only experiences a 9.4x slow down in

execution time when performing the BSP algorithm.

VII. CONCLUSION AND FUTURE WORK

The global shared address space on the Cray XMT is

advantageous for prototyping alternative programming envi-

ronments for large graph analysis. Expressing popular static

graph algorithms is straightforward in the bulk synchronous

parallel model, similar to Google’s Pregel framework. The

Cray XMT compiler is able to automatically parallelize BSP

iterations, vertex messaging, and neighbor list traversal. With-

out native support for message features such as enqueueing

and dequeueing, serialization around a single atomic fetch-

and-add is possible, inhibiting scalability.

We peered within the innermost iterations of graph algo-

rithms and observed differences in parallelism from iteration

to iteration. We demonstrated linear scalability to 128 pro-

cessors on connected components, breadth-first search, and

triangle counting using the bulk synchronous parallel model.

Performance was within a factor of 10 of hand-tuned C

code. Connected components was limited by the number of

iterations requiring every vertex to be active. Breadth-first

search was only limited by processing on vertices that had

already been processed. Triangle counting was limited by

message overhead.

Despite these factors, the scalability demonstrated in these

algorithms indicates a promising area of study for parallel

graph algorithms on large, shared memory platforms.

ACKNOWLEDGMENTS

This work was supported in part by the Pacific Northwest

National Lab (PNNL) Center for Adaptive Supercomputing

Software for MultiThreaded Architectures (CASS-MT). We

thank PNNL and Cray for providing access to Cray XMT

systems.

REFERENCES

[1] D. Watts and S. Strogatz, “Collective dynamics of small

world networks,” Nature, vol. 393, pp. 440–442, 1998.

[2] P. Konecny, “Introducing the Cray XMT,” in Proc. Cray
User Group meeting (CUG 2007). Seattle, WA: CUG

Proceedings, May 2007.

[3] O. Villa, D. Chavarria-Miranda, and K. Maschhoff,

“Input-independent, scalable and fast string matching on

the Cray XMT,” in Parallel Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, May

2009, pp. 1–12.

[4] J. Mogill and D. Haglin, “Toward parallel document

clustering,” in Parallel and Distributed Processing Work-
shops and Phd Forum (IPDPSW), 2011 IEEE Interna-
tional Symposium on, May 2011, pp. 1700–1709.

[5] G. Chin, A. Marquez, S. Choudhury, and K. Maschhoff,

“Implementing and evaluating multithreaded triad census

algorithms on the Cray XMT,” in Parallel Distributed
Processing, 2009. IPDPS 2009. IEEE International Sym-
posium on, May 2009, pp. 1–9.

[6] E. Goodman, D. Haglin, C. Scherrer, D. Chavarria-

Miranda, J. Mogill, and J. Feo, “Hashing strategies

for the Cray XMT,” in Parallel Distributed Processing,
Workshops and Phd Forum (IPDPSW), 2010 IEEE Inter-
national Symposium on, April 2010, pp. 1–8.

[7] J. Shuangshuang, H. Zhenyu, C. Yousu, D. Chavarria-

Miranda, J. Feo, and W. Pak Chung, “A novel application

of parallel betweenness centrality to power grid contin-

gency analysis,” in Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, 2010,

pp. 1–7.

[8] D. Ediger, K. Jiang, J. Riedy, D. A. Bader, C. Corley,

R. Farber, and W. N. Reynolds, “Massive social network

analysis: Mining twitter for social good,” Parallel Pro-
cessing, International Conference on, pp. 583–593, 2010.

[9] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader,

“Parallel community detection for massive graphs,” in

9th International Conference on Parallel Processing and
Applied Mathematics (PPAM11). Springer, September

2011.

1644

[10] K. Jiang, D. Ediger, and D. A. Bader, “Generalizing k-

Betweenness centrality using short paths and a parallel

multithreaded implementation,” in The 38th International
Conference on Parallel Processing (ICPP 2009), Vienna,

Austria, September 2009.

[11] K. Madduri, D. Ediger, K. Jiang, D. Bader, and

D. Chavarría-Miranda, “A faster parallel algorithm and

efficient multithreaded implementations for evaluating

betweenness centrality on massive datasets,” in Proc.
Workshop on Multithreaded Architectures and Applica-
tions (MTAAP’09), Rome, Italy, May 2009.

[12] D. Ediger, K. Jiang, J. Riedy, and D. A. Bader, “Massive

streaming data analytics: A case study with clustering co-

efficients,” in Workshop on Multithreaded Architectures
and Applications (MTAAP), Atlanta, Georgia, April 2010.

[13] D. Ediger, E. J. Riedy, D. A. Bader, and H. Meyerhenke,

“Tracking structure of streaming social networks,” in 5th
Workshop on Multithreaded Architectures and Applica-
tions (MTAAP), May 2011.

[14] D. Ediger, K. Jiang, J. Riedy, and D. Bader, “Graphct:

Multithreaded algorithms for massive graph analysis,”

Parallel and Distributed Systems, IEEE Transactions on,

vol. PP, no. 99, p. 1, 2012.

[15] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,

I. Horn, N. Leiser, and G. Czajkowski, “Pregel: a system

for large-scale graph processing,” in Proceedings of the
2010 international conference on Management of data,

ser. SIGMOD ’10. New York, NY, USA: ACM, 2010,

pp. 135–146.

[16] A. Ching and C. Kunz, “Apache giraph,” 2012. [Online].

Available: http://incubator.apache.org/giraph/

[17] L. G. Valiant, “A bridging model for parallel compu-

tation,” Commun. ACM, vol. 33, no. 8, pp. 103–111,

August 1990.

[18] Y. Shiloach and U. Vishkin, “An O(log n) parallel con-

nectivity algorithm,” J. Algs., vol. 3, no. 1, pp. 57–67,

1982.

[19] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A

recursive model for graph mining,” in Proc. 4th SIAM
Intl. Conf. on Data Mining (SDM). Orlando, FL: SIAM,

April 2004.

[20] S. Schelter, “Large scale graph processing with apache

giraph,” May 2012, invited talk, GameDuell Berlin.

[21] “Graph 500,” 2012. [Online]. Available: http://www.

graph500.org

[22] D. Bader and K. Madduri, “Designing multithreaded

algorithms for breadth-first search and st-connectivity on

the Cray MTA-2,” in Proc. 35th Int’l Conf. on Parallel
Processing (ICPP). Columbus, OH: IEEE Computer

Society, August 2006.

[23] T. Kajdanowicz, W. Indyk, P. Kazienko, and J. Kukul,

“Comparison of the efficiency of mapreduce and bulk

synchronous parallel approaches to large network pro-

cessing,” in Data Mining Workshops (ICDMW), 2012
IEEE 12th International Conference on, December 2012,

pp. 218–225.

[24] B. Shao, H. Wang, and Y. Li, “The trinity graph engine,”

Microsoft Research, Tech. Rep. 161291, 2012.

[25] A. Buluç and K. Madduri, “Parallel breadth-first search

on distributed memory systems,” in Proceedings of 2011
International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, ser. SC ’11. New

York, NY, USA: ACM, 2011, pp. 65:1–65:12.

1645

