
Designing Hybrid Architectures for
Massive-Scale Graph Analysis

David Ediger
PhD Candidate

Georgia Institute of Technology

David A. Bader
PhD Advisor

Georgia Institute of Technology

Abstract—Turning large volumes of data into actionable knowl-
edge is a top challenge in high performance computing. Our
previous work in this area demonstrated algorithmic techniques
for massively parallel graph analysis on multithreaded systems.
This work led to the development of GraphCT, the first end-
to-end graph analytics platform for the Cray XMT and x86-
class systems with OpenMP, and STINGER, a high performance,
multithreaded, dynamic graph data structure and algorithms.
Both of these packages are freely available as open source
software. This dissertation research culminates in experimental
and analytical techniques to study the marriage of disk-based
systems, such as Hadoop, with shared memory-based systems,
such as the Cray XMT, for data-intensive applications. David
Ediger is a fifth year PhD candidate in Electrical and Computer
Engineering.

I. INTRODUCTION

The quantity of rich, semi-structured data generated by

sensor networks, scientific simulation, business activity, and

the Internet, grows daily. In the past, collection and analysis

of data using relational queries was sufficient. Today, complex

analytics and near real-time responses to new data are required.

To meet the demand and keep up with ever-increasing data

rates, novel solutions in the form of hardware, software, and

algorithms are required.

The objective of this research is to investigate architectural

requirements for data-intensive applications in massive graph

analysis, such as community finding and anomaly detection.

Using emerging hybrid systems, we will map applications

to architectures and close the loop between software and

hardware design in this application space. Algorithm engineer-

ing, experimental techniques, and modeling and simulation

are used to evaluate the design space of large-scale parallel

systems for graph analytics that use both shared memory and

storage devices.

Shared memory systems for graph analysis leverage the ben-

efits of DRAM (fast single-word access) while not requiring

data to be partitioned. Storage device-based systems enable

scale-out to larger data sets than is possible with DRAM at

a cost of additional time and physical size. MapReduce has

attracted the attention of the large graph analytics commu-

nity for its ability to perform operations on petabyte-scale

datasets [1]. The core strength of MapReduce is its ability to

store truly massive datasets using commodity hardware. How-

ever, the programming model gives the programmer no control

over data movement or locality. Pregel is a distributed graph

processing system with a C++ API developed by Google [2].

To avoid issues of deadlock and data races, Pregel uses a bulk

synchronous parallel (BSP) programming model, as opposed

to the BSP algorithmic model [3]. In each superstep, a vertex

can 1) receive messages from the previous iteration, 2) do

local computation or modify the graph, and 3) send messages

to vertices that will be received in the next iteration. Similar

to MapReduce in many ways, chains of iterations are used to

solve a graph query in a fault-tolerant manner across thousands

of distributed systems. Unlike MapReduce, however, vertices

in Pregel can maintain state between iterations, reducing the

communication cost.

The dissertation begins with our previously published

work [4], [5], [6], [7], [8], [9], [10] as a foundation of

new algorithms and techniques for large-scale graph analysis.

This paper previews new analysis on performance aspects

of programming models and hardware characteristics to give

insights into the design space of future systems on these

problems.

II. ALGORITHMIC EFFECTS OF BSP

To determine the algorithmic effects of the bulk syn-

chronous parallel programming model on graph algorithms,

we devised a shared memory BSP environment written on top

of GraphCT [10]. The BSP environment supports lightweight

messaging between vertices. Incoming and outgoing message

queues are transferred between supersteps with a single pointer

swap. An array of vertex state is maintained between iterations.

To measure performance, we track the time to execute each

superstep as well as the number of messages sent and received.

The comparison code is a hand-written C-language imple-

mentation of connected components in GraphCT. The imple-

mentation is instrumented to measure the time per iteration,

time to solution, as well as the number of reads and writes.

Both the shared memory and BSP implementations are run on

the same input graph on the same machine and we examine

intermediate data for correctness.

We run Shiloach-Vishkin connected components on an

undirected, scale-free RMAT [11] graph with 2 million vertices

and 131 million edges. The shared memory implementation

from GraphCT completes in four iterations. In Figure 1(a),

each iteration performs approximately 132 million reads. A

write is performed when a component label change is detected.

The number of writes recorded drops quickly from over 6

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.172

2262

Iteration Number

C
ou

nt

100

102

104

106

108

1 2 3 4

Type
Reads
Writes

(a) Shared Memory Connected Components

Iteration Number

C
ou

nt

100

102

104

106

108

2 4 6 8 10

Type
Reads
Writes

(b) Bulk Synchronous Parallel Connected Components

Fig. 1. The number of reads and writes per iteration performed by connected
components algorithms on a scale-free graph with 2 million vertices and 131
million edges.

million in the first iteration to only 121 in the third iteration.

The ratio of total reads to writes is approximately 85:1.

In Figure 1(b), the BSP components algorithm takes 10

iterations to complete. In the BSP algorithm, the only active

vertices are those that received messages from the previous

superstep. In the first several supersteps, nearly all vertices are

active and modifying their component labels. Beginning with

the fifth superstep, the number of component label changes

drops off dramatically. However, the ratio of total reads to

total writes for BSP is 1.3:1.

On a dual-socket 2.4 GHz Intel Xeon E5530 with 12 GiB

of main memory, the shared memory connected components

takes 6.83 seconds compared to the BSP implementation that

completes in 12.7 seconds. The shared memory implemen-

tation processes at a rate of 19.3 million edges per second

compared to 10.4 million edges per second for the BSP.

Despite the fact that the BSP connected components algo-

rithm computes only on the active vertex set and performs only

Iteration Number

T
im

e
(s

ec
)

10−3

10−2

10−1

100

Shared Memory

●
● ● ●

2 4 6 8 10 12

BSP

●
●

●

●

●

●

● ●

2 4 6 8 10 12

Scale
● 16

17
18
19
20
21

Fig. 2. Execution time per iteration performed by connected components
algorithms. Scale is the log base 2 of the number of vertices and the edge
factor is 8. For Scale 21, shared memory completes in 8.3 seconds, while
BSP takes 12.7 seconds.

15 percent more reads than the shared memory algorithm, it

requires double the number of iterations and takes twice as

long to complete.

Note that the time per iteration for the shared memory

implementation is constant in Figure 2. In the BSP model,

the time is proportional to the number of messages being sent

and received. Early iterations take two orders of magnitude

longer than later iterations. However the early iterations are

too long to make this approach competitive with the shared

memory implementation.

Since messages in the BSP model cannot arrive until the

next superstep, vertices processing in the current superstep

process on stale data. Because data move forward in the com-

putation, the number of iterations required until convergence is

at least a factor of two larger than in the shared memory model.

In the shared memory algorithm, once a vertex discovers its

label has changed, that new information is available to all of

its neighbors immediately and can be further consumed. While

the shared memory algorithm requires edges and vertices to

be read and processed that will not change, the significantly

fewer iterations results in a shorter execution time.

We can apply these execution measurement techniques

to other graph algorithms, such as breadth-first search and

triangle counting, and use their results to model larger-scale

problems on future systems. Please reference the completed

dissertation for these details.

III. MODELING DATA ACCESS TIME

Using algorithmic analysis, we seek to model data access

patterns for large-scale graphs on future systems that use

shared memory and disk-based storage.

Let us consider the performance of a hypothetical future

system on a large graph algorithm. We will first model shared

memory connected components on a graph with 17.2 billion

vertices and 137.4 billion edges. The memory footprint is

2263

given by (|V | + 2|E|) 8-byte elements, or approximately

2.3 TiB. We assume that in-memory Shiloach-Vishkin will

converge in seven iterations, although this will depend on

graph diameter (BSP would require approximately double).

We do not consider network bandwidth or latency.

Considering only the shared memory algorithm for con-

nected components on a compressed sparse row graph, in

each iteration we read |E| source vertices and |E| destination

vertices, which are both stored and accessed contiguously. We

also read |V | source component labels and |V | destination

component labels, which are random accesses. For a graph

with an average degree of 8, we calculate that 11 percent of

reads will be random and 89 percent of reads with be linear.

The total execution time is given in Equation 1. I is the

number of iterations required for completion and Ti is the

time for a single iteration i.

Ttotal =
I∑

i=1

Ti (1)

For shared memory connected components, the work per

iteration is constant, so the total time is the product of the

number of iterations and the time for a single iteration. Under

this model, each iteration will perform 309 billion memory

references per iteration of connected components, for a total

of 2.16 trillion memory reads. Let us consider a hypothetical

in-memory system with 4096-way concurrency in the memory.

This level of concurrency is equivalent to a Cray XMT2

with 4-channel memory. When measuring the performance of

connected components running on a current system in memory,

the processing time per edge was determined to be 8.33

nanoseconds, or 120 million references per second. At this

rate, we estimate the time per iteration to be 629 milliseconds

for a total computation time of 4.4 seconds in memory.

The computation time estimates for the disk-based models

are more complicated. A random access will be charged

according to the latency of access. Linear accesses must be

charged according to the linear access bandwidth. The total

time will be a combination of the two costs based on the

frequency of random accesses with respect to linear accesses.

We assume these to be uniformly distributed regardless of

system layout.

The time per iteration is given in Equation 2. The latency

of a unit random access is L seconds. B is the peak band-

width of the device in bytes per second. C is the number

of concurrent storage devices. The total number of memory

references (Mref) is divided between random (Mrandom) and

linear (Mlinear), as shown in Equation 3.

Ti =
1

C

(
L(1 +Mrandom) +

8 ·Mlinear

B

)
(2)

Mref = Mrandom +Mlinear (3)

The algorithmic analysis estimated that 11 percent of reads

in connected components are random with the remaining 89

Fig. 3. A proposed hierarchy of data analytics the includes raw, unstructured
data in a commodity cluster, a special purpose high-performance graph
representation, and many client analytics that operate in parallel.

percent linear. Considering spinning hard disk drives, 11 per-

cent of the memory references will be charged 2 milliseconds,

while the remainder will be charged based on the linear access

rate of 12.5 million references per second. Assuming 65,536

concurrent disk devices, the computation time is estimated to

be 66,100 seconds.

The solid state disk has both a high linear access bandwidth

(550 MiB per second) and a comparatively low random access

latency (12.5 microseconds). Assuming 11 percent of accesses

are random, the per-iteration time is reduced to 6.56 seconds

for a total time of 45.9 seconds.

In order for hard disk drives to match main memory per-

formance, approximately 107 million drives would be needed

under this model. Alternatively, the percentage of random

accesses would need to be reduced to 0.04 percent. For

SSDs, the concurrency required is 675,000 or a random access

percentage of 1.1 percent. It is unlikely that this extreme level

of spatial reuse can be found in graph algorithms that have

been shown to contain little locality.

IV. A HYBRID SYSTEM ARCHITECTURE

Future systems will combine shared memory systems with

disk-based clusters and user workstations. Figure 3 depicts the

proposed hierarchy of data analytics. The commodity cluster

contains the largest volume of data storage and sits at the

bottom. It holds the raw, unstructured data. Above it, a graph

database is built on a shared memory platform that has an order

of magnitude less memory, but is faster and more flexible.

Above the graph database, the analyst workstation analyzes

smaller subgraphs extracted from the graph database.

Raw, unstructured data flows into the data warehouse as

it is created and collected. The data warehouse, which spe-

cializes in data parallel operations, extracts the entities and

relationships from the text. These new updates are sent to

the graph database as a stream of new edges. The graph

database (STINGER [6] in our example) processes these new

edge updates in its internal graph representation and updates

continuously running analytics. Analysts using advanced pro-

2264

gramming environments, such as Python, extract subgraphs

from the graph database for further investigations that do not

scale to large datasets. It is impossible to visualize graphs with

more than several hundred vertices.

The hierarchy of graph systems and representations behaves

much like a memory hierarchy, and we can apply many well-

understood aspects of the memory hierarchy to this problem.

All data that resides in a higher level of the hierarchy must

also reside in all lower levels. The data that an edge represents

in the graph database must remain in the data warehouse. A

strategy for good performance throughout the system is to

keep the most relevant data in the graph database so that a

minimum number of queries must require intervention by the

data warehouse.

When the data representation becomes full, the stream of

edges will not cease. Rather, new edges will need to be

evaluated and stored, if relevant. Inserting a new edge into the

representation requires other data to removed and overwritten.

One possibility is to purge the oldest data in the graph. Other

approaches may utilize analytic results to determine the data

least used (or containing the least information).

In this hybrid system, we must consider where to run

analytics on the data. Although there could be many criteria,

we will focus on minimizing time-to-solution. We assume that

the data warehouse contains the ground truth, with the graph

database server holding a representation of most, but possibly

not all, of the edges in the graph.

If the graph under consideration is too large to run on an

analyst workstation, it must be run on the graph database or

in the data warehouse. Because the graph database is a shared

memory system specifically designed for graph queries, it may

be more efficient to run the query there provided that all of

the data needed is present in the representation.

If edges are not present in the graph database, and need to be

retrieved from the data warehouse, there will be an additional

cost to doing so. To complete this research, we will apply the

data access model to this scenario. The key research question

is to determine what percentage of edges must be missing from

the graph representation to move the computation to the data

warehouse given the algorithm access pattern. This research

will help to better understand large-scale system design trade-

offs for these massively irregular data-intensive problems.

V. REMAINING OBJECTIVES AND CHALLENGES

The remaining objective in this research is to apply per-

formance measurements taken from shared memory and disk-

based systems and the performance model to the proposed

hybrid system. With this data, we will have a better under-

standing of how to build and model hybrid memory- and

disk-based systems for data-intensive science. We will be

able to predict, for a given algorithm or application, where

in the hierarchy of data analytics the query should be run.

The need for integrated system architectures pushes large-

scale, streaming graph analytics closer to real-time query and

response.

ACKNOWLEDGMENTS

This work was supported in part by the Pacific Northwest

National Lab (PNNL) Center for Adaptive Supercomputing

Software for MultiThreaded Architectures (CASS-MT).

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data

processing on large clusters,” Commun. ACM, vol. 51,

no. 1, pp. 107–113, 2008.

[2] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,

I. Horn, N. Leiser, and G. Czajkowski, “Pregel: a system

for large-scale graph processing,” in Proceedings of the
2010 international conference on Management of data,

ser. SIGMOD ’10. New York, NY, USA: ACM, 2010,

pp. 135–146.

[3] L. G. Valiant, “A bridging model for parallel computa-

tion,” Commun. ACM, vol. 33, no. 8, pp. 103–111, Aug.

1990.

[4] K. Madduri, D. Ediger, K. Jiang, D. Bader, and

D. Chavarría-Miranda, “A faster parallel algorithm and

efficient multithreaded implementations for evaluating

betweenness centrality on massive datasets,” in Proc.
Workshop on Multithreaded Architectures and Applica-
tions (MTAAP’09), Rome, Italy, May 2009.

[5] K. Jiang, D. Ediger, and D. A. Bader, “Generalizing k-

Betweenness centrality using short paths and a parallel

multithreaded implementation,” in The 38th International
Conference on Parallel Processing (ICPP 2009), Vienna,

Austria, Sep. 2009.

[6] D. Ediger, K. Jiang, J. Riedy, and D. A. Bader, “Massive

streaming data analytics: A case study with clustering co-

efficients,” in Workshop on Multithreaded Architectures
and Applications (MTAAP), Atlanta, Georgia, Apr. 2010.

[7] D. Ediger, K. Jiang, J. Riedy, D. A. Bader, C. Corley,

R. Farber, and W. N. Reynolds, “Massive social network

analysis: Mining twitter for social good,” Parallel Pro-
cessing, International Conference on, pp. 583–593, 2010.

[8] D. Ediger, E. J. Riedy, D. A. Bader, and H. Meyerhenke,

“Tracking structure of streaming social networks,” in 5th
Workshop on Multithreaded Architectures and Applica-
tions (MTAAP), May 2011.

[9] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader,

“Parallel community detection for massive graphs,” in

9th International Conference on Parallel Processing and
Applied Mathematics (PPAM). Springer, Sep. 2011.

[10] D. Ediger, K. Jiang, J. Riedy, and D. Bader, “Graphct:

Multithreaded algorithms for massive graph analysis,”

Parallel and Distributed Systems, IEEE Transactions on,

vol. PP, no. 99, 2012.

[11] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A

recursive model for graph mining,” in Proc. 4th SIAM
Intl. Conf. on Data Mining (SDM). Orlando, FL: SIAM,

Apr. 2004.

2265

