arXiv:1105.5881v2 [cs.CE] 5 Jun 2011

On the random access performance of Cell Broadband
Engine with graph analysis application

Mingyu Chen

Key Laboratory of Computer

System and Architecture

Inst. of Comp. Tech., Chinese

Academy of Sciences
P.O.Box 2704
Beijing,100190,China
cmy@ict.ac.cn

ABSTRACT

The Cell Broad Engine (BE) Processor has unique memory
access architecture besides its powerful computing engines.
Many computing-intensive applications have been ported to
Cell/BE successfully. But memory-intensive applications
are rarely investigated except for several micro benchmarks.
Since Cell/BE has powerful software visible DMA engine,
this paper studies on whether Cell/BE is suit for applica-
tions with large amount of random memory accesses. Two
benchmarks, GUPS and SSCA#2, are used. The latter is
a rather complex one that in representative of real world
graph analysis applications. We find both benchmarks have
good performance on Cell/BE based IBM QS20/22. Com-
pared with 2 conventional multi-processor systems with the
same core/thread number, GUPS is about 40-80% fast and
SSCA#2 about 17-30% fast. The dynamic load balanc-
ing and software pipeline for optimizing SSCA#2 are intro-
duced. Based on the experiment, the potential of Cell/BE
for random access is analyzed in detail as well as its limita-
tions of memory controller, atomic engine and TLB manage-
ment.Our research shows although more programming effort
are needed, Cell/BE has the potencial for irregular memory
access applications.

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Programming-

Parallel programming; C.4 [Performance of Systems]:
Design studies

General Terms

programming,performance

Keywords
Cell/BE, Random Access

David A. Bader
College of Computing
Georgia Institute of
Technology
Atlanta, GA 30332,United

States
bader@cc.gatech.edu

1. INTRODUCTION

Multi-core and many-core architectures have been widely
investigated in recent days. The Cell Broadband Engine
(Cell/BE) [13] is a unique architectural multi-core design
by Sony, Toshiba, and IBM (STI). There have been a lot
of studies on computing-intensive applications on Cell/BE.
Though primarily targeting high performance multimedia
and gaming application, the Cell/BE has a unique mem-
ory architecture compared with convention multi-core CPU.
Cell/BE has a 204GB/s internal bus and 25.6GB/s main
memory access bandwidth. More specially Cell/BE allows
the program to fully control the memory access via explic-
itly DMA operations. Total 128 DMA operations may exist
simultaneously in theory.

At the same time, there are large collections of applica-
tions with randomly memory access behaviors such as graph
exploration [1, [14]. This kind of applications is not suitable
for the conventional cache-based multi-core processors. In
such applications, the data set is much larger than the pro-
cessor cache and the data access pattern are nearly random
with neither temporal locality nor spatial locality. The com-
putation ratio is normally small compared with the memory
access overhead, which leaves the most powerful FPUs in
modern processors useless.

A common myth about the Cell/B.E.’s memory subsys-
tem is that it is inadequate for irregular data accesses due to
the software intervention in the memory access mechanism.
Yet, this additional increase (few instructions) is relatively
small compared to the hundred cycles or even more DRAM
access latency. Also, as the Cell/BE enables fine-grained
control over data transfer, we can apply multiple techniques
to hide the memory access latency.

In this paper, we investigate if the unique design of mem-
ory system in Cell/BE was suit for memory-intensive ap-
plications. Previous works have studied on certain kernel
applications. |16] gave a completely micro benchmark on
communication network of Cell/BE. [6] implemented list-
ranking using software managed thread. [19] presented a
lock-free BF'S algorithm utilizing the Cell/BE on-chip mem-
ory for bitmap. [12] studied on large FFT over Cell/BE.
However, all these applications are rather simple kernels
than real world applications.

Our study is based on two public benchmarks also. One
is GUPS [4], which is part of the HPC Challenge bench-
mark suite; the other is SSCA2 benchmark [15] [1], which

is one of the HPCS Scalable Synthetic Compact Applica-
tions previously. The GUPS is a pure exhaustive random
access benchmark kernel. Its performance is given by Giga
Updates Per Seconds. We use it to evaluate the capability
of the Cell/BE memory system. The SSCA#2 is a rela-
tive complex benchmark, which came from real word graph
analysis applications include network analysis, data mining
and computational biology etc. SSCA#2 computes the be-
tweenness centrality of each vertex in a weighted directed
graph. The performance metric is Traversed Edges Per Sec-
ond (TEPS). The algorithm we used was proposed in |11}
7], which is in fact a BFS flow associated with stateful and
coherent data structure.

We have implemented both benchmarks for Cell/BE with
detailed experimental evaluation on IBM QS 20(and QS22)
Cell/BE blade. Overall results show that Cell/BE is 17%
-80% faster than traditional cache-based multi-core SMP
system with the same core/threads and near memory band-
width. Our work demonstrates that Cell/BE has the poten-
tial to deal with complex memory-intensive applications.

Our main contributions are summarized here:

e We get a 0.062 GUPS on QS 20, which is more than
40-80% higher compared with 2 16 core/thread con-
ventional multi-core system.

e We show that the Cell/BE DMA-list mechanism has
even more potential for random access. Only 2 of the
16 SPEs will reach 97% of the peak performance.

e We find the Cell/BE TLB update mechanism affect the
performance greatly. The performance nearly doubled
after adopting huge-TLB configuration.

e Using dynamic load balancing and software pipeline
mechanism, we achieve a 65.8M TEPS for the SSCA#2
benchmark, which is about 17-30% faster than conven-
tional multi-core system.

e By profiling the SSCA#2 implementation, we find the
atomic operations occupied the most time delay that
limited Cell/BE to get even better result.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief overview of the Cell/BE and QS Blade
memory system as well as the GUPS and SSCA#2 bench-
marks. Section 3 describes our GUPS implementation with
detailed experiments to evaluate the maximum random ac-
cess performance of Cell/BE. Section 4 presents our tech-
niques in implementing SSCA2 on Cell/BE. Section 5 are
test and profiling results of the SSCA#2 implementation.
Section 6 we compares the related works. Section 7 con-
cludes the paper.

2. THE CELL/BE ARCHITECTURE, GUPS
AND SSCA2 BENCHMARK

2.1 The architecture of IBM BladeCenter QS20/22

Cell Broadband Engine is well known as a heterogeneous
multi-core chip [13]. It consists one traditional general-
purpose 64-bit PowerPC core (PPE) and eight 128-bit SIMD
coprocessor cores (Synergistic Processor Element, SPE). All
nine cores are connected via a high bandwidth bus called
Element Interconnect Bus (EIB) and share coherent main

SPES5 | |SPE3| |SPE

SPE3| [SPES5| | SPE7 SPE7

2 112068 (&
p)

PPE

s

PPE
[EIB 2 F I

@- I 1

SPEO | [SPE2 SPE SPE4| [SPE2| [SPEO

i .

m—.

!
n

PE6

25.6GB/s 25.6GB/s

DRAM DRAM

Figure 1: QS20/22 memory architecture

memory. The IBM BladeCenter QS20 and QS22 Blades are
dual-processor system implementation based on Cell/BE.

Figure 1 gives an outline of QS20/22 memory architec-
ture. Each Processor has a memory controller with band-
width of 25.6GB/s. The two processors are interconnected
using FlexIO interface running the fully coherent Broadband
Interface (BIF) protocol. The bandwidth between two pro-
cessors is 20GB/s. As seen from the programmer, the QS
blade simply consists 16 shared-memory SPEs and 2 PPEs.

The main difference between the QS20 and QS22 is the
external memory. The QS20 is configured with 1GB of XDR
(Rambus) memory, while the QS22 using DDR2 SDRAM up
to 32 GB. In section 4 we will show that the XDR memory
has a little better random access performance than DDR2
version.

Each SPE consists of a synergistic processor unit (SPU)
and a memory flow controller (MFC). The SPE has no local
cache but a 256 KB high performance local storage. SPU
core accesses data only from local storage. All external mem-
ory access and communications with other cores are through
the MFC. The MFC includes a DMA controller, a memory
management unit (MMU), and an atomic unit for synchro-
nization.

The MFC DMA controller can queue up to 16 DMA op-
erations at the same time. The operation can be either a
single DMA or a scattered DMA-list. So the whole system
can support more than 250 outstanding memory operations.
Each MFC also has an atomic unit that handles atomic op-
eration, but only one reservation at a time is allowed. By
default virtual memory is managed by hardware, each MFC
has a 256-entry TLB with default 4KB page size.

We will see in Section 3 that the DMA queue brings more
power than the memory controllers can support, while the
limited TLB page size affect performance greatly.

2.2 The Random Access benchmark (GUPS)

The Random Access test is part of the HPC Challenge
benchmark [2] developed for the HPCS program. The test
intended to exercise the GUPS capability of a system.

GUPS is a measurement that profiles the memory archi-
tecture of a system and is a measure of performance similar
to MFLOPS. GUPS is calculated by identifying the number
of memory locations that can be randomly updated in one
second, divided by 1 billion.

The basic Random Access benchmark definition [4] is: Let
T[] be a table of size 2". Let A; be a stream of 64-bit integers
of length 2"*2 generated by the primitive polynomial over
GF(2), X% 4 X?+ X +1. For each a;, set T[a;{63,64—n)] =
T[a; (63,64 —n)] + a; Where '+’ denotes addition in GF(2).

ai(l, k)denotes the sequence of bits within a;.

The parameter n defined such that: n is the largest power
of 2 that is less than or equal to half of main memory.
The look ahead and storage before processing on distributed
memory multi-processor systems is limited to 1024 per pro-
cess. A small percentage of error (not exceed 1%) is allowed
for parallelization.

GUPS is good candidate for evaluating the random mem-
ory performance of a system. The process is too compact
to allow further program optimization. We use GUPS as a
micro benchmark tool for our study first.

2.3 The HPCS Scalable Synthetic Compact Ap-

plications graph analysis #2
The SSCA benchmark suite is part of DARPA High Pro-

ductivity Computing Systems (HPCS) program. These bench-

marks aimed to be complements to current scalable micro-
benchmarks and complex real applications. SSCA#2 is a
graph theoretic problem, which is representative of compu-
tations in the field of social network, computational biology
and data mining etc.

Our study is based on SSCA#2 v2.2 [15] specification and
the C/OpenMP implementation [11]. SSCA2 contains one
scalable graph generator and four computing kernels. The
scalable graph generator generates a power-law scale-free
graph for the computing kernels. The computing kernels all
require irregular access to the graph’s data structure. Since
Kernel 1-3 are relatively simple and the similar computation
are already included in kernel 4, we focus on Kernel 4 in our
research.

Kernel 4 computes the betweenness centrality of all ver-
texes in a weighted directed graph. Consider a graph G =
(V, E), where V and F is the set of vertices and edges re-
spectively.

Let o5 denote the number of shortest paths between ver-
tices s and ¢, and os¢(v) the number of those paths passing
through v. Betweenness Centrality of a vertex v is defined
as

BC()= Y. 210) (1)

g
s#tAvey St

In the SSCA2 2.2.1 reference implementation, the algo-
rithm is following the method of Brandes |11]. Brandes al-
gorithm computes J,(v) using a Breadth-first search (BFS)
process for each vertex s

sw)y= > T (146 (w) (2)

wivEpred(s,v) Tsw

Where pred(s,v) denote the predecessor set of vertex v
on shortest paths from w. Then BC(v) can be obtained by
sum up all §,(v).

To compute 05, a BFS and a back trace process are needed.
In the BF'S search process, besides the access sequence of
each vertex, the predecessor set are also recorded, the depth
ds(v) and o4:(v) are computed throughout the process. For
each vertex, the computation of o (v) is a multi-source
adding operation and the computation of predecessor set
pred(s,v) is a multi-source joining operation. These two
global operations bring more difficulties for parallelization
than the original BFS algorithm. We will see in section 5
the atomic operations are the main obstacle for higher effi-
ciency.

The back trace process just uses the result generated dur-
ing BFS and compute recursively. This process can be done
in parallel without contention. But it still needs to visit all
the browsed edges, which means large amount of random
memory accesses.

3. ANALYZE THE CELL/BE MEMORY EN-
GINE WITH GUPS

Since GUPS is a simple but exhaustive random access
kernel, we use it as a tool to evaluate the DMA performance
of Cell/BE.

The parallelization of GUPS is straightforward: just split
the T[] array equally to different threads. Since Cell/BE
does not support threads within SPU, we use a multi-queue
method to implement GUPS. In each SPU, we maintain
multiple independent queue. For each queue, we assign a
fixed-length DMA-list and keep looping get a trunk of ran-
dom numbers by a DMA-list operation, do updating, write
it back to main memory, then get next trunk in sequence.

The SPU query each thread in turn, once a DMA-list op-
eration finished, it will be processed immediately until the
following DMA operation is started and SPU came back to
the query loop again.

Three parameters are considered during the test: queue
numbers within a single SPU, DMA-list queue length for
each queue, the number of SPUs.

All results are obtained from QS20 with IBM Cell/BE
SDK 3.1, Linux 2.6.25 under 16MB (huge) TLB page size
unless otherwise stated. The QS20 has 1GB memory, so we
did all experiments over a 512MB data size for comparison.
It should be noticed that larger data size would decrease the
GUPS a little.

3.1 Single SPU test

First, we try to figure out the best random access perfor-
mance of single SPU.

We vary queue number and queue length. As in Figure 2,
for single SPU we can get the maximum of GUPS 0.0294. In
fact it is about 47% of the maximum we can ever get from
multi-SPUs. The performance improves as queue number
increase. However there are only a little difference when
queue number large than 4, normally queue number 8 will
reach maximum. The larger queue length also brings better
performance but with a asymptotical improvement.

Figure 3 and 4 give the GUPS results of 2 and 4 SPUs.
We can see the performance with 2 SPUs is nearly doubled.
In fact it can reach nearly 97% the maximum already. The
4-SPU result shows the peak was reached easily even with a
short queue length 8-16.

Next we fixed queue number at 4 then varying queue
length and SPU number, as Figure 5.We can see increas-
ing SPU numbers does not increase the GUPS after 4, but
needs shorter queue length. 16 SPUs can reach the peak
even with queue length 1. The maximum GUPS is 0.062,
which can be reached in many configurations.

With the above results, we can draw a conclusion that the
Cell/BE SPU has a great potential for random access. The
memory controller is the bottleneck for more GUPS. We can
infer that if Cell BE were equipped more memory channels
the GUPS would easily increased.

3.2 The effect of TLB page size

0.03 T T T T T T T T T

0.025

0.02

0.015

GUPS

0.01

0.005

queues

Figure 2: Single SPU test, varying queue numbers
and queue length

By default the Cell/BE use hardware managed TLB. The
page size is 4KB. Each SPU have a 256 entries TLB ta-
ble. So once the memory data size is larger than 1MB,
random access will cause TLB miss and reload frequently,
which has relatively larger overhead for Cell/BE. This con-
fused us much at the early stage of the work. The effect can
be viewed from figure 6,7

From Figure 6, we can see for one SPU the peak per-
formance is only about 20% of previous result. A strange
phenomenon is that larger queue length will get even worse
result. In figure 7, 4 SPUs do not saturate the bus any
more. With all 16 SPUs the performance can only reach
about 56% of the peak of HugeTLB case. We can draw a
conclusion that TLB page size has a large influence on the
application with random memory accesses.

3.3 Comparison over different platforms

We compared 4 platforms. One is IBM QS20 which has
1GB XDR Ram, another is the newer IBM QS22 which has
32G DDR2 SDRAM, two dual 128-bit DDR2-800M memory
channels. The third platform 'Opteron’ is a quad processor
SMP using AMD 4-core Opteron 8347. Each core has 512KB
L2 cache, 1K TLB entries, running at 1.9Ghz. Each proces-
sor has a shared 2MB L3 cache. It has 4 dual-channel DDR2
memory controllers, the same as QS22 but a lower 533MHz.
Bandwidth between processors is 8GB/s. The last platform
’Nehalem’ is a dual processor SMP using the latest Intel 4-
core Xeon 5530. Each core has 256 KB L2 cache, two hyper-
thread, running at 2.4GHz. Each processor has 8MB shared
L3 cache. It has 2 dual-channel 1333MHz DDR3 memory.
This platform has total 16 physical threads.

We use the C/OpenMP reference implementation for X86_64

platforms, compilers are PGI 7.2 and ICC 11.0. To compare,
we also used huge TLB (2MB).

For all platforms, we use "numactl” [3] utility to make
sure the data spread on all memory channels. We use queue
number 4 and queue length 16 for all test.

The QS20 has about 15% higher GUPS than QS22 ver-
sion. This shows XDR memory is good at interleaving. The
opteron platform gets a max 0.033 GUPS, about a half of
QS20. It should be noticed that on Opteron 16-core has

GUPS

queues

Figure 3: 2-SPU test, varying queue number and
queue length

0.07

GUPS

queues

Figure 4: 4-SPU test, varying queue number and
queue length

0.07 T

GUPS

0.02 —

0.01 L L L L L L L
1 2 3 4 5 6 7 8

Queuelength

Figure 5: fix queue number = 4, varying queue
length and SPU number

a worse result than 4-8 cores. This may due to the lim-

0.007 T T T T

0.0065
0.006
0.0055
0.005

0.0045

GUPS

0.004 /
0.0035 [/

0.003 /

0.0025 [/

0.002 L L L L L L L L
1

queues

Figure 6: GUPS with 4K page, 1-SPU,varying
queue number and queue number
0.035 5
1C —+—
¢
4C —*—
oo | &
0.025 - B
a8
002 B
2]
o
2
[0}
0.015 - 4
0.01 /]
0.005 B
o ‘ ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 7 8
Queuelength
Figure T: GUPS with 4K page, queue

num=4,varying queue length and SPU number

ited cross-processor bandwidth of Opteron. On the con-
trary, even the 4K-page QS20 can get highest GUPS with
16 SPUs. The Nehalem platform is similar to opteron, with
a max 0.043 GUPS on 4-thread,about 70% of QS20.

We can see the effect of TLB page size on Opteron and
Nehalem are not as large as Cell/BE for they have more
powerful TLB mechanisims.

Overall we can see at least for GUPS, Cell/BE is a better
platform than conventional multi-core platforms.

4. THE IMPLEMENTATION OF SSCA#2 OVER

CELL/BE

The pseudo code of SSCA2 kernel 4 V2.2 is as follows [15,
7,18

Input: G(V, E) /¥|V| = 2°'°, |E| = 8 x 25¢*!¢*/

Output: Array BC[1...n]

1 for all v € V in parallel do

2 BC[v] « 0;

0.07

0.06 -

GUPS

0.01 -

Q20-ST —&—

Opteron-ST
Nehalem-HT
Nehalem-ST —e—

Figure 8:

Cores

GUPS of different Platforms,varying

core/thread number (HT: huge,TLB, ST:Small tlb)

3 let Vs C V and |Vg| = 2F4%PPTo% /*exact vs. approxi-

mate*/

4 for all s € Vg in parallel do

5 S < empty stacks;
6 Plw] < empty list, w € V
7 olt] < 0,t € V;o[s] + 1;
8 d[t] «+ —1,t € V;d[s] + 0;
9 queue Q < s;
10 while Q # ¢ do
11 dequeue v + Q;
12 push v — §;
13 for each neighbor w of v in parallel do
14 if dlw] < 0 then
15 enqueue w — Q;
16 dw] < d[v] + 1;
17 if djw] = d[v] + 1 then
18 ow] « olw] + o[v];
19 append v — P[w];
20 d[v] - 0,v e V;
21 while S # ¢ do
22 pop w <+ S;
23 for v € Plw] do
24 5[v] < 8[v] + 2 (1 + S[w]);
25 if w # s then
26 BClw] + BClw] + d§[w];

Loop 10-19 is the BFS expansion process; loop 21-26 is
the back trace process.

Our implementation uses nearly the same process flow and
data structure of the C/OpenMP version. We start to dis-
tribute workload on step 11 and 22. The dynamic stack Q is
divided evenly to all SPUs, then each SPU will check their
part of Q. It can be seen that the step 16 and 18 are global
update operations that need atomic operation to assure the
consistency. Using atomic instruction of Cell/BE, the two
updates can be done in a single 128-byte getllar-check and
update-putllc operation. The porting is straightforward at
first.

To get better performance, 3 techniques were used accord-
ing to the feature of Cell/BE:

4.1 Dynamic load balancing

The workload is distributed on step 11 and 22. We take
step 11 as an example. Although workload is divided evenly
according to Q, the real workload depends on the total num-
ber of neighbors of each vertex in step 13-19 as well as the
topology of the graph. These could not be acquired before
work partitioning. In fact, the scale-free feature of the graph
increases the unbalance of workload: the neighbors of a ver-
tex varying from 0 to thousands. So we adopt a dynamic
load balancing mechanism: each SPU only allocates a small
number of vertexes from Q each time, and only reallocates
after finished current work. Since allocation needs synchro-
nization also, allocating one by one is not acceptable. In our
experiments, this mechanism enhanced the performance by
at least 15%.

4.2 Prefetching use clustered DMA and DMA -
list.

The Cell/BE SPU has no local cache and no hardware
prefetching mechanism. Clustering data access have to be
done by hand. However, the program has many steps with
data dependences. For example, step 12-19 can be split to
following steps:

1) Load v from @

2) Load 1 neighbor w of v, load weight of edge (v, w)
3) Check w and weight (v, w)

4) Load d[w] , load ofw]

5) Check d[w] , update o[w]

6) Append Q, append P[v]

Each step is depending on the data or condition from pre-
vious step. If single word DMA operation were used, then
most time would be wasted on waiting for last DMA to com-
plete. So pre-fetch and post-write buffers for each data were
used. Due to the dynamic size of different data variables,
this does increase the programming complexity quite a bit.
In 4), a DMA-list must be used since w is scattering across
the graph.

The atomic update in 5) prevents batching DMA to be
used. We have to do atomic update one-by-one to assure
consistency. That remains the main delay in the whole pro-
gram.

4.3 Software pipelines

Even using DMA and DMA-list, there is still much time
wasted for waiting memory 1/Os. Sometimes a vertex only
has 1-2 neighbors that make clustering impossible. So we
designed a 3-stage software pipeline for step 13 to 19 to
reduce the latency further:

Stage 1) Load index (w and weight{w})
Stage 2) Load scattered data (d[w], o[w]))
Stage 3) Check d[w], do atomic update and post write

In one loop or time step, stage 1) start loading neighbor of
Un42, stage 2) start loading o[w] of neighbor v, 41, while the
stage 3) is updating o[w] of neighbor v,. Triple buffers are
used for three stages. By using the software pipeline, it is
no need to do immediate wait-for-complete for all normal
DMA operations. This allows more overlap of various DMA
operations that can better utilize the DMA capability of
MFC.

The scale-free graph adds complexity here again. Since
some vertex may have thousands of neighbors, it has to be
spread on multi-stage; for some vertex with zero neighbors,
an empty stage is inserted. So finally we have an irregular
software pipeline with dependency between stages.

The software pipeline works fluent and add at least an-
other 15% performance. But profiling shows the stage 3
occupies the most time due to the atomic operations that
cause stop and wait.

For step 22-24, we use another similiar software pipeline.

To summary, porting SSCA2 is not an easy task. Not only
because the algorithm itself is relative complex, the varying
workload and data structure size add difficulties for a better
performance.

S. PERFORMANCE EVALUATION OF SSCA#2

5.1 SSCA2 behavior on QS20

We use SSCA#2 Kernel 4 with scale 18-22, K4Approx=
8. For Scale 22 more than half of the memory on QS22 was
used. Figure. 9 shows the different run time when varying
cores and scale, all axis are in log scale. For fixed core num-
ber we can see a nearly straight line. This means the perfor-
mance is not changed much for different problem size. We
can also see a near linear speedup when we add more SPUs,
16-SPU will reach the peak, about 65.8MTEPS. Compared
with above result of GUPS where only 4 SPUs will used up
the memory path, we can incur that our implementation has
not fully utilized the DMA power of single SPU. The reason
may due to the idle delay caused by atomic updates.

5.2 The internal profiling result

Using the built-in decrementer of Cell/BE SPU, we ana-
lyzed the internal loop of SSCA2 code. Normally the process
time ratio for the BFS and the back trace process is about
3.45: 1.

Since a software pipeline was used, all normal DMA op-
erations are asynchronous. It is difficult to tell the exact
execution time of each DMA. The exception is atomic up-
date, which a stop-and-wait must be used. The time ratio of
the three stages is about 1: 3: 25, while in stage 3, the time
period for atomic update occupies about 80%. In average
each atomic update operations elapses about 630ns on QS20,

1024 166 o
i

64

Time(seconds)

18 19 20 21 22

Figure 9: SSCA#2 on QS20 for varying scale and
SPUs

and 550ns on QS22. It should be mentioned that there are
still background DMA operations working when the atomic
update operation is being executed. So the portion of pure
delay brought by atomic operation is undetermined yet.

5.3 Comparison over different platforms

We use scale=22, K4approx=8 and varying the core/thread
number for different platforms. In this test a Sun T2 5220
(niagara 2) was added. It has 1Ghz processor, 8 core, 64
physical thread . It has 4 dual-channel FB-DIMM | nearly
60GB memory bandwidth. A special optimized OpenMP
version was used.

1024

QS20-HT —+—

QS22-HT
Opteron-HT ——

Niagara2 —=—
Nehalem-HT

time(seconds)

64 L L i

cores

Figure 10: SSCA#2 K4, Scale=22, varying
core/thread number(Niagara should multiply by 4)

The best result in these platforms is Sun Niagara 2, about
70.4 MTEPS. The QS20 has a maximum of 65.8MTEPS,
about 10% fast than QS22 , 17% fast than nehalem and
about 30% fast than the Opteron platform, which has the
same core/thread number and near memory bandwidth.

For all platforms we can see the performance keep improv-

ing as core/threads increase. It suggests the memory band-
width are not fully utilized due to more processing logic are
needed for such a complex application.

Optimization of SSCA#2 for highly multithreaded archi-
tecture -e.g. SUN Niagara 2- is much more straightforward.
But this work indicated that after applying multiple tech-
niques to hide the memory access latency, the performance
of Cell/BE is comparable to Niagara 2 and better than con-
ventional multi-core platforms.

6. RELATED WORKS

Few literatures deal with the memory-intensive applica-
tion on Cell/BE. Papers (12} |5] have studied FFT over Cell,
which has a scattered but regular memory access pattern.
FFT do have similar feature as GUPS and SSCA2. From
these work we got valuable hints include the huge TLB page
and fast SPU synchronization.

[16] gave a detailed analysis of the communication per-
formance of Cell/BE using micro-benchmark, which encour-
aged our work on GUPS. They focused on the bus perfor-
mance and did not give the result when large data set was
used.

|6] presented a software thread idea for list-ranking, which
induced us for the GUPS implementation. For the SSCA2,
the irregular data size makes much trouble for thread par-
tition. So eventually we used a software pipeline method
instead.

[19] designed a delicate lock-free BFS algorithm on Cell/
BE. The algorithm depends on a bitmap in SPU’s on-chip
memory. During the optimization of SSCA2 over Cell/BE,
we found the main obstacle was the global atomic update.
Each atomic operation will pause the pipeline with idle wait-
ing. However it is not easy to design a lock-free algorithm
due to the amount of globally random data updates. The
process of SSCA2 need d[w],o[w] and prev set to be up-
dated at the same time during the BFS expansion. These
data structure are too large to fit in the on-chip memory.

In [18] SSCA2 was porting to an innovative many-core
platform, which split cores for memory operations and graph
analysis.

[9] discussed how the architectural features of Cray MTA-
2 support graph analysis application includes list-ranking
and connected components.

|10] gave an implementation of BFS over Cray XMT using
its unique synchronization feature.

[17] presented a lock-free algorithm of SSCA2 K4 on multi-
core X86 platform based on partitioned data structure. It is
still need to check if it is effective on Cell/BE platform also.

Our implementation of SSCA2 is based on |15} |11} |7] and
includes the latest change from v2.2.1. We use nearly the
same memory data structure and flow for comparison.

7. CONCLUSIONS

In this paper, we investigated two memory-intensive bench-
marks, GUPS and SSCA2 on the Cell Broad Engine plat-
form. We find both benchmark has good performance on
the IBM QS20/22. Compared with 2 conventional multi-
core system with the near memory bandwidth, the GUPS is
about 40-80% fast and SSCA2 about 17-30% fast. By using
dynamic load balancing and software pipeline in SSCA2 we
showed that a relatively complex graph analysis application
can be port to Cell/BE platform and get a better perfor-

mance than conventional multi-core platform.

Our works shows that the Cell/BE SPU DMA engine has
potential capability for more random accesses, which is re-
stricted by the memory controller; the TLB page size will af-
fect the random access performance greatly on large dataset;
the overall memory access performance will be degraded if
large amount of atomic operation exists.

There remains an open problem whether there is an effi-
cient lock-free algorithm for SSCA2 to exploit more memory
access capability of the Cell/BE platform.

8. ACKNOWLEDGMENTS

Thanks Kamesh Madduri for providing us the C/OpenMP
v2.2.1 version and optimized version for SUN T2 before pub-
lic announcement.

9. REFERENCES

[1] Hpc graph analysis.
http://www. graphanalysis.org/benchmark/index. html.

[2] The hpcc chanllenge benchmark.
http://icl.cs.utk. edu/hpce.

[3] numactl and libnuma.
http://o0ss.sgi.com/projects/libnuma.

[4] Random access: Gups (giga updates per second). from
http://icl.cs.utk.edu/projectsfiles /hpce/RandomAccess/.

[5] D. Bader and V. Agarwal. FFTC: Fastest Fourier
Transform for the IBM Cell Broadband Engine, pages
172-184. 2007.

[6] D. Bader, V. Agarwal, and K. Madduri. On the design
and analysis of irregular algorithms on the cell
processor: A case study of list ranking. In Parallel and
Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, pages 1-10, 2007.

[7] D. Bader and K. Madduri. Design and Implementation
of the HPCS Graph Analysis Benchmark on
Symmetric Multiprocessors, pages 465—476. 2005.

[8] D. Bader and K. Madduri. Parallel algorithms for
evaluating centrality indices in real-world networks. In
Parallel Processing, 2006. ICPP 2006. International
Conference on, pages 539-550, 2006.

[9] D. A. Bader, G. Cong, and J. Feo. On the
architectural requirements for efficient execution of
graph algorithms. In Proceedings of the 2005
International Conference on Parallel Processing, pages
547-556. IEEE Computer Society, 2005.

[10] D. A. Bader and K. Madduri. Designing
multithreaded algorithms for Breadth-First search and
st-connectivity on the cray MTA-2. In Proceedings of
the 2006 International Conference on Parallel
Processing, pages 523-530. IEEE Computer Society,
2006.

[11] U. Brandes. A faster algorithm for betweenness
centrality. Journal of Mathematical Socialogy,
25(2):163-177, 2001.

[12] A. Chow, G. C. Fossum, and D. A. Brokenshire. A
programming example: Large fft on the cell
broadband engine. IBM Corp. May 2005.

[13] I. corp. Cell broadband engine architecture, version
1.02. http://www.ibm.com/, 2007.

[14] D. A. B. (Ed.). Petascale Computing: Algorithms and
Applications. Chapman & Hall/CRC Computational
Science Series, 2007.

[15] D. A. B. et al. Hpcs scalable synthetic compact
applications #2 graph analysis, version 2.2.
http://www.graphanalysis. org/benchmark/HPCS-
SSCA2_Graph-Theory_v2.2.pdf,

2007.

[16] M. Kistler, M. Perrone, and F. Petrini. Cell
multiprocessor communication network: Built for
speed. Micro, IEEE, 26(3):10-23, 2006.

[17] G. Tan. A fine-grained parallel betweenness centrality
algorithm without lock synchronization. In Parallel
Processing, 2009. ICPP 2009. International
Conference on.

[18] G. Tan, D. Fan, J. Zhang, A. Russo, and G. R. Gao.
Experience on optimizing irregular computation for
memory hierarchy in manycore architecture. In
Proceedings of the 13th ACM SIGPLAN Symposium
on Principles and practice of parallel programming,
pages 279-280, Salt Lake City, UT, USA, 2008. ACM.

[19] O. Villa, D. Scarpazza, F. Petrini, and J. Peinador.
Challenges in mapping graph exploration algorithms
on advanced multi-core processors. In Parallel and
Distributed Processing Symposium, 2007. IPDPS
2007. IEEE International, pages 1-10, 2007.

	1 Introduction
	2 The Cell/BE architecture, GUPS and SSCA2 benchmark
	2.1 The architecture of IBM BladeCenter QS20/22
	2.2 The Random Access benchmark (GUPS)
	2.3 The HPCS Scalable Synthetic Compact Applications graph analysis #2

	3 Analyze the Cell/BE memory engine with GUPS
	3.1 Single SPU test
	3.2 The effect of TLB page size
	3.3 Comparison over different platforms

	4 The implementation of SSCA#2 over Cell/BE
	4.1 Dynamic load balancing
	4.2 Prefetching use clustered DMA and DMA-list.
	4.3 Software pipelines

	5 Performance evaluation of SSCA#2
	5.1 SSCA2 behavior on QS20
	5.2 The internal profiling result
	5.3 Comparison over different platforms

	6 Related works
	7 Conclusions
	8 Acknowledgments
	9 References

