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Abstract

We present SNAP (Small-world Network Analysis and
Partitioning), an open-source graph framework for ex-
ploratory study and partitioning of large-scale networks.
To illustrate the capability of SNAP, we discuss the de-
sign, implementation, and performance of three novel par-
allel community detection algorithms that optimize mod-
ularity, a popular measure for clustering quality in so-
cial network analysis. In order to achieve scalable par-
allel performance, we exploit typical network characteris-
tics of small-world networks, such as the low graph diam-
eter, sparse connectivity, and skewed degree distribution.
We conduct an extensive experimental study on real-world
graph instances and demonstrate that our parallel schemes,
coupled with aggressive algorithm engineering for small-
world networks, give significant running time improvements
over existing modularity-based clustering heuristics, with
little or no loss in clustering quality. For instance, our di-
visive clustering approach based on approximate edge be-
tweenness centrality is more than two orders of magnitude
faster than a competing greedy approach, for a variety of
large graph instances on the Sun Fire T2000 multicore sys-
tem. SNAP also contains parallel implementations of fun-
damental graph-theoretic kernels and topological analysis
metrics (e.g., breadth-first search, connected components,
vertex and edge centrality) that are optimized for small-
world networks. The SNAP framework is extensible; the
graph kernels are modular, portable across shared memory
multicore and symmetric multiprocessor systems, and sim-
plify the design of high-level domain-specific applications.

1 Introduction

Data-intensive applications have emerged as a promi-
nent computational workload in the petascale computing

era. Massive data sets with millions, or even billions, of
entities are frequently processed in financial, scientific, se-
curity, and several other application areas. Further, the data
are dynamically generated in many cases, and may be as-
similated from multiple sources. Thus, the modeling and
analysis of massive, transient data streams raises new and
challenging research problems. There are several analytical
methods for the analysis of interaction data. Algorithms in
the data stream and related models [34] have been shown
to be effective for statistical analysis, and for mining trends
in large-scale data sets. Alternately, a graph or a network
representation is a convenient and intuitive abstraction for
analyzing data. Unique entities are represented as vertices,
and the interactions between them are depicted as edges.
The vertices and edges can further be typed, classified, or
assigned attributes based on relational information. Analyz-
ing topological characteristics of the network, such as the
vertex degree distribution, centrality and community struc-
ture, provides valuable insight into the structure and func-
tion of the interacting data entities. Common queries on
these massive data sets can also be naturally encoded as
variants of problems related to graph connectivity, flow, or
partitioning.

The modeling and analysis of complex interaction data
is an active research topic in the social science and statisti-
cal physics communities. Real-world systems such as the
Internet, socio-economic interactions, and biological net-
works have been extensively studied from an empirical per-
spective [3, 35], and this has led to the development of a
variety of models to understand their topological proper-
ties and evolution. In particular, it has been shown that
technological networks, social interaction graphs, and graph
abstractions in biology, exhibit common structural features
such as a low graph diameter, skewed vertex degree distri-
bution, self-similarity, and dense subgraphs. Analogous to
the small-world (short paths) phenomenon, these real-world
data sets are broadly referred to and modeled as small-world
networks [40, 4]. Practical algorithms for applications such
as identification of influential entities, communities, and



anomalous patterns in social networks (in general, small-
world networks) are well-studied [21, 35].

However, in order to effectively utilize a network ab-
straction for solving massive data stream problems, we need
to be able to compactly represent and process large-scale
graphs, and also efficiently support fundamental analysis
queries on them. On current workstations, it is infeasible
to do exact in-core computations on large-scale graphs (by
large-scale, we refer to graphs where the number of vertices
and edges are in the range of 100 million to 10 billion) due
to the limited physical memory. In such cases, parallel com-
puting techniques can be applied to obtain exact solutions
for memory and compute-intensive graph problems quickly.
For instance, recent experimental studies on Breadth-First
Search for large-scale sparse graphs show that a parallel in-
core implementation [8] is two orders of magnitude faster
than an optimized external memory implementation [2].
Parallel graph algorithms is a well-studied research area,
and there is extensive literature on work-efficient PRAM al-
gorithms for several classical graph problems [23]. SNAP,
the parallel network analysis framework we present in this
paper, is a collection of holistic schemes that couple high-
performance computing approaches with classical graph al-
gorithms, social network analysis (SNA) techniques, and
optimizations for small-world networks. The source code
for SNAP is freely available from our website. We discuss
exploratory graph analysis using SNAP in Section 3.

A key problem in social network analysis is that of find-
ing communities, dense components, or detecting other la-
tent structure. This is usually formulated as a graph clus-
tering problem, and several indices have been proposed for
measuring the quality of clustering (see [25, 14] for a re-
view). Existing approaches based on the Kernighan-Lin
algorithm [28], spectral algorithms [25], flow-based algo-
rithms, and hierarchical clustering work well for specific
classes of networks (e.g., abstractions from scientific com-
puting, physical topologies), but perform poorly for small-
world networks. We will discuss the related problem of
partitioning small-world networks in more detail in Sec-
tion 2.2. Newman and Girvan recently proposed a divisive
algorithm based on edge betweenness [37] that has been ap-
plied successfully to a variety of real networks. However,
it is compute-intensive and takes O

(
n3

)
time for sparse

graphs (n denotes the number of vertices). This algorithm
optimizes for a novel clustering measure called modularity,
which has become very popular for social network analy-
sis. We apply SNAP to the problem of small-world net-
work clustering in this paper and present novel parallel al-
gorithms that optimize modularity. We design three clus-
tering schemes (two hierarchical agglomerative approaches,
and one divisive clustering algorithm) that exploit typical
topological characteristics of small-world networks. We
also conduct an extensive experimental study and demon-

strate that our parallel schemes give significant running
time improvements over existing modularity-based cluster-
ing heuristics. For instance, our novel divisive clustering
approach based on approximate edge betweenness central-
ity is more than two orders of magnitude faster than the
Newman-Girvan algorithm on the Sun Fire T2000 multi-
core system, while maintaining comparable clustering qual-
ity. The algorithms are discussed in detail in Section 4.

2 Preliminaries

The interaction data set is expressed using a graph ab-
straction G(V, E), where V is the set of vertices represent-
ing unique interacting entities, and E is the set of edges
representing the interactions. The number of vertices and
edges are denoted by n and m respectively. The graph can
be directed or undirected, depending on the input data. We
will assume that each edge e ∈ E has a positive integer
weight w(e). For unweighted graphs, we use w(e) = 1. A
path from vertex s to t is defined as a sequence of edges
〈ui, ui+1〉, 0 ≤ i < l, where u0 = s and ul = t. The length
of a path is the sum of the weights of edges. We use d(s, t)
to denote the distance between vertices s and t (the mini-
mum length of any path connecting s and t in G). Let us
denote the total number of shortest paths between vertices
s and t by σst, and the number passing through vertex v by
σst(v).

2.1 Centrality Metrics

One of the fundamental problems in network analysis is
to determine the importance or criticality of a particular ver-
tex or an edge in a network. While there has been extensive
work on quantifying centrality and connectivity in a net-
work, there is no single accepted definition. The measure
of choice is dependent on the application and the network
topology. We briefly define some of the centrality metrics
we implement in SNAP, and refer the reader to [13, 9] for
a detailed discussion on centrality analysis.

The degree of a vertex, or the degree centrality, is a
simple local measure based on the notion of neighborhood.
This index is useful in case of static graphs, for situations
when we are interested in finding vertices that have the most
direct connections to other vertices. Closeness centrality is
a global index that measures the closeness, in terms of dis-

tance

(
CC(v) =

1∑
u∈V d(v, u)

)
, of a vertex to all other

vertices in the network. Vertices with a smaller total dis-
tance are considered more important. Betweenness central-
ity is a shortest paths enumeration-based global metric, in-
troduced by Freeman in [20]. Let δst(v) denote the pairwise
dependency, or the fraction of shortest paths between s and



t that pass through v:
σst(v)
σst

. Then, betweenness central-

ity of a vertex v is defined as BC(v) =
∑

s�=v �=t∈V δst(v).
Betweenness centrality of a vertex measures the control a
vertex has over communication in the network, and can be
used to identify critical vertices in the network. High cen-
trality indices indicate that a vertex can reach other vertices
on relatively short paths, or that a vertex lies on a consid-
erable fraction of shortest paths connecting pairs of other
vertices. Key applications of centrality analysis include as-
sessing lethality in biological networks [24, 38], study of
sexual networks and AIDS [31], identifying key actors in
terrorist networks [16], and supply chain management pro-
cesses.

2.2 Graph Partitioning

Graph partitioning and community detection are related
problems, but with an important difference: the most com-
monly used objective function in partitioning is minimiza-
tion of edge cut, while trying to balance the number of ver-
tices in each partition. The number of partitions is typically
an input parameter for a partitioning algorithm. Clustering,
on the other hand, optimizes an appropriate application-
dependent measure, and the number of clusters needs to
be computed. Multi-level algorithms and spectral heuris-
tics have been shown to be very effective for partitioning
graph abstractions derived from physical topologies, such as
finite-element meshes arising in scientific computing. Soft-
ware packages implementing these algorithms (e.g., Chaco
[22] and Metis [27, 26]) are freely available, computation-
ally efficient, and produce high-quality partitions in most
cases. A natural question that arises is whether these par-
titioning algorithms, or simple variants, can be applied to
small-world networks as well.

Table 1 summarizes results from an experiment to test
the quality of existing partitioning packages on small-world
networks. We consider graph instances from three differ-
ent families (a road network, a sparse random graph, and
a synthetic small-world network), but of the same size:
roughly 200,000 vertices and 1 million edges. We report
the edge cut for a balanced 32-way partitioning of each of
these graphs, using four partitioning techniques (the default
multilevel partitioning approaches from Metis, pmetis and
kmetis, and two spectral heuristics from Chaco). Observe
that the edge cut for the random and power-law graphs is
nearly two orders of magnitude higher than the cut for the
nearly-Euclidean road network. Clearly, existing partition-
ing tools fail to partition small-world networks since these
networks lack the topological regularity found in scientific
meshes and physical networks, where the degree distribu-
tion is relatively constant and most connectivity is local-
ized. Also, random and small-world networks have a lower
diameter (O(log n), or in some cases O(1)) than physical

networks (e.g., O(
√

n) for Euclidean topologies). Lang
[29, 30] provides further empirical evidence that cut quality
varies inversely with cut balance for social graphs such as
the Yahoo! IM network and the DBLP collaboration data
set. Further, he shows that the spectral method tends to
break off small parts of the graphs. This finding is corrob-
orated by a recent theoretical result from Mihail and Pa-
padimitriou [33]. They prove that for a random graph with
a skewed degree distribution, the largest eigenvalues are in
correspondence with high-degree vertices, and the corre-
sponding eigenvectors are the characteristic vectors of their
neighborhoods. Spectral analysis in this case ignores struc-
tural features of the graph in favor of high-degree vertices.

Recent research efforts have focused on adapting mul-
tilevel and spectral partitioning techniques to small-world
graphs. Abou-Rjeili and Karypis [1] present new coars-
ening heuristics for multilevel approaches that outperform
(give a lower edge cut) Metis and Chaco. As it is difficult
to theoretically analyze general small-world networks, re-
searchers have been looking at applying spectral analysis to
synthetic graph models. For instance, Dasgupta et al. [18]
provide a normalization of the Laplacian that improves the
performance of the spectral approach on a planted-partition
random graph model. Clustering heuristics based on the
above graph partitioning algorithms optimize for conduc-
tance, a measure that compares the cut size to cut balance.
However, based on empirical and theoretical evidence that it
is difficult to obtain balanced partitions in small-world net-
works, we focus on optimizing modularity [37], a popular
heuristic from the complex network analysis community.

2.3 Modularity as a clustering measure

Intuitively, modularity is a measure that is based on opti-
mizing intra-cluster density over inter-cluster sparsity [14].
Let C = (C1, ..., Ck) denote a partition of V such that
Ci �= φ and Ci ∩ Cj = φ. We call C a clustering of G
and each Ci is defined to be a cluster. The cluster G(Ci) is
identified with the induced subgraph G[Ci] := (Ci, E(Ci)),
where E(Ci) := {〈u, v〉 ∈ E : u, v ∈ Ci}. Then,
E(C) := ∪k

i=1E(Ci) is the set of intra-cluster edges and
Ẽ(C) := E − E(C) is the set of inter-cluster edges.
Let m(Ci) denote the number of inter-cluster edges in Ci.
Then, the modularity measure q(C) of a clustering C is de-
fined as

q(C) =
∑

i

[
m(Ci)

m
−

(∑
v∈Ci

deg(v)
2m

)2
]

To maximize the first term, the number of intra-cluster
edges should be high, whereas the second term is min-
imized by splitting the graph into multiple clusters with
small total degrees. If a particular clustering gives no more
intra-community edges than would be expected by random



Graph Instance Metis-kway Metis-recur Chaco-RQI Chaco-LAN

Physical (road) 1,856 1,703 2,937 3,913
Sparse random 685,211 706,625 717,960 737,747
Small-world 805,903 736,560 – –

Table 1. Performance results (edge cut) for a 32-way partitioning of three different graph instances,
using standard partitioning algorithms from the Chaco and Metis packages. Chaco-RQI and Chaco-
LAN fail to complete for the small-world network instance.

chance, we will get Q = 0. Values greater than 0 indi-
cate deviation from randomness, and empirical results show
that values greater than 0.3 indicate significant community
structure. Modularity has found widespread acceptance in
the network analysis community, and there have been an
array of heuristics, based on spectral analysis, simulated
annealing, greedy agglomeration, and extremal optimiza-
tion [36] proposed to optimize it. Brandes et al. [12] re-
cently showed that maximizing modularity is stronglyNP-
complete, and this has led to renewed interest in design-
ing better algorithms for modularity maximization. We
present three new modularity-maximization heuristics in
Section 4 and compare them with the current state-of-the-
art approaches discussed in [36].

3 The SNAP Infrastructure for Exploratory
Network Analysis

SNAP is a modular graph infrastructure for analyzing
and partitioning interaction graphs, targeting multicore and
manycore platforms. SNAP is implemented in C and uses
POSIX threads and OpenMP primitives for parallelization.
The source code is freely available online from our web site.

In addition to partitioning and analysis support for inter-
action graphs, SNAP provides an optimized collection of
algorithmic “building blocks” (efficient implementations of
key graph-theoretic kernels) to end-users. In prior work, we
have designed novel parallel algorithms for several graph
problems that run efficiently on shared memory systems.
Our implementations of breadth-first graph traversal [8],
shortest paths [32, 17], spanning tree [5], MST, connected
components [6], and other problems achieve impressive par-
allel speedup for arbitrary, sparse graph instances. We re-
design and integrate several of our recent parallel graph
algorithms into SNAP, with additional optimizations for
small-world networks. SNAP provides a simple and intu-
itive interface for network analysis application design, ef-
fectively hiding the parallel programming complexity in-
volved in the low-level kernel design from the user. In
this section, we highlight some of the algorithmic and data
structure choices involved in the design of the SNAP frame-
work, and discuss analysis techniques that are currently sup-
ported.

Data Representation

Efficient data structures and graph representations are key to
high performance parallel graph algorithms. In order to pro-
cess massive graphs, it is particularly important that the data
structures are space-efficient. The primary graph represen-
tation supported in SNAP is a vertex adjacency list repre-
sentation, implemented using cache-friendly adjacency ar-
rays. This representation is simple and the preferred choice
for static graph algorithms. However, for algorithms that
require dynamic structural updates to the graph, we need to
efficiently support insertion and deletion of edges. We use
an auxiliary graph representation that uses dynamic, resiz-
able adjacency arrays. To speed up deletions, adjacencies
can be ordered by sorting them by their vertex or edge iden-
tifier. Further, several optimizations are possible for small-
world graphs. Small-world networks typically have an un-
balanced degree distribution – the majority of the vertices
are low-degree ones, and there are a few vertices of very
high degree. In such cases, we could have a threshold on
the degree and represent low-degree vertex adjacencies in
a simple, unsorted adjacency representation, but adjacen-
cies of high-degree vertices in a tree structure such as treaps
[39]. Treaps are randomized search trees that support fast
insertion, deletion, searching, joining and splitting. In addi-
tion, there are efficient parallel algorithms for set operations
on treaps such as union, intersection and difference. Based
on the graph update rate, and the insertion to deletion ratio
for an application, we could choose an appropriate graph
representation.

Graph Kernels

The SNAP graph kernels are primarily designed to ex-
ploit fine-grained thread level parallelism in graph traver-
sal. We apply one of the following two paradigms in the
design of parallel kernels: level-synchronous graph traver-
sal, where vertices at each level are visited in parallel; or
path-limited searches, in which multiple searches are con-
currently executed and aggregated. The level-synchronous
approach is particularly suitable for small-world networks
due to their low graph diameter. Support for fine-grained ef-
ficient synchronization is critical in both these approaches.
We try to aggressively reduce locking and barrier con-
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structs through algorithmic changes, as well as implemen-
tation optimizations. For the BFS kernel, we use a lock-
free level-synchronous algorithm that significantly reduces
shared memory contention. The minimum spanning tree al-
gorithm uses a lazy synchronization scheme coupled with
work-stealing graph traversal to yield a greater granular-
ity of parallelism. While designing fine-grained algorithms
for small-world networks, we also consider the unbalanced
degree distributions. In a level-synchronized parallel BFS
where vertices are statically assigned to processors with-
out considering their degree, it is highly probable that there
will be phases with severe work imbalance. To avoid this,
we first estimate the processing work to be done from each
vertex, and then assign them accordingly to processors. We
visit adjacencies of high degree vertices in parallel for better
load balancing. With these optimizations, we demonstrate
that the performance of our fine-grained BFS and shortest
path algorithms [8, 32] is mostly independent of the graph
degree distribution.

We utilize these efficient kernel implementations as
building blocks for higher level algorithms such as central-
ity and partitioning. For these algorithms, we also con-
sider performance trade-offs associated with memory uti-
lization and parallelization granularity. In cases where the
input graph instance is small enough, we can trade off space
with a coarse-grained parallelization strategy, thus reducing
synchronization overhead. We utilize this technique in the
compute-intensive (O(mn) work) exact betweenness cen-
trality calculation, where the centrality score computation
requires n graph traversals. The fine-grained implementa-
tion parallelizing each graph traversal requires O(m + n)
space, whereas the memory requirements of the coarse-
grained approach, in which the n traversals are distributed
among p processors, are O(p(m + n)). We also incorporate
small-world network specific optimizations in the choice of

data structures for centrality computations. For instance,
the predecessor sets of a vertex in shortest path computa-
tions, required in centrality computations, are implemented
differently for low-degree and high-degree vertices. The
parallel algorithms, coupled with small-world network opti-
mizations, enable SNAP to analyze networks that are three
orders of magnitude larger than the ones that can be pro-
cessed using commercial and research software packages
for SNA (e.g., Pajek [11], InFlow, UCINET).

Network Analysis Metrics and Preprocessing Routines
for Small-world Networks

The crux of exploratory graph analysis is a systematic com-
putational study of the structure and dynamics of a net-
work, using a discriminating selection of topological met-
rics. SNAP supports fast computation of simple as well
as novel SNA metrics, such as average vertex degree, clus-
tering coefficient, average shortest path length, rich-club
coefficient, and assortativity. Most of these metrics have
a linear, or sub-linear computational complexity and are
straightforward to implement. When used appropriately,
they not only provide insight into the network structure,
but also help speed up subsequent analysis algorithms.
For instance, the average neighbor connectivity metric is
a weighted average that gives the average neighbor degree
of a degree-k vertex. It is an indicator of whether vertices
of a given degree preferentially connect to high- or low-
degree vertices. Assortativity coefficient is a related metric
proposed by Newman, which is an indicator of community
structure in a network. Based on the these metrics, it is easy
to identify instances of specific graph classes, such as bi-
partite graphs, and networks with pronounced community
structure. This helps us choose an appropriate community
detection algorithm and a clustering measure for which to



optimize. Other preprocessing kernels include computation
of connected and biconnected components of the graph. If a
graph is composed of several large connected components,
it can be decomposed and individual components can be an-
alyzed concurrently. In case of protein interaction networks
in computational biology, we find that vertices that are ar-
ticulation points (determined from computing biconnected
components), but have a low degree, are unlikely to be es-
sential to the network [10]. All these preprocessing steps
combined together potentially offer an order of magnitude
speedup or more [9] for key analysis kernels on real-world
network instances.

4 Parallel Community Identification Algo-
rithms

The parallel algorithms we present for community iden-
tification are based on modularity maximization. Intu-
itively, modularity captures the idea that a good division
of a network into communities is one in which there are
fewer than expected edges between communities, and not
one that just minimizes edge cut. Since the general problem
of modularity optimization is NP-complete [14], we ex-
plore greedy strategies that maximize modularity. Existing
algorithms fall into two broad classes, divisive or agglom-
erative, based on how the division is done. In the agglom-
erative method, each vertex initially belongs to a single-
ton community, and two communities whose amalgamation
produces an increase in the modularity score are merged to-
gether. The agglomeration can be represented by a tree, re-
ferred to as a dendrogram, whose internal nodes correspond
to joins. In the following discussion, we present three novel
parallel algorithms, one divisive and two agglomerative ap-
proaches, that are built on top of optimized SNAP analysis
kernels.

Approximate betweenness-based divisive algorithm
(pBD)

Our first approach is a divisive algorithm in which we ini-
tially treat the entire network as one community, and iter-
atively determine critical links in the network that can be
cut. By doing this repeatedly, we divide the network into
smaller and smaller components, and can also keep track of
the clustering quality at each step by computing the modu-
larity score. Algorithm 1 gives the high-level pseudocode
for this iterative approach, and our parallelization strategy.
We explain each step in more detail below.

There are several possible approaches to select the crit-
ical link on each iteration. Newman and Girvan [36] sug-
gest picking edges based on their betweenness score, and
show that this approach results in significantly higher mod-
ularity scores compared to other known greedy heuristics.

Algorithm 1: Approximate betweenness-based divisive
algorithm (pBD)

Input: G(V, E), length function l : E → R

Output: A partition C = (C1, ..., Ck) (Ci �= φ and
Ci∩Cj = φ) of V that maximizes modular-
ity; A dendrogram D representing the clus-
tering steps.

1 Optional step: Run biconnected components, identify
articulation points and bridges.

2 numIter←− 0;
3 while numIter < m do
4 Find edge em with the highest approximate

betweenness centrality score in parallel.
5 Mark edge em as deleted in the graph G.
6 Run connected components on G, update

dendrogram and number of clusters in parallel.
7 Compute modularity of the current partitioning

in parallel.
8 numInter←− numIter + 1;

9 Inspect the dendrogram, set C to the clustering with
the highest modularity score.

The problem with this approach is that it is computation-
ally expensive — we need to recompute edge betweenness
centrality scores at each step of the algorithm, and there can
be O(m) iterations in the worst case. Although it might be
tempting to compute betweenness scores only once and then
remove edges in that order, Newman and Girvan show that
this results in inferior clustering quality for several small-
world networks.

We rely on extensive algorithm engineering and paral-
lelization to speed up the Newman-Girvan edge between-
ness technique, while trying to maintain the quality of clus-
tering. First, observe that on each iteration, we only need
to identify the edge with the highest centrality score. We
recently proposed a novel betweenness computation algo-
rithm based on adaptive sampling [7] for estimating the cen-
trality score of a specific vertex or edge in a general net-
work. It is adaptive in that the number of samples (graph
traversals) varies with the information obtained from each
sample; further, we show high-probability bounds on the
estimated error. In practice, after extensive experimenta-
tion on real-world networks, we show that on an average,
we can estimate betweenness scores of high-centrality (the
top 1%) entities with less than 20% error, by sampling just
5% of the vertices. We replace the exact centrality computa-
tion algorithm with the approximate betweenness approach,
and only recompute aproximate betweenness scores of the
known high-centrality edges (step 4 of Algorithm 1).

A second effective optimization is to vary the granular-
ity of parallelization as the clustering algorithm proceeds.



In the initial iterations of the algorithm, before the graph is
split up into connected components of smaller sizes, we par-
allelize computation of approximate betweenness centrality.
Once the graph is decomposed into a large number of iso-
lated components, we can switch to computing exact cen-
trality. We can then exploit parallelism at a coarser granu-
larity, by computing centrality scores of each component in
parallel. This switch in the parallelism granularity is semi-
automatic (controller by a user parameter) in our SNAP im-
plementation. In addition, we parallelize the O(m)-work
kernels such as modularity computation (step 7 of Algo-
rithm 1) and dendrogram updates (step 6 of Algorithm 1).
Note that varying the parallelization granularity does not af-
fect the quality of clustering (the modularity score) in any
manner.

From empirical evidence, we observe that bridges in
the network (determined by computing biconnected compo-
nents) are likely to have high edge centrality scores. We ap-
ply this heuristic as an optional step (step 1 of Algorithm 1)
to determine a set of potential high-centrality edges in the
graph, and to accelerate approximate betweenness compu-
tation.

Modularity-maximizing agglomerative clustering algo-
rithm (pMA)

Algorithm 2: Modularity-maximizing agglomerative
clustering algorithm (pMA)

Input: G(V, E), length function l : E → R

Output: A partition C = (C1, ..., Ck) (Ci �= φ and
Ci∩Cj = φ) of V that maximizes modular-
ity.

1 nC ←− n;
2 Max heap H ←− φ;
3 foreach v ∈ V do
4 ∆Qd[v] (dynamic array)←− φ;
5 ∆Qb[v] (multilevel bucket)←− φ;
6 Add modularity update value corresponding to

each neighbor (adjacent community) of v to both
∆Qb[v] and ∆Qd[v].

7 Add community-pair with the maximum
modularity update value to H .

8 while nC > 1 do
9 Select the community pair (i, j) corresponding

to the largest value in H .
10 Update ∆Qd, ∆Qb, H in parallel, and

increment modularity score.
11 nC ←− nC − 1;

12 Inspect Q, set C to the clustering with the highest
modularity score.

A greedy agglomerative approach starts from a state of
n singleton communities, and iteratively merges the pair of
communities that result in the greatest increase in modu-
larity. Clauset et al. [15] give an algorithm that runs in
O(md log n) time, where d is the depth of the resulting
dendrogram. The primary data structure is an implicitly-
maintained sparse matrix ∆Q, where ∆Q(i, j) corresponds
to a increase in modularity on merging clusters Ci and Cj .
We design a new parallel algorithm (pMA, see Algorithm 2)
that performs the same greedy optimization as Clauset et
al.’s approach, but uses data representations supported in
SNAP for the modularity update matrix. We store each row
of the matrix as a sorted dynamic array (so that elements
can be identified or inserted in O(log n) time), as well as a
multi-level bucket (to identify the largest element quickly).
We parallelize two steps in every iteration of the greedy ap-
proach – the matrix rows representing the two communities
Ci and Cj are merged in parallel; secondly, if Ci and Cj

are connected to other communities, the corresponding ∆Q
updates can be parallelized. This algorithm is significantly
faster than the divisive clustering approach, with the trade-
off of loss in clustering quality for some graph instances.

Greedy local aggregation algorithm (pLA)

Algorithm 3: Greedy local aggregation algorithm (pLA)

Input: G(V, E), length function l : E → R

Output: A partition C = (C1, ..., Ck) (Ci �= φ and
Ci∩Cj = φ) of V that maximizes modular-
ity.

1 Run biconnected components to identify bridges.
2 Delete bridges, run connected components.
3 foreach connected component C in G do
4 nC ←− number of vertices in the component;
5 while nC > 1 do
6 Select a vertex v at random in parallel.
7 Merge vertices/clusters adjacent to v and

create a new cluster, based on an appropriate
local clustering metric (e.g., degree,
clustering coefficient).

8 Accept the new cluster if the overall
modularity score increases.

9 Update the value of nC , the number of
remaining vertices in the graph.

Note that the above approaches rely on global metrics
for community identification, and parallelism can only be
exploited at a very fine granularity (at the level of an it-
eration). We consider relaxing this further and design an
agglomerative partitioning heuristic in which multiple ex-
ecution threads concurrently try to identify communities.



The algorithm proceeds as follows. We first compute bi-
connected components to determine if the graph has any
bridges. If it does, we remove bridge edges and run the
connected components kernel. If this splits the graph into
multiple isolated components, we run a greedy agglomera-
tive clustering heuristic on each of these components, and
finally amalgamate the clusters at the top level. Note that
we still optimize for modularity. However, while doing ag-
glomerative clustering, to avoid global synchronization af-
ter each iteration, we use a local measure such as degree
or clustering coefficient to decide whether an edge needs
to be added to a cluster. To initiate clustering, we need to
pick a set of seed vertices – this can be done randomly, or
obtained from a breadth-first ordering of the vertices. Ver-
tices are greedily added to the clusters, and we exploit par-
allelism using the path-limited search paradigm discussed
in the previous section. In practice, this heuristic performs
well for networks with a pronounced community structure,
and does not rely on any global centrality metrics.

5 Experiments and Performance Evaluation

We evaluate the performance of the community identi-
fication heuristics on twelve different real-world network
instances. In Table 2, we compare values of modular-
ity obtained using our new approaches against the Girvan-
Newman (GN) algorithm. We show results for six different
networks, all of which have been used in previous studies
(please see [36, 19] for sources). We also report the best-
known modularity score (higher scores indicate better com-
munity structure) for each network, obtained by either an
exhaustive search, extremal optimization [19], or a simu-
lated annealing-based technique. It should be noted that
the approaches used to obtain the best-known modularity
scores are computationally very expensive, and may only
be applied to small networks. Table 2 shows that our divi-
sive betweenness-based approach pBD performs extremely
well in practice, and the modularity scores are comparable
to GN. In fact, for the larger E-mail and Key signing net-
works, pBD outperforms GN. pMA and pLA, the faster ag-
glomerative algorithms also perform favorably, with pLA
giving a better partitioning for the Karate and Key signing
networks.

The real benefit of our algorithms lies in the fact that they
are significantly faster than existing approaches, and facil-
itate analysis of networks that were considered too large
to be tractable. We now report execution time and paral-
lel speedup on a multicore parallel system for several real-
world graph instances. Table 3 lists a collection of small-
world networks gathered from diverse application domains:
a protein-interaction network from computational biology,
a citation network, a web crawl, and two social networks.
We ignore edge directivity in the community detection algo-

rithms. Our test platform for reporting parallel performance
results in this paper is the Sun Fire T2000 server, with the
Sun UltraSPARC T1 (Niagara) processor. This system has
eight cores running at 1.0 GHz, each of which is four-way
multithreaded. The cores share a 3 MB L2 cache, and the
system has a main memory of 16 GB. We compile SNAP
with the Sun C compiler v5.8 and the default optimization
flags.

Figure 2 gives the execution time and relative speedup
on the Sun Fire T2000, for community identification using
our three parallel algorithms. The graph instance analyzed
is RMAT-SF, a synthetic small-world network of 0.4 mil-
lion vertices and 1.6 million edges. The computationally-
expensive divisive approximate betweenness approach is
the slowest among the three (note that the execution time
in Figure 3(a) is in the order of minutes), while pMA and
pLA are comparable in execution time. On 32 threads, we
achieve a parallel speedup of roughly 13, 9 and 12 for pBD,
pMA, and pLA respectively. These performance results
are along expected lines and follow the speedup trends dis-
played by the SNAP inner kernels such as graph traversal
and approximate betweenness centrality [8].

In Figure 3(a), we compare the performance of pBD to
the GN approach for the real-world networks listed in Ta-
ble 3. pBD is faster than GN because of algorithmic differ-
ences (we compute approximate betweenness and incorpo-
rate additional small-world network optimizations to speed
up the partitioning), and also due to the fact that that it is
a parallel approach. Since these speedup factors are multi-
plicative, the overall performance improvement achieved is
quite significant. For instance, for the web-crawl NDwww,
the single-threaded run of pBD is nearly 26 times faster
than an optimized implementation of GN using SNAP. This
improvement, coupled with a parallel speedup of 13.2 on
the Sun Fire T2000, results in an overall speedup of 343.
The performance is consistently high across all the real-
world networks. Note that the exact algorithm engineering
speedup achieved depends on the topology of the network:
it is comparatively lower for PPI as the network is small.
For pMA and pLA, since we do not have a baseline heuris-
tic to compare performance against, we just report the rela-
tive speedup on 32 threads for the different graph instances.
pLA achieves a slightly higher speedup in most cases, while
the running times are comparable.

Note that all three parallel algorithms require only
O(m + n)-space, independent of the number of processors.
While we report performance results for graphs with several
millions of vertices and edges in this paper, the algorithms
are scalable and can process graphs with even billions of
entities.



(a) pBD

(b) pMA

(c) pLA

Figure 2. Parallel performance (execution time and relative speedup on the Sun Fire T2000) of our
three community detection algorithms, when applied to the RMAT-SF graph instance.



Modularity Q
Network n GN pBD pMA pLA Best known

Karate 34 0.401 0.397 0.381 0.397 0.431 [12]
Political books 105 0.509 0.502 0.498 0.487 0.527 [12]
Jazz musicians 198 0.405 0.405 0.439 0.398 0.445 [19]
Metabolic 453 0.403 0.402 0.402 0.402 0.435 [36]
E-mail 1,133 0.532 0.547 0.494 0.487 0.574 [19]
Key signing 10,680 0.816 0.846 0.733 0.794 0.855 [36]

Table 2. A comparison of modularity scores achieved using the algorithms presented in this paper
(pBD, pMA, pLA). GN corresponds to the Girvan-Newman edge-betweenness based algorithm. The
best known modularity scores are determined either by an exhaustive search, or using non-greedy
heuristics.

Label Network n m Type

PPI human protein interaction network 8,503 32,191 undirected
Citations Citation network from KDD Cup 2003 27,400 352,504 directed
DBLP CS publication coauthorship network 310,138 1,024,262 undirected
NDwww web-crawl (nd.edu) 325,729 1,090,107 directed
Actor IMDB movie-actor network 392,400 31,788,592 undirected
RMAT-SF synthetic small-world network 400,000 1,600,000 undirected

Table 3. Small-world networks used in the experimental study

(a) pBD speedup relative to GN (b) pMA and pLA parallel speedup

Figure 3. Speedup achieved by pBD over the GN algorithm due to algorithm engineering and paral-
lelization (left), and parallel speedup achieved by pMA and pLA approaches (right) for several real-
world graph instances. The bar labels indicates the ratio of execution time of GN to the running time
of pBD.



6 Conclusions and Future Work

This paper introduces SNAP, a parallel framework for
large-scale network analysis. SNAP includes efficient par-
allel implementations of novel community structure identi-
fication algorithms, classical graph-theoretic kernels, topo-
logical indices that provide insight into the network struc-
ture, and preprocessing kernels for small-world graphs. To
illustrate the capability of the SNAP framework, we de-
tail the design, analysis and implemnentation of three novel
parallel community identification algorithms. Further, we
demonstrate that SNAP parallel approaches are two orders
of magnitude faster than competing algorithms – this en-
ables analysis of networks that were previously considered
too large to be tractable. As part of ongoing work, we are
designing new small-world network analysis kernels and in-
corporating existing techniques into SNAP. Our current fo-
cus is on support for spectral analysis of small-world net-
works, and efficient parallel implementations of spectral
algorithms that optimize modularity. We intend to extend
SNAP to support the topological analysis of dynamic net-
works.
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