
A Fast Algorithm for Streaming Betweenness
Centrality

Oded Green, Robert McColl, David A. Bader
College of Computing

Georgia Institute of Technology

Atlanta, GA, USA 30332

Abstract—Analysis of social networks is challenging due to
the rapid changes of its members and their relationships. For
many cases it impractical to recompute the metric of interest,
therefore, streaming algorithms are used to reduce the total
runtime following modifications to the graph. Centrality is often
used for determining the relative importance of a vertex or edge
in a graph. The vertex Betweenness Centrality is the fraction of
shortest paths going through a vertex among all shortest paths
in the graph. Vertices with a high betweenness centrality are
usually key players in a social network or a bottleneck in a
communication network. Evaluating the betweenness centrality
for a graph G = (V,E) is computationally demanding and the
best known algorithm for unweighted graphs has an upper bound
time complexity of O(V 2 + V E). Consequently, it is desirable
to find a way to avoid a full re-computation of betweenness
centrality when a new edge is inserted into the graph. In this
work, we give a novel algorithm that reduces computation for the
insertion of an edge into the graph. This is the first algorithm for
the computation of betweenness centrality in a streaming graph.
While the upper bound time complexity of the new algorithm
is the same as the upper bound for the static graph algorithm,
we show significant speedups for both synthetic and real graphs.
For synthetic graphs the speedup varies depending on the type
of graph and the graph size. For synthetic graphs with 16384
vertices the average speedup is between 100X − 400X . For five
different real world collaboration networks the average speedup
per graph is in range of 36X − 148X .

Index Terms—graph algorithms; social networks;

I. INTRODUCTION

Betweenness centrality is computed for graphs G = (V,E)
where V represents the set of vertices and E represents the

set of links between the vertices. The graph can be directed

or undirected and weighted or unweighted.

A path between source vertex s ∈ V and the destina-

tion vertex t ∈ V is defined as the sequence of vertices

s, v1, v2, .., vk, t such that (vi, vi+1) ∈ E for the entire

sequence. The length of a path is the sum of the weights of all

the edges in the path. For an unweighted graph, the length of

the path is the number of edges in the sequence. The shortest

path between two vertices, also known as the geodesic, is the

sequence of vertices that has the smallest summed weight.

It is worth noting that there can be more than one shortest

path connecting any pair of vertices. This was formalized by

Freeman [16]. In his work, Freeman suggests comparing the

number of shortest paths going through a vertex v with the

total number of the shortest paths (including those that do not

go through v).
In this work we show how to compute betweenness central-

ity for unweighted streaming graphs. If an algorithm supports

both edge insertion (incremental) and edge deletion (decre-

mental) then the algorithm is fully dynamic. If the algorithm

supports one of these operations, it is partially dynamic. As

the algorithm that is presented in this paper supports only

insertions, it is an incremental algorithm. To the best of the

authors’ knowledge this is the first algorithm for incremental

streaming betweenness centrality.

Centrality is used for finding important vertices/edges in

graphs. In social networks the vertices refer to people/actors

and the edges refer to relationships, where the relationship is

dependent on the type of social network. In a communication

network, the vertices might be servers and the edges might be

physical connections between the servers. For email networks,

the vertices will be the senders/receivers and the edges refer

to emails sent between the sender and receiver.

Related Work

Betweenness centrality is applicable to many fields. Appli-

cations that use betweenness centrality as a building block

include finding communities within a graph representing in-

formation flow [22], detecting communities in social networks

[17], analyzing brain network [20], and deploying detection

devices in communication networks [8].

In [5], Brandes shows a way to compute betweenness cen-

trality using a dependency accumulation technique rather than

doing a pair-wise summation. This algorithm is considerably

faster than the pair-wise summation. In Section II we expand

on Brandes’s approach for computing betweenness centrality

as it is crucial for understanding our approach to computing

streaming betweenness centrality.

Madduri et al. [19] present the first parallel algorithm

for computing betweenness centrality. This algorithm uses

a two level hierarchy of parallelism to achieve fine-grain

parallelism. Edmonds et al [12] give a distributed algorithm

for betweenness centrality. Tan et al show several optimization

strategies for computing betweenness centrality on the IBM

Cyclops64 in [21].

In Bader [3], the authors suggest reducing the complexity

requirements of betweenness by computing an approximation.

This is done by selecting a subset of vertices and computing

2012 ASE/IEEE International Conference on Social Computing and 2012 ASE/IEEE International Conference on Privacy, Security,

Risk and Trust

978-0-7695-4848-7/12 $26.00 © 2012 IEEE

DOI 10.1109/SocialCom-PASSAT.2012.37

11

betweenness centrality for these vertices alone. In their pa-

per, the authors show that the approximation can give good

results for artificial networks. In [19], [11] execution times

are presented for the computation of approximate betweenness

centrality for graphs with an edge count of half a billion.

In Buluç and Gilbert [7] the authors show a framework,

Combinatorial BLAS, for computing betweenness centrality

using algebraic computation. Using Combinatorial BLAS, they

show that the computation of betweenness centrality is scalable

and can be distributed to multiple cores.

Betweenness Centrality

We denote the number of shortest paths between two

vertices s and t using σs,t and the number of shortest paths

between two vertices s and t that go through v by σs,t(v).
It follows that betweenness centrality is computed as follows

[16]:

CB(v) =
∑

s �=t �=v

σst(v)

σst
. (1)

Finding the shortest path from a single vertex (source) to

all the remaining vertices is known as the Single Source

Shortest Path (SSSP) problem. Finding the shortest paths from

all vertices to all vertices in the graph is known as the All

Pairs Shortest Path (APSP) problem. APSP can be solved by

running SSSP from every vertex in the graph. The complexity

of computing APSP using the Floyd-Warshall algorithm [15]

[23] is O(V 3). For a more detailed discussion on SSSP and

APSP the reader is referred to [10].

The remainder of the paper is organized as follows: In

Section II we show Brandes’s algorithm with an explanation

of the key stages and focus on the dependency accumulation

technique. In Section III the new streaming algorithm is

presented. We prove that the new algorithm gives the same

results as would a full re-computation and show that the

algorithm is deterministic. In Section IV we show empirical

speedups of the new algorithm versus doing a full recompute

on both synthetic and real networks. In Section V a brief

summary of the work will be given.

II. FASTER BETWEENNESS CENTRALITY

In [5], Brandes presents a fast algorithm for computing

betweenness centrality based on a dependency accumulation

technique which accesses the vertices in the reverse order

of the BFS (Breadth First Search) traversal. Brandes’s [5]

algorithm for faster betweenness centrality is key for under-

standing the work that will be presented in the sections ahead.

Therefore, we give a detailed explanation (without the formal

proofs) of his work. It is worth noting that the dependency

accumulation approach is faster than previous approaches that

required summing up all of the pair-wise dependencies.

The algorithm for computing betweenness centrality pre-

sented in [5] is made up of four stages, as shown in Algorithm

1. The first two stages, Stage 0 and Stage 1, are data structure

initialization stages, where Stage 0 is a global initialization

stage and Stage 1 is ’local’ initialization that is completed

once for each vertex in the graph.

Algorithm 1: The Betweenness centrality algorithm as

suggested in [5]. The pseudo-code is divided into 4 stages.

Stage 0 - global initialization
CB [r] ← 0, r ∈ V ;

for r ∈ V do
Stage 1 - local initialization
S ← empty stack; Q← empty queue;

P [w]← empty list, w ∈ V ;

σ[t]← 0, t ∈ V ; σ[r]← 1;
d[t]←∞, t ∈ V ; d[r]←∞;

enqueue r → Q;

Stage 2 - BFS traversal
while Q not empty do

dequeue v ← Q;

push v → S;
for all neighbor w of v do

// w found for the first time
if d[w] =∞ then

enqueuew → Q;

d[w]← d[v] + 1;

if d[w] = d[v] + 1 then
σ[w]← σ[w] + σ[v];
append v → P [w];

Stage 3 - dependency accumulation
δ[v] ← 0, v ∈ V ;

while S not empty do
pop w ← S;
for all v ∈ P [w] do

δ[v]← δ[v] + σ[v]
σ[w] (1 + δ[w]);

if w �= r then
CB [w]← CB [w] + δ[w];

In Stage 0 the output of the algorithm, the betweenness

centrality score of each vertex is initialized to zero. Stages 1,

2, and 3 are executed for each vertex in the graph. Each vertex

is considered a root an iteration over all vertices.

In Stage 1, the data structures that will be used in Stages

2 and 3 are initialized. This includes a stack, queue, and

three additional arrays. The first array, σ, counts the number

of shortest paths from each vertex to the root of the current

shortest path tree, r. The second array, d, measures the distance

of each vertex from the root. As the graph is unweighted, this

is the minimum number of edges between the vertex and the

root. We refer to this distance as the level of the vertex in

the BFS tree. Initially the distances of all vertices from the

root are set to ∞. The third array, P , is an array of linked

lists. Each vertex v has a linked list P [v], that contains all

the vertices that precede v in the BFS traversal. These are the

parent vertices of v in the previous level.

Stage 2 and Stage 3 are the key components of the between-

ness centrality computation. Stage 2 is a BFS traversal from

12

a given root that finds the shortest path to all other vertices.

In this stage, each element is placed in a queue when it is

found. It is later placed in the stack when it is dequeued from

the queue. 1 As part of the BFS traversal the distance from

the root vertex, s, to each vertex is also computed. For each

vertex, v, found in the BFS traversal there is a list of parental

vertices that are all one hop closer to the root. Thus, all of v’s
shortest paths go through its parents and these are accumulated

in σ[v].
In Eq. (1), the following two notations are seen: σst(v) and

σst. The latter (denominator) refers to all the shortest path

between s and t. The first (numerator) refers to all the shortest

paths between s and t that go through vertex v. If there are

no paths between s and t that go through v then σst(v) = 0. 2

By setting s to be a specific vertex (i.e. the root of the tree) it

is possible to compute both numerator and denominator σt(v)
and σt using the BFS traversal for each root vertex s.

Stage 3 computes betweenness centrality using the de-

pendency accumulation technique of Brandes [5]. The pair-

dependency for a pair of vertices s, t is defined as follows:

δst(v) =
σst(v)

σst
. (2)

Using Eq. (2) with Eq. (1) changes the computation of

betweenness centrality based on the pair-dependency:

CB(v) =
∑

s �=t �=v

δst. (3)

In [5] the following relationship is shown and proven:

δs(v) =
∑

{w|v∈Ps(w)}

σsv

σsw
(1 + δs(w)). (4)

The immediate outcome of this is that it is no longer

necessary to sum all the pair-dependencies as they follow a

recursive relation. In addition to this, it is possible to compute

each of the δs(w), by computing the shortest path from the

root , s, to the rest of the graph using a single source shortest

path algorithm.

Complexity Analysis

The memory requirements for the stack, queue and the

arrays σ and d are O(V) as the sizes of these data structures

are bound by the number of vertices in the graph V . The

memory needed by the array of linked lists is bound by the

number of edges in the graph O(E) as the maximum number

of parents a vertex has is bound by the number of edges it

has. The sum of all the parents is bound by the total number

of edges in the graph.

As each BFS traversal is computed independently, only a

single copy of these data structures needs to be maintained,

1For an array based implementation of the queue and the stack, it is
necessary to maintain only one of these data structures, as the order in which
the vertices are placed in the queue is the same as that of the stack. As
the queue (Stage 2) and stack (Stage 3), are not accessed for computational
purposes it is safe to implement this with one array and maintain additional
pointers.

2If there are no shortest paths to between s and t, σst = 0

which is O(V +E). The memory required by the array CB is

also bound by the number of vertices V . Therefore, the total

memory requirement of this algorithm is O(V + E).
The time complexity of BFS is O(V + E). The time

complexity of the dependency accumulation is also O(V +E)
as the maximal number of steps is bound by the number

of parents, O(E), and the vertices accessed, O(V). As this

computation is computed once for each vertex, the time

complexity is O(V 2+V E). Given that in many cases E > V ,

this is simplified to O(V E).

III. STREAMING BETWEENNESS CENTRALITY

In this section we will present a novel algorithm for com-

puting betweenness centrality in streaming graphs. Streaming

graphs are graphs into which new edges are inserted over time.

We show that it is possible to avoid a full re-computation by

maintaining some additional data structures. We show that the

algorithm does only minimal re-computation. We show the

correctness of the algorithm and show that the algorithm is

exact and not an approximation.

Additional data structures will be used to store previously

computed values and will allow avoiding redundant computa-

tion. These structures will be explained further in this section.

Our initialization stages are different from Algorithm 1 as data

is maintained between iterations of the insertion rather than

thrown away with the completion of the computation as is

done in [5]. Following the presentation of the algorithm and

the data structures, a deeper complexity analysis of time and

space requirements of the algorithm and the data structure will

be given. In this work, we focused on unweighted graphs. For

simplicity, our proofs will be aimed for at undirected graphs;

however, they can be augmented for directed graphs.

A. BFS Tree Data Structure

A BFS tree data structure is maintained for each of vertex

in the graph. A BFS tree is the tree created following a BFS

traversal from a given root. As these are unweighted graphs,

it is possible to maintain the distance of each vertex from the

root using an array of size |V |. Consequently, at any given

time, it is possible to query the level of any vertex in any BFS

tree in O(1) time.

While maintaining this structure does indeed increases the

space complexity, it will reduce the practical computation

requirements and give significant speedups.

B. Edge Insertion

Given a new edge e = (u, v) in the graph, G = (V,E∪{e}),
the relative position of the edge will be checked in the different

BFS trees. For each of the BFS trees denoted Ts, before e
connects u and v, one of the following scenarios occurs: 3

1) |ds(u)− ds(v)| = 0 - both vertices are in the same level

of the tree prior to the addition. The new edge does not

create any shorter paths, meaning that in Ts there will

3For simplicity and without the loss of generality, assume that u is closer
to the root than v.

13

Figure 1. Insertion of edge e = (u, v) connects two vertices that are on the same level in the BFS tree of root s.

���

���

�

�	

��� �	

Figure 2. Insertion of edge e = (u, v) connects two vertices that are in adjacent levels in BFS tree of root s. The new edge does not cause any vertex to
change its position in the given BFS tree.

���

���

���

�

�	
�

���
�

�����

�
�

be no updates of betweenness centrality. This is denoted

in Fig. 1.

2) |ds(u)− ds(v)| = 1 - the vertices are in adjacent levels

prior to the addition. ds(v) = ds(u)+1. This is denoted

in Fig. 2.

3) |ds(u)− ds(v)| ≥ 2 - the vertices are not in adjacent

levels prior to the addition. ds(v) = ds(u) + β , β ≥ 2.
This is denoted in Fig. 3.

4) (|ds(u)− ds(v)| =∞)∧ (ds(v) < |V | ∨ ds(u) < |V |) -

the vertices do not have a path to each other prior to the

addition of the edge. For undirected graphs this means

that two components are about to be connected. This is

denoted in Fig. 4.

These scenarios will be explained in the following sub

sections.

C. Same Level Insertion

In this subsection we show that the insertion of an edge

between vertices in the same level of a give BFS tree,

as depicted in Fig. 1, does not require an any additional

computation.

14

Figure 3. Insertion of edge e = (u, v) connects two vertices that are not adjacent to each other in the BFS tree of root s. In the simplest case only one
vertex is moved (pulled up), v. For other scenarios an entire subtree moves as can be seen in (b).

���

���

���

�

���
�

�����

�����
�	
�

(a) Before edge insertion.

���

���

���

�

���
�

�����
�	
�

�

(b) After edge insertion. v has moved closer to the root of the tree. Consequently,
additional vertices might be pulled up.

Figure 4. Insertion of the edge e = (u, v) connects two connected components. The BFS tree of s is connected to vertex u and is not connected to vertex
v.

���

���

���

�

�

	

���
�

��

�����������
�
��� ��

�����������
�
���

(a) Before edge insertion.

���

���

���

�

	

 �

�����

(b) After edge insertion. Note the all the shortest paths between vertices in the
two connected components go through e.

15

Lemma 1. Given an edge e = (u, v) such that ds(u) = ds(v),
no shortest paths go through e.

Proof 1. Assume by contradiction that for some vertex w there
is a shortest path between s and w that goes through e. This
path is denoted by vertices p1, p2, ..., pu, pv, ..., pw. Obviously,
v has a path to s as well, this path is denoted by p̂1, p̂2, ..., pv .
By creating an alternate path p̂1, p̂2, ..., pv, ..., pw we have
created a shorter path in contradiction with the assumption.

Lemma 2. The BFS structure is maintained and betweenness
centrality is updated correctly when a new edge connects
vertices in the same level.

Proof 2. Following Lemma 1, no new shortest paths are
created; therefore, the BFS structure is maintained and there
is no change in the betweenness centrality in the given BFS
tree.

Consequently, for edges that connect vertices that are in the

same level of the BFS structure, no computation needs to be

done.

D. Adjacent Level Insertion

In this subsection we present the algorithm for inserting

a new edge between vertices that are in adjacent levels of a

given tree with root s, as is depicted in Fig. 2. We denote

uhigh = u and ulow = v for this scenario. The BFS tree of

s does not change due to the insertion. Prior to the insertion

d(ulow) = d(uhigh)+1. This is still correct after the insertion.

While new shorter paths have been created, the distance for all

the vertices in the tree stay the same. However, the number of

shortest paths going between the root and some of the vertices

will change.

The pseudo-code for the new algorithm can be found in

Algorithm 2. The justification for the pseudo code made will

be presented in the following Lemmas.

Lemma 3. Given vertex ulow, the only vertices that will have
new shortest paths from the root, s, are the vertices found in
the BFS subtree starting at ulow in s’s BFS tree. The BFS
traversal starting at ulow can only move down s’s BFS tree.

Definition 1. σ̂s(v) is the new number of shortest paths to v.

In Stage 1 of Algorithm 2 σ̂s(v) ← σs(v). After Stage 1,

σ̂s(v) is updated if there are new paths, otherwise it remains

unchanged. The number of new paths will be maintained in

the array dP , where dP [v] is the number of new shortest paths

to v.

Definition 2. δ̂s(v) is the new accumulative sum for vertex v.

In the beginning of Stage 3, δ̂s(v) is initialized to zero for

all vertices.

Proof 3. Assume by contradiction that some vertex w has
a shortest path to the root, s, through ulow and that w is
not found in a BFS traversal starting at v. Because w has
a shortest path to the root via ulow it has some ancestral

Algorithm 2: Insertion of a new edge in a specific BFS

tree where the vertices are in adjacent levels prior to the

insertion.

Stage 1 - local initilization
QBFS ← empty queue;

for level← 1 to V do
Q[level]← empty queue;

dP [v]← 0, v ∈ ∀V ;

t[v]← Not-Touched , v ∈ ∀V ;

σ̂[v]← σ[v], v ∈ ∀V ;

enqueue ulow → Q[d[ulow]];
enqueue ulow → QBFS ;

t[ulow]← Down;

dP [ulow]← σ[uhigh];
σ̂[ulow]← σ̂[ulow] + dP [ulow];
Stage 2 - BFS traversal starting at ulow

while Q not empty do
dequeue v ← Q;

for all neighbor w of v do
if d[w] = (d[v] + 1) then

if t[w] = Not-Touched then
enqueue w → QBFS ;

enqueue w → Q[d[w]];
t[w]← Down;

d[w]← d[v] + 1;
dP [w]← dP [v];

else
dP [w]← dP [w] + dP [v];

σ̂[w]← σ̂[w] + dP [v];

Stage 3 - modified dependency accumulation
ˆδ[v]← 0, v ∈ ∀V ; level← V ;

while level>0 do
while Q[level] not empty do

dequeue w ← Q[level];
for all v ∈ P [w] do

if t[v] =Not-Touched then
enqueue v → Q[level − 1];
t[v]← Up;

δ̂[v]← δ[v];

δ̂[v]← δ̂[v] + σ̂[v]
σ̂[w] (1 + δ̂[w]);

if t[v] = Up ∧(v �= uhigh ∨ w �= ulow) then
δ̂[v]← δ̂[v]− σ[v]

σ[w] (1 + δ[w]);

if w �= r then
CB [w]← CB [w] + δ̂[w]− δ[w];

level← level − 1;

σ[v]← σ̂[v], v ∈ ∀V ;

for v ∈ V do
if t[v] �= Not-Touched then

δ[v]← δ̂[v], v ∈ ∀V

16

path to ulow. However, this path will be found during the BFS
traversal in contradiction to the assumption.

Corollary 1. If the number of shortest paths from the root
to ulow has changed, the vertices that are affected from this
change are those in the BFS subtree beginning at ulow. All
vertices above ulow are not affected as they don’t have any
shortest paths to s via ulow.

Lemma 4. Given the newly inserted edge and that d[ulow] =
d[uhigh] + 1 prior to the insertion, the only vertices that will
have a change in the number of shortest paths to the root are
those found in the BFS subtree starting at v.

Proof 4. The insertion of the edge does not add any shortest
paths from the root to vertex uhigh. However, ulow has new
paths to the root through uhigh. Following Lemma 3 and
Corollary 1 it is clear that the only vertices that need to be
updated are those in the BFS traversal starting at ulow.

Corollary 2. If the number of shortest paths to the root has
changed for a vertex w then for all v ∈ P [w], δ[v] of vertex v
needs to be updated. We denote these changes using δ̂[v]

The immediate result of Corollary 2 is that any vertex that

is on an ancestral path from a vertex that has had a change

in its σ value will also have a change in its δ value. It is

apparent that there are vertices that are not in discovered in

the BFS traversal whose δ values need to be updated as one of

their children had an update in either its δ or σ value. These

vertices are found in the dependency accumulation using the

parent lists.

The stack in Algorithm 1 ensures a vertex is not accessed

until all vertices in the level below it have been accessed.

We note, that unlike the algorithm by Brandes which used a

stack for the dependency accumulation, we maintain a queue

for each level. This has the following benefits: 1) Allows

enqueueing newly discovered vertices (by way of the parent

lists) to the adjacent queue in the inverse traversal. This cannot

be done using the stack. 2) Ensures that all vertices in a level

are accessed before moving on to the next level as is required.

Computation of δ̂[v] is based on the computation of δ[v]
with one minor modification, which will be explained briefly.

This modification is that σ̂ is used instead of σ. As δ̂[v]
contains the new and correct value of the dependency accumu-

lation, δ[v] is no longer needed and should be removed from

the centrality value. Thus:

CB [v]← CB [v] + δ̂[v]− δ[v]. (5)

The difference in the computation of δ̂[v] versus δ[v] is for

the vertices that are found during the traversal up the tree. For

these vertices only partial recomputation of the dependency

accumulation might be needed as some of these vertices might

have adjacent (one level below) vertices that have not been

impacted by the insertion. For such vertices, δ̂[v] ← δ[v] is

set initially. Within the value of δ̂[v] are all the dependency

accumulations made due to vertices in the adjacent level with

v as a parent. These values need to be removed based on the

previous values of σ and δ as can be seen in:

δ̂[v]← δ̂[v]− σ[v]

σ[w]
(1 + δ[w]). (6)

All of the observations have been placed in the pseudo-code

of Algorithm 2.

Lemma 5. The BFS structure is maintained and betweenness
centrality is updated correctly when a newly inserted edge
connects vertices in adjacent levels.

Proof 5. In Lemmas 3 and 4 we show that the shortest path
count is maintained. As there are no vertices that move in
the BFS tree following the insertion, the BFS structure is
maintained. Based on Eq. (5) and Lemma 2 the betweeness
centrality metric is update correctly.

E. Non-Adjacent Level Insertion

This subsection presents the modifications needed for up-

dating the BFS tree for the insertion of a new edge. Similar

to the last section, we denote uhigh = u and ulow = v. In this

subsection we show how to make updates to the BFS when

the inserted edge connects vertices in non adjacent levels. An

example of such a tree can be seen in Fig. 3. Fig. 3 (a) shows

the BFS tree prior to the insertion. Fig. 3 (b) shows the BFS

tree after the insertion.

As can be seen, the BFS tree changes (at least in one

place) as the vertex ulow is pulled-up the tree due to the

distance between the vertices prior to the insertion. Additional

vertices might be pulled-up as well, unlike in the adjacent level

scenario.

Below we sketch the necessary steps needed for updating

the BFS tree, followed by an explanation of how to update

betweenness centrality. This subsection will be less formal

than the previous one.

Following the insertion of the new edge, e = (uhigh, ulow),
we know for a fact that the vertex ulow will move up the tree

and will be one level below uhigh. As a consequence of this

pull-up, additional vertices might be pulled-up as well. For all

neighbors of ulow we will check if a new shortest path has

been creating due to the pulling up of ulow.

For immediate neighbors of ulow, there are two obvious

options: they will be moved up, or they will stay as they are.

For both of these scenarios, they will be placed in a BFS-like

queue.

After the pull-up, all neighbors of vertices in the queue need

to be tested. This is an immediate consequence of the fact that

there are new shortest paths to some of the vertices. For all

vertices in the queue, except for ulow, there is a third scenario:

the neighboring vertex will stay in its place and will not be

placed in the queue as it is not affected from other pull-ups.

When the BFS-like stage has been completed, the depen-

dency accumulation begins. The difference between depen-

dency accumulation for this scenario and the Adjacent Level

scenario is that for some vertices that have stayed in their

level in the BFS tree, the number of neighbors they have in

the following level has been reduced. Using Eq. (6) fixes this.

17

F. Insertion Connects Two Components

The newly inserted edge (u, v) connects two different

connected components C1and C2, see Fig. 4. Assume that

u ∈ C1and v ∈ C2. As the new edge connects two different

connected components, it is safe to state that there are no ad-

ditional edges between any vertices (c1, c2) such that c1 ∈ C1

and c2 ∈ C2.

Without the loss of generality and for simplicity, consider

all the BFS trees of the vertices in C1. It will become apparent

that the same explanations holds for all the vertices of C2 as

well.

Given root s ∈ C1, no new shortest paths to other vertices

in C1 are created following the insertion of the edge. It is,

therefore, not necessary to begin the BFS traversal at s as

the BFS tree to all the vertices in C1 will remain unchanged.

Instead, it is possible to start the BFS traversal from vertex

v. Vertex v will be initialized in the following manner :

σ[v] ← σ[u], as all the paths between s and v go through

u. In subsection III-D, we show that the scenario explained

here is an instance of the adjacent level scenario.

Following the completion of the BFS traversal, the depen-

dency accumulation is computed all the way back to v.

At this point δ[u] ← δ[u] + δ[v] is modified as there are

new paths going through u. As δ[u] has been updated, it is

necessary to update all of u’s parents using the dependency

accumulation concept. This too is explained in subsection

III-D.

G. Complexity Analysis

In this subsection we discuss both the work and storage

complexity of the new algorithm. For each BFS tree, one of

the four scenarios occurs upon insertion. The upper bound

complexity for connecting components, adjacent level inser-

tion, and non-adjacent level insertion is similar to the one

given by Brandes [5], O(V +E). This includes both the BFS

traversal and the dependency accumulation which are similar

to the static graph version.

As there are V vertices, the upper bound on the complexity

of the insertion is O(V 2 + V E) similar to the one given by

Brandes. While the upper bounds of both algorithms is the

same, we will see in the next section that the new algorithm

offers a substantial speedup in practice.

As for the storage complexity, as it is necessary to maintain

the BFS trees, a total of O(V + E) memory is needed for

each tree. This includes the distance from the root, number of

shortest paths to the root and the parent lists for each vertex.

In addition to this, O(V + E) is used in the update process

(the updated data is no longer needed upon completion of the

reverse accumulation). The upper bound on the memory is

O(V 2 + V E).

In summary, we have shown an algorithm with a work

complexity of O(V 2+V E) and storage complexity of O(V 2+
V E).

IV. RESULTS

In this section we show speedups of the new streaming

algorithm against the static algorithm. The algorithm is tested

using three types of graph: 1) Erdös-Rènyi [13][14] random

graphs, 2) Recursive Matrix (R-MAT) [9] random graphs, and

3) real social networks taken from [18], [1]. For the simu-

lations we ran on an Intel i7-2600K quad core systems with

16GB of memory. The cores’ clock frequency is 3.4GHz. The

simulations use a single core as the algorithms are sequential.

The L2 and L3 caches are 256KB and 8MB respectively.

The Erdös-Rènyi (ER) model uses a uniform distribution

for selecting the edges that will appear in the graph. All edges

have the same probability of existing in the graph

R-MAT is a graph generator used to create synthetic scale-

free graphs that follow properties found in real-world net-

works. For simplicity, we present R-MAT using an adjacency

matrix. Unlike the ER generator, edges in R-MAT do not have

uniform probability of being created. Initially, the adjacency

matrix is empty, and edges are added one at a time. For

each newly inserted edge, the adjacency matrix is divided into

equal-size quadrants where each has a different probability of

being selected. One of the quadrants is selected using a random

number generator. This quadrant is recursively subdivided into

smaller equal-size quadrants from which the next random

selection is made. This process is repeated until each quadrant

contains only a single element in the adjacency matrix. The

last round randomly selects a single element and creates the

corresponding edge. The probabilities assigned to the quad-

rants are designated a, b, c, and d. If a = b = c = d = 0.25,
then RMAT generator will generate an ER graph.

In Albert et al. [2] the authors present the small-world

phenomena which states the distance between two vertices

in the graph is a small number of hops away. Barabasi et
al. [4] show that the edge distribution follows a power law.

In Broder et al. [6] the authors show that World Wide Web

(WWW) has one huge connected component that contains

90% of the vertices in the graph. The work of Leskovec et
al. [18] confirmed that many real world networks have these

properties.

A. Synthetic Graphs

In this subsection we present results of the new algorithm

on ER and R-MAT generated graphs. In our tests we created

graphs in which the vertex count is a power of 2. We denote

this power as the scale. The scales that are tested range from

10 to 14. An edge factor (average number of edges per vertex)

of 8 to 32 is checked for each scale size. For each scale and

edge factor, 100 different graphs are tested and timed. The

speedups in the figures are of the average times. The ordinate

denotes speedup and the abscissa denotes the edge factor.

As can be seen in Fig. IV (a), the speedups of the new

algorithm for random graphs are considerable despite the

same upper bound complexity. This is because redundant

computations are avoided for all the insertion scenarios.

In Fig. IV (b) the speedups for R-MAT graphs are pre-

sented. While the speedups for the R-MAT graph are not as

18

�

���

���

���

���

���

���

� � ��

��
��

��
�

����	
��
����������	����	�������

��	�����	�������

�������� �������� �������� �������� ��������

(a) Speedup of the streaming algorithm for Erdös-Rènyi sparse graphs.

�

��

��

��

��

���

���

���

���

� � ��

��
��

��
�

����	
��
����������	����	�������

�����	�����	�������

�������� �������� �������� �������� ��������

(b) Speedup of the streaming algorithm for R-MAT sparse graphs.

Figure 5. Speedup of the new streaming algorithm versus doing a full recompute for sparse synthetic graphs.

�

���

���

���

���

���

���

���

���

���

����

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

��
��

��
�

�����
�	������
������

��	�����	�������

�������� �������� ��������

(a) Speedup of the streaming algorithm for Erdös-Rènyi dense graphs.

�

��

���

���

���

���

���

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

��
��

��
�

�����
�	������
������

�����	�����	�������

�������� �������� ��������

(b) Speedup of the streaming algorithm for R-MAT dense graphs.

Figure 6. Speedup of the new streaming algorithm versus doing a full recompute for dense synthetic graphs.

considerable as those for ER graphs, it is worth noting that

R-MAT graphs have a different structure than ER and in many

cases are more challenging. Also, the variance in the speedups

between the different edge factors is significantly smaller for

R-MAT graphs.

For both ER and R-MAT graphs we measure the perfor-

mance for dense graph insertions as well. We use graphs with

density of 5% to 90% with intervals of 5%. The speedups

can be seen in Figure IV. Initially when the graphs are still

relatively sparse, the speedup of the new algorithm gradually

increases. At some point, the graph becomes better connected

such that more edges need to be traversed for both the BFS

and the dependency accumulation. From this point onwards,

the speedups gradually decrease. However, the densification

offers an additional benefit - the effective(average) diameter

decreases. The benefit from this is that for many of the

trees, no re-computation is needed as the newly inserted edge

connects vertices that are in the same level. For both the ER

graphs in Figure IV (a) and the R-MAT graphs in Figure IV

(b), when the graph density goes above 55%-60% the speedups

come down. However, the speedups stay in the 2-digit region

of 12X − 18X .

B. Real graph

For real social networks, we used five collaboration net-

works supplied by Leskovc et al. [18] and his software [1].

Using terminology defined in [18], the effective diameter is

defined as the 90th percentile distance of all the vertices.

The networks that were used are collaboration networks for

19

Table I
SPEEDUP OF STREAMING ALGORITHM ON REAL CITATION NETWORKS.

Collaboration network Vertices Edges Speedup
Astro-physics 18772 198080 148X
Condensed matter 23133 93468 91X
General relativity 5242 14490 40X
High energy physics 12008 118505 108X
High energy physics theory 9877 51970 36X

Arxiv in the following fields: astro-physics, condensed matter,

general relativity, high energy physics, and high energy physics

theory. The effective diameters of these collaboration networks

are 5.1, 6.6, 7.6, 5.8, and 7.5 (respectively). The diameter

(maximal distance) for these graphs is 14, 15, 17, 13, and

17 (respectively).

In our tests, we create the graph with all but 200 edges.

These 200 edges are inserted one at a time using the new

streaming algorithm. As with the synthetic graphs, we make

sure that the new edge is not connecting two separate compo-

nents.

The average speedup for the five collaboration networks can

be seen in Table I.

V. CONCLUSIONS

In this paper we present the first algorithm for computing

streaming betweenness centrality. The new algorithm avoids

computing betweenness centrality scores for vertices that have

no new paths going through them due to the insertion of

a new edge. The new algorithm has the same complexity

bounds as the static algorithm O(V 2 + V E); however, we

demonstrated considerable speedup for both random graphs

and for real-world networks. For synthetic random graphs the

speedup depends on both the type and size of random graph.

For random graphs with 16K vertices the average speedup is

between 100X−400X . For 5 different collaborations networks

the average speedup is in range of 36X − 148X
The new algorithm for betweenness centrality is not limited

to social networks and can be used on all types of graphs.

VI. ACKNOWLEDGMENTS

This work was supported in part by NSF Grant CNS-

0708307 and by the Intel Labs Academic Research Office for

the Parallel Algorithms for Non-Numeric Computing Program.

REFERENCES

[1] Stanford Network Analysis Package, 2012 (accessed April 2012).
[Online]. Available: http://snap.stanford.edu/data/

[2] R. Albert, H. Jeong, and A. Barabási, “Internet: Diameter of the world-
wide web,” Nature, vol. 401, no. 6749, pp. 130–131, Sep 09 1999.

[3] D. Bader, S. Kintali, K. Madduri, and M. Mihail, “Approximating
betweenness centrality,” in Algorithms and Models for the Web-Graph,
ser. Lecture Notes in Computer Science, A. Bonato and F. Chung, Eds.,
vol. 4863. Springer Berlin / Heidelberg, 2007, pp. 124–137.

[4] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[5] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[6] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener, “Graph structure in the web,” Computer
Networks, vol. 33, pp. 309 – 320, 2000.

[7] A. Buluç and J. R. Gilbert, “The Combinatorial BLAS: design, imple-
mentation, and applications,” International Journal of High Performance
Computing Applications, vol. 25, no. 4, pp. 496–509, 2011.

[8] R. Bye, S. Schmidt, K. Luther, and S. Albayrak, “Application-level
simulation for network security,” in Proceedings of the 1st International
Conference on Simulation Tools and Techniques for Communications,
Networks and Systems & Workshops, ICST, Brussels, Belgium, Belgium,
2008, pp. 33:1–33:10.

[9] D. Chakrabarti, Y. Zhany, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in SIAM Proceedings Series, 2004, pp. 442–446.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. New York: The MIT Press, 2001.

[11] D. Ediger, K. Jiang, J. Riedy, D. Bader, C. Corley, R. Farber, and
W. Reynolds, “Massive social network analysis: Mining Twitter for
social good,” in 39th International Conference on Parallel Processing
(ICPP), 2010, Sept. 2010, pp. 583 –593.

[12] N. Edmonds, T. Hoefler, and A. Lumsdaine, “A space-efficient parallel
algorithm for computing betweenness centrality in distributed memory,”
in International Conference on High Performance Computing (HiPC),
2010, Dec. 2010, pp. 1 –10.

[13] P. Erdös and A. Rényi, “On random graphs I,” Publicationes Mathemat-
icae, pp. 290–297, June 1959.

[14] ——, “The evolution of random graphs,” Magyar Tud. Akad. Mat., pp.
17–61, 1960.

[15] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, pp.
345–345, June 1962.

[16] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, pp. pp. 35–41, 1977.

[17] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, 2002.

[18] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,” ACM Trans. Knowl. Discov. Data,
vol. 1, no. 1.

[19] K. Madduri, D. Ediger, K. Jiang, D. Bader, and D. Chavarria-Miranda,
“A Faster Parallel Algorithm and Efficient Multithreaded Implementa-
tions for Evaluating Betweenness Centrality on Massive Datasets,” in
IEEE International Symposium on Parallel and Distributed Processing
(IPDPS) 2009.

[20] M. Rubinov and O. Sporns, “Complex network measures of brain
connectivity: Uses and interpretations,” NeuroImage, vol. 52, no. 3, pp.
1059 – 1069, 2010, Computational Models of the Brain.

[21] G. Tan, V. Sreedhar, and G. Gao, “Analysis and performance results of
computing betweenness centrality on IBM Cyclops64,” The Journal of
Supercomputing, vol. 56, pp. 1–24, 2011.

[22] J. R. Tyler, D. M. Wilkinson, and B. A. Huberman, Email as spec-
troscopy: automated discovery of community structure within organiza-
tions. Deventer, The Netherlands: Kluwer, B.V., 2003, pp. 81–96.

[23] S. Warshall, “A theorem on Boolean matrices,” J. ACM, vol. 9, pp. 11–
12, Jan. 1962.

20

