

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

DOSA: Design Optimizer for Scientific Applications ∗

David A. Bader1 and Viktor K. Prasanna2

1College of Computing 2Department of EE-Systems
Georgia Institute of Technology University of Southern California

Altanta, GA 30332 Los Angeles, CA 90089
bader@cc.gatech.edu prasanna@ganges.usc.edu

Abstract

In this paper we briefly introduce our new frame-
work, called “Design Optimizer for Scientific Applications”
(DOSA) which allows the programmer or compiler writer
to explore alternative designs and optimize for speed (or
power) at design-time and use a run-time optimizer. The
run-time system is a portable interface that enables dy-
namic application optimization by interfacing with the out-
put of DOSA. As an illustration we demonstrate speed up for
two applications: Parallel Exact Inference and Community
Identification in large-scale networks.

1. Introduction

High-performance computing (HPC) systems are taking
a revolutionary step forward with complex architectural de-
signs that require application programmers and compiler
writers to perform the challenging task of optimizing the
computation in order to achieve high performance. In
the past decade, caches and high-speed networks have be-
come ubiquitous features of HPC systems, canonically rep-
resented as clusters of multiprocessor workstations. To ef-
ficiently run application codes on these systems, the user
must carefully lay out data and partition work so as to re-
duce communication, maintain a load balance, and expose
locality for better cache performance. Realizing the gap
between processor and memory performance, several HPC
vendors, such as IBM and Cray, are incorporating into their
next-generation systems innovative architectural features
that alleviate this memory wall. These new architectural
features include hardware accelerators (e.g., reconfigurable
logic such as FPGAs, SIMD/vector processing units such
as in the IBM Cell Broadband Engine processor, and graph-

∗This work is supported in part by the National Science Foundation,
USA, under grant numbers CNS-0614915 and CNS-0613376.

ics processing units (GPUs)), adaptable general-purpose
processors, run-time performance advisors, capabilities for
processing in the memory subsystem, and power optimiza-
tions. With these innovations, the multidimensional design
space for optimizing applications is huge. Software must be
sensitive to data layout, cache parameters, and data reuse, as
well as dynamically changing resources, for highest perfor-
mance.

Until recently, design-time analysis and optimizing com-
pilers were sufficient to achieve high-performance on many
HPC systems because they often appeared as static and ho-
mogeneous resources with a simple, well-understood model
of execution at each processor. Today, techniques for load-
balancing and job migration, readily-accessible grid com-
puting, complex reconfigurable architectures, and adaptive
processors, necessitate the requirement for run-time opti-
mizations that depend upon the dynamic nature of the com-
putation and resources. At run-time, an application may
have different node architectures available to its running
processes because it is executing in a distributed grid en-
vironment, and each component may require its own spe-
cific optimization to make use of the unique features avail-
able to it. HPC systems may have adaptable resources such
as processors, and the run-time system gains new respon-
sibility for requesting the appropriate configuration for the
workload. Also, in a large, complex computing system, the
available resources may change during iterations, and the
run-time system must monitor, select, and tune new compo-
nents to maintain or increase performance. Our goal is to
design a dynamic application composition system that pro-
vides both high-performance computing and increased pro-
ductivity. In this work, we discuss the Design Optimizer for
Scientific Applications (DOSA), a semi-automatic frame-
work for software optimization. DOSA will allow rapid,
high-level performance estimation and detailed low-level
simulation.

2. DOSA Framework

The design framework (DOSA) allows various optimiza-
tions to be explored based on the architectural features of
the HPC platforms. In the DOSA framework, at design
time, the designer models the kernels and architectures of
her/his application. This modeling process includes perfor-
mance estimation, simulation, identification of bottlenecks,
and optimization. Through this modeling process, the de-
signer identifies sets of components in the component li-
brary that can be utilized for the tasks in the kernels of
her/his application. We will implement a high-level es-
timator that will estimate bandwidth utilization, memory
activity, I/O complexity, and performance. Our approach
is hierarchical: the framework will be used to perform a
coarse exploration to identify potential optimizations, fol-
lowed by detailed simulations to validate the performance
improvements of the optimizations. The detailed simula-
tions can also expose additional optimizations. This design-
time exploration is manual. Thus our framework uses a
semi-automatic design space exploration tool. The frame-
work outputs a representation of the kernel, the performance
models, and a run-time optimizer that can use these for ef-
ficient execution of the kernel.

The run-time system is a portable, high-level advisor that
interfaces between the underlying execution system (oper-
ating system and architecture) and the application. During
a kernel’s execution, the execution system supplies perfor-
mance information that is used by the run-time system to
determine if the run-time optimizer should be called and
to update the values of the parameters in the performance
models. The run-time optimizer uses the updated perfor-
mance models to select appropriate component(s) from the
set determined during design-time optimization for execut-
ing the current task. Together, the run-time system and run-
time optimizer make the run-time optimization decisions as
a dynamic application composition system.

The design flow consists of two phases(refer to Fig-
ure 1): configuration and exploration. In the configuration
phase, the framework is configured based on the target
kernel and the architecture. The kernel developer (designer)
initially defines a structural model of the target architecture.
The structural model captures the details of the architec-
ture. The designer uses appropriate micro-benchmarks and
model and feedback interpreters to automatically perform
cycle-accurate architecture simulation using integrated
simulators (such as Mambo or SimpleScalar) to estimate
the values of these parameters and update the model. We
also plan to create a library of architecture models because
it is likely that a designer would optimize several kernels
for the same target architecture. If architecture models are
available for the target architecture, then the designer can
choose to skip the configuration phase and use the library

instead. Along with the architecture, the designer also
models the kernel. Kernel modeling involves describing
the kernel as a task graph and specifying the components
that implement these tasks. We will create a library of
common components, such as matrix multiplication, FFT,
and graph operators [1, 2]. If the desired component is
not in the library, the designer can develop it from within
the framework. We will write model interpreters that
will generate executable specifications from a task graph.
Once a kernel is modeled, the designer uses the integrated
simulators to automatically generate a memory access trace
for each code segment and associate it with the model.

In the exploration phase, the performance models (ar-
chitecture and kernel models) defined in the configuration
phase are used to perform design space exploration.
Initially, the designer uses the high-level performance
estimator to rapidly estimate the performance of the design
and generate a profile of memory access. Based on the
estimate and the profile, the designer identifies appropriate
optimizations such as I/O complexity optimizations, data
layout optimizations and data remapping optimizations,
and modifies the models to include components supporting
these types of optimizations. For example, in the case
of in-memory processing for data remapping, the kernel
model will be modified to indicate that a component
for this type of processing is available and the estimator
will account for concurrent in-memory processing during
performance estimation and also suitably modify the
memory access profile to reflect the remapping. The
designer also can perform automatic low-level simulation
to verify design decisions. Note that the low-level simu-
lation is optional. By using the high-level models and the
estimations, the design time can be reduced significantly.
However, low-level simulations can provide additional
insights with respect to optimizations to be considered. The
designer continues to perform estimation, optimization,
and low-level simulation until desired performance is
reached or optimal processor-memory traffic is achieved.
Similarly, for memory energy optimizations, the designer
can identify data placement schemes (blocking, tiling,
etc.) and memory/bank activation schedules and use the
performance estimator to evaluate reduction in energy
dissipation. Simplifying assumptions made to enable rapid
estimation may induce errors in the estimates. Therefore,
the DOSA framework will support specification of multiple
candidate designs with estimated performance close to the
desired performance. The framework will then output a
representation of the kernel, the performance models, and a
run-time optimizer that will use the representation and the
performance models for efficient execution of the kernel.

2

Kernel
Performance

models
Optimizer

target architecture

target application kernel
modeling

architecture
modeling

semi-automatic
design space
exploration

manual selection
of design

optimization

enhancements
due to selected

optimization

automated low-level
simulation for

design evaluation

high-level
performance
estimation

profiling and
bottle-neck
identification

achieved and
expected

performance

 performance
verification

detailed
estimation

automated

manual

Figure 1. Design flow using the DOSA framework

3 Illustrative Applications

3.1 Exact Inference

A. Inference in Bayesian Networks: A Bayesian net-
work exploits conditional independence to represent a joint
distribution more compactly. A Bayesian network is de-
fined as B = (G,P) where G is a directed acyclic graph
(DAG) and P is the parameter of the network. The DAG G

is denoted as G = (V , E) where V = {A1, A2, . . . , An} is
the node set and E is the edge set. Each node Ai represents
a random variable. If there is an edge from Ai to Aj i.e.
(Ai, Aj) ∈ E , Ai is called a parent of Aj . pa(Aj) denotes
the set of all parents of Aj . Given the value of pa(Aj),
Aj is conditionally independent of all other preceding vari-
ables. The parameter P represents a group of conditional
probability tables (CPTs) which are defined as the con-
ditional probability P (Aj |pa(Aj)) for each random vari-
able Aj . Given the Bayesian network, a joint distribution
P (V) can be rewritten as P (V) = P (A1, A2, · · · , An) =∏n

j=1 Pr(Aj |pa(Aj)).
The evidence variables in a Bayesian network are the

variables that have been instantiated with values e.g. E =
{Ae1 = ae1 , · · · , Aec = aec}, ek ∈ {1, 2, . . . , n}. Given
the evidence, we can inquire the distribution of any other
variables. The variables to be inquired are called query vari-
ables. The process of exact inference involves propagating
the evidence throughout the network and then computing
the updated probability of the query variables.

It is known that traditional exact inference using Bayes’
rule fails for networks with undirected cycles[9]. Most in-
ference methods for networks with undirected cycles con-
vert a network to a cycle-free hypergraph called a junction
tree. A junction tree is defined as J = (T, P̂) where T rep-

resents a tree and P̂ denotes the parameter of the tree. Each
vertex Ci (known as a clique) of T is a set of random vari-
ables. Assuming Ci and Cj are adjacent, the separator be-
tween them is defined as Ci ∩ Cj . All junction trees satisfy
the running intersection property (RIP)[7]. P̂ is a group of
potential tables (POTs). The POT of Ci, denoted as ψ(Ci),
can be viewed as the joint distribution of the random vari-
ables in Ci. For a clique with w variables, each taking r
different values, the number of entries in the POT is rw .

In a junction tree, exact inference proceeds as follows:
Assuming evidence is E = {Ai = a} and Ai ∈ Cj , E is ab-
sorbed at Cj by instantiating the variableAi, then renormal-
izing the remaining constituents of the clique. The effect of
the updated ψ(Cj) is propagated to all other cliques by it-
eratively setting ψ∗(Cx) = ψ(Cx)ψ∗(S)/ψ(S) where Cx is
the clique to be updated; S is the separator between Cx and
its neighbor that has been updated; ψ∗ denotes the updated
POT. After all cliques are updated, the distribution of a
query variable Q ∈ Cy is obtained by P (Q) =

∑
R ψ(Cy)/

Z where R = {z : z ∈ Cy, z �= Q} and Z is a constant
with respect to Cy. This summation sums up all entries with
respect to Q = q for all possible q in ψ(Cy). The details
of sequential inference are proposed by Lauritzen et al.[7].
Pennock[9] has proposed a parallel algorithm for exact in-
ference on Bayesian network, which forms the basis of our
work.

B. Parallelization: Given an arbitrary Bayesian net-
work B = (G,P), it can be converted into a junction tree
J = (T, P̂) by five steps: moralization, triangulation, clique
identification, junction tree construction and potential table
construction. In this section, we discuss the parallel algo-
rithms used by us in our implementation.

When the evidence variable is present at the root, the root
absorbs the evidence by instantiating the evidence variable

3

in its POT. Then, the pointer jumping technique is used to
propagate the evidence throughout the complete tree. When
the evidence variable is not present at the root, we extend
the parallel tree rerooting technique [9] to make the clique
that contains the evidence variable as the root of a new junc-
tion tree. Additional details can be found in our conferece
paper [10].

Experiments: We ran our implementations on the
DataStar Cluster at the San Diego Supercomputer Center
(SDSC) [4] and on the clusters at the USC Center for High-
Performance Computing and Communications (HPCC) [6].
Results can be found in Figure 2 and Figure 3. The DataStar
Cluster at SDSC employs IBM P655 nodes running at 1.5
GHz with 2 GB of memory per processor.

The USC HPCC is a Sun Microsystems & Dell Linux
cluster. A 2-Gigabit/second low-latency Myrinet network
connects most of the nodes. The HPCC nodes used in our
experiments were based on Dual Intel Xeon (64-bit) 3.2
GHz with 2 GB memory.

Figure 2. The execution time of exact infer-
ence on DataStar.

3.2 Large-scale Graph Analysis

Graph-theoretic applications have emerged as a promi-
nent computational workload in the petascale computing
era, and are representative of fundamental kernels in bi-
ology, scientific computing, and applications in national
security. Real-world systems such as the Internet, socio-
economic interactions, and biological networks typically
exhibit common structural features a low graph diame-
ter, skewed vertex degree distribution, self-similarity, and
dense sub-graphs and are broadly referred to and mod-
eled as small-world networks. Due to their large memory
footprint, fine-grained computational granularity, and non-
contiguous concurrent accesses to global data structures
with low degrees of locality, massive graph problems pose

Figure 3. The execution time of exact infer-
ence on HPCC.

serious challenges on current parallel machines. In recent
work, we present new parallel algorithms and implemen-
tations that enable the design of several high-performance
complex graph analysis kernels for small-world networks.
In this report, we discuss our parallel approaches for the
community identification problem [3].

A. Community Identification in Small-world net-
works: A key problem in social network analysis is that of
finding communities, dense components, or detecting other
latent structure. This is usually formulated as a graph clus-
tering problem, and several indices have been proposed for
measuring the quality of clustering. Existing approaches
based on the Kernighan-Lin algorithm, spectral algorithms,
flow-based algorithms, and hierarchical clustering work
well for specific classes of networks (e.g., abstractions
from scientific computing, physical topologies), but per-
form poorly for small-world networks. Newman and Girvan
recently proposed a divisive algorithm for small-world net-
works based on the edge betweenness centrality metric [8],
and it has been applied successfully to a variety of real net-
works. However, it is compute-intensive and takes O(n3)
time for sparse graphs (n denotes the number of vertices).
We design three new parallel clustering approaches (two hi-
erarchical agglomerative approaches: pMA and pLA, and
one divisive clustering algorithm: pBD) [3] that exploit typ-
ical topological characteristics of small-world networks and
optimize for a new clustering metric called modularity from
the social network analysis.

B. Parallelization: Our parallel community identifi-
cation approaches are primarily designed to exploit fine-
grained thread level parallelism in graph traversal. We ap-
ply one of the following two paradigms in the design of
parallel kernels: level-synchronous graph traversal, where
vertices at each level are visited in parallel; or path-limited
searches, in which multiple searches are concurrently exe-

4

cuted and aggregated. The level-synchronous approach is
particularly suitable for small-world networks due to their
low graph diameter. Support for fine-grained efficient syn-
chronization is critical in both these approaches. We try to
aggressively reduce locking and barrier constructs through
algorithmic changes, as well as implementation optimiza-
tions.

A second effective optimization we apply is to vary the
granularity of parallelization in our clustering algorithms.
In the initial iterations of the pBD algorithm, before the
graph is split up into connected components of smaller
sizes, we parallelize computation of approximate between-
ness centrality. Once the graph is decomposed into a large
number of isolated components, we can switch to comput-
ing exact centrality. We can then exploit parallelism at a
coarser granularity, by computing centrality scores of each
component in parallel.

Figure 4. Speedup achieved by our paral-
lel approach (pBD) over the Girvan-Newman
(GN) algorithm. The bar labels indicate the
ratio of execution time of GN to that of pBD.

C. Experiments: Our test platform for reporting paral-
lel performance results in this report is the Sun Fire T2000
server, with the Sun UltraSPARC T1 (Niagara) processor.
This system has eight cores running at 1.0 GHz, each of
which is four-way multithreaded. The cores share a 3 MB
L2 cache, and the system has a main memory of 16 GB.
We compile our code with the Sun C compiler v5.8 and the
default optimization flags.

We demonstrate that our parallel schemes give signifi-
cant running time improvements over existing modularity-
based clustering heuristics for a collection of small-world
networks gathered from diverse application domains: a
protein-interaction network from computational biology
(PPI), a citation network (Citations), a web crawl

(NDwww), and two social networks (Actor, DBLP). For in-
stance, our novel divisive clustering approach based on ap-
proximate edge betweenness centrality (pBD) is more than
two orders of magnitude faster than the Girvan-Nirvan (GN)
algorithm on the Sun Fire T2000 multicore system, while
maintaining comparable clustering quality (see Figure 4).

4. Concluding Remarks

The goal of our research is to develop a framework that
supports design-time optimizations of applications in
high-performance computing and whose output can then
be used to perform further optimizations at run-time. To
illustrate our ideas, we give two example kernels, one for
parallel exact inference in Bayesian networks and the other
for community identification in small-world networks. In
each case, we briefly describe the design-time modeling of
the algorithms and give several performance optimizations
enabled by the DOSA framework.

References

[1] D. Bader and G. Cong. Fast shared-memory algorithms
for graph theoretic problems. Journal of Parallel and Dis-
tributed Computing, 66(11):1366–1378, 2006.

[2] D. Bader and G. Cong. Efficient parallel graph algorithms
for shared-memory multiprocessors. In S. Rajasekaran and
J. Reif, editors, Handbook of Parallel Computing: Models,
Algorithms, and Applications. CRC Press, 2007.

[3] D. Bader and K. Madduri. SNAP, small-world network
analysis and partitioning: an open-source parallel graph
framework for the exploration of large-scale networks. In
Proc. 22nd Int’l Parallel and Distributed Processing Symp.
(IPDPS), Miami, FL, Apr. 2008.

[4] Datastar. http://www.sdsc.edu/us/resources/
datastar/.

[5] Generic modeling environment. http://www.isis.
vanderbilt.edu/Projects/gme/.

[6] HPCC. http://www.usc.edu/hpcc/.
[7] S. Lauritzen and D. Spiegelhalter. Local computation with

probabilities and graphical structures and their application
to expert systems. J. Royal Statistical Society B., 50(6):157–
224, 1988.

[8] M. Newman and M. Girvan. Finding and evaluating commu-
nity structure in networks. Physical Review E, 69:026113,
2004.

[9] D. Pennock. Logarithmic time parallel Bayesian inference.
In Proc. of the 14th Ann. Conf. on Uncertainty in Artificial
Intelligence, pages 431–438, Oct. 1998.

[10] Y. Xia and V. Prasanna. Parallel exact inference. In Proc.
of the 11th Int’l Conf. on Parallel Computing (ParCo ’07),
Sept. 2007.

5

