High Performance MPEG-2 Software Decoder on the Cell Broadband Engine

David A. Bader
College of Computing

Georgia Institute of Technology

bader@cc.gatech.edu

Abstract

The Sony-Toshiba-IBM Cell Broadband Engine is a
heterogeneous multicore architecture that consists of a
traditional microprocessor (PPE) with eight SIMD co-
processing units (SPEs) integrated on-chip. While the
Cell/B.E. processor is designed with multimedia applica-
tions in mind, there are currently no open-source, optimized
implementations of such applications available. In this pa-
per, we present the design and implementation behind the
creation of an optimized MPEG-2 software decoder for this
unique parallel architecture, and demonstrate its perfor-
mance through an experimental study.

This is the first parallelization of an MPEG-2 decoder
for a commodity heterogeneous multicore processor such
as the IBM Cell/B.E. While Drake et al. have recently
parallelized MPEG-2 using Streamlt for a streaming ar-
chitecture, our algorithm is quite different and is the first
to address the new challenges related to the optimization
and tuning of a multicore algorithm with DMA transfers
and local store memory. Our design and efficient imple-
mentation target the architectural features provided by the
heterogeneous multicore processor. We give an experimen-
tal study on Sony PlayStation 3 and IBM QS20 dual-Cell
Blade platforms. For instance, using 16 SPEs on the IBM
0820, our decoder runs 3.088 times faster than a 3.2 GHz
Intel Xeon and achieves a speedup of over 10.545 compared
with a PPE-only implementation. Our source code is freely-
available through SourceForge under the CellBuzz project.

1. Introduction

The Cell Broadband Engine (or the Cell/B.E.) [6] is a
novel architectural design by Sony, Toshiba, and IBM (STI),
primarily targeting high performance multimedia and gam-
ing applications. It is a heterogeneous multicore chip that
is significantly different from conventional multi-processor
or multicore architectures. It consists of a traditional mi-

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Sulabh Patel
Electronic Arts, Inc.
sulabh@gmail.com

croprocessor (called the PPE) that controls eight SIMD
co-processing units called synergistic processor elements
(SPEs), a high speed memory controller, and a high band-
width bus interface (termed the element interconnect bus,
or EIB), all integrated on a single chip. There are several
unique architectural features in the Cell/B.E. that clearly
distinguish it from current microprocessors: the Cell chip is
a computational workhorse, and it offers a theoretical peak
single-precision floating point performance of 204.8 GF/s.
We can exploit parallelism at multiple levels on the Cell:
each chip has eight SPEs with two-way instruction-level
parallelism on each SPE. Further, the SPE supports both
scalar as well as single-instruction, multiple data (SIMD)
computations [5]. The on-chip coherent bus and intercon-
nection network elements have been specially designed to
cater for high performance on bandwidth-intensive applica-
tions (such as those in gaming and multimedia).

Despite being architected for multimedia applications, at
present there are few applications available to the open-
source community that target the Cell/B.E. Therefore, to
showcase the potential of the Cell/B.E. with regards to mul-
timedia applications, we chose to design and implement the
MPEG-2 video decoder. The MPEG-2 standard for motion
video is already widely used around the world for the trans-
mission of digital television and for video distributed on
DVD (or similar formats). Also, the compression method
behind MPEG-2 is similar in structure to other codecs, mak-
ing it a good choice to implement first.

The main contribution of our paper is the first paralleliza-
tion of an MPEG-2 decoder for a commodity heterogeneous
multicore processor such as the IBM Cell/B.E. In 1996, Bi-
las et al. [1] described a real-time software-based MPEG-
2 decoder. This decoder does not match to the Cell/B.E.
processor because it generates substantial data that can not
fit in the 256 KB of Local Store space available for both
code and data on each SPE. While Drake et al. [2] re-
cently parallelized MPEG-2 using Streamlt for a streaming
architecture, their approach gives little insight on the par-
allelization for a heterogeneous multicore processor, such
as the Cell/B.E. Our multicore design and efficient imple-

mentation target the architectural features provided by the
heterogenous multicore processor where one must address
the new challenges related to the optimization and tuning
with several levels of parallelism, the use of DMA transfers
and local storage, as well as SIMD-ization on each core.

We give an experimental study on two platform that use
the 3.2GHz Cell Broadband Engine processor: the Sony
PlayStation 3 and IBM QS20 dual-Cell Blade. For com-
parison, we compare the performance using a commodity
microprocessor with the same 3.2GHz clock frequency, an
Intel Xeon processor. For instance, we run over three times
faster using the IBM QS20 over the Intel Xeon platform.
Also, ours is the first MPEG-2 decoder for the Cell/B.E.
and is freely-available as source code and pre-compiled li-
braries from the CellBuzz SourceForge repository (http:
//sourceforge.net/projects/cellbuzz).

We first present an overview of the Cell/B.E. architec-
ture in Section 2, along with an overview of the MPEG-2
decoding algorithm in Section 3. The overview of MPEG-2
also includes a brief analysis of the availability of concur-
rency within the algorithm. We then present details of our
implementation in Section 4 and present how we increased
performance in motion reconstruction in Section 4.1. Fi-
nally, we present our performance results in Section 5.

2. Cell/B.E. Architecture

The Cell Broadband Engine is a heterogeneous multi-
core chip that is significantly different from conventional
multiprocessor or multi-core architectures. It consists of
a traditional microprocessor (called the PPE) that controls
eight SIMD co-processing units called synergistic proces-
sor elements (SPEs), a high speed memory controller, and
a high bandwidth bus interface (termed the element inter-
connect bus, or EIB), all integrated on a single chip. Fig. 1
gives an architectural overview of the Cell. We refer the
reader to [9, 3, 7] for additional details.

The PPE is a 64-bit PowerPC core with a vector mul-
timedia extension (VMX) unit, 32 KB L1 instruction and
data caches, and a 512 KB L2 cache. It is a dual issue, in-
order execution design, with two way simultaneous multi-
threading. Ideally, all the computation should be partitioned
among the SPEs, and the PPE only handles the control flow.

Each SPE consists of a synergistic processor unit (SPU)
and a memory flow controller (MFC). The SPU is a micro-
architecture designed for high performance data streaming
and data intensive computation. The MFC includes a DMA
controller, a memory management unit (MMU), a bus inter-
face unit, and an atomic unit for synchronization with other
SPEs and the PPE. The SPE includes a 256 KB local store
(LS) memory to hold SPE program’s instructions and data.
The SPE cannot access main memory directly, but it can
issue DMA commands to the MFC to bring data into the

Local Store or write computation results back to the main
memory. DMA is non-blocking so that the SPE can con-
tinue program execution while DMA transactions are per-
formed.

The SPE is an in-order dual-issue statically scheduled
architecture. Two SIMD [5] instructions can be issued per
cycle: one compute instruction and one memory operation.
The SPU branch architecture does not include dynamic
branch prediction, but instead relies on compiler-generated
branch hints using prepare-to-branch instructions to redi-
rect instruction prefetch to branch targets. Thus branches
should be minimized on the SPE as far as possible.

The MFC supports naturally aligned transfers of 1,2.4,
or 8 bytes, or a multiple of 16 bytes to a maximum of 16
KB. DMA list commands can request a list of up to 2,048
DMA transfers using a single MFC DMA command. Peak
performance is achievable when both the effective address
in main memory and the Local Store address are 128 bytes
aligned and the transfer is an even multiple of 128 bytes. In
the Cell/B.E. processor, each SPE can have up to 16 out-
standing DMA, for a total of 128 across the chip, allowing
unprecedented levels of parallelism in on-chip communi-
cation. Kistler et al. [7] analyze the communication net-
work of the Cell/B.E. processor and state that applications
that rely heavily on random scatter and gather accesses to
main memory can take advantage of the high communica-
tion bandwidth and low latency.

With a clock speed of 3.2 GHz, the Cell/B.E. processor
has a theoretical peak performance of 204.8 GF/s (single
precision). The EIB supports a peak bandwidth of 204.8
GB/s for intrachip transfers among the PPE, the SPEs, and
the memory and I/O interface controllers. The memory in-
terface controller (MIC) provides a peak bandwidth of 25.6
GB/s to main memory. The I/O controller provides peak
bandwidths of 25 GB/s inbound and 35 GB/s outbound.

3. MPEG-2 Decoding Algorithm

The MPEG-2 video coding standard defines a lossy com-
pression algorithm that takes advantage of spatial and tem-
poral correlation in order to achieve high compression ra-
tios. Spatial correlation finds similarities within each pic-
ture to eliminate redundancy, while temporal correlation
finds similarities between successive pictures. The com-
plete MPEG-2 standard is very detailed, as it is very flexible
to meet a wide array of demands and is available as an ISO
document [8].

The most important aspect of the MPEG-2 standard is
its layered hierarchy. Fig. 2 provides an overview of the
hierarchy. Vital to parallelization is that different parts of
the stream are marked with byte-aligned codes (startcodes).
This allows for fast, random access to the various structures
within the datastream without performing extensive header

Interrupt SPE O SPE 1

Controller
LS LS

: b

I
i i SPE4 SPE5

512 KB LS LS
L2 cache

~—> RAM
Memory

Controller

SPE 2 SPE 3
System Memory

LS LS

b :
: :

SPE6 SPE7

~—™ RAM

Element Interconnect Bus (EIB)

~— |0 Device
I/0
LS LS Controller

~— |0 Device

Figure 1: Cell Broadband Engine Architecture

decoding.

The highest level of the hierarchy is the sequence level.
Each sequence is made up of groups of pictures, or GOPs.
Each GOP is a grouping of a number of I-, P-, and B-
pictures. I-pictures, or intra coded pictures, use only spa-
tial compression. This means that I- pictures can be de-
coded independently of the other pictures, providing start-
ing points for decoding. While P- and B-pictures use spatial
and temporal compression, they vary on the reference pic-
tures used by their temporal compression. P- pictures, or
predictive coded pictures, use temporal compression based
on past I- or P- pictures (reference pictures). B- pictures,
or bidirectionally-predictive coded pictures, use temporal
compression based on past and future reference pictures.
Here, past and future refer to the presented order of pic-
tures, not the decoded order of pictures.

Pictures corresponding to a frame (progressive) or a field
(interlaced) contain slices. A slice cannot span multiple
rows of the picture, but there can be multiple slices per
row. Each slice consists of macroblocks, which are in turn
divided into blocks. Macroblocks and blocks do not have
startcodes associated with them.

Decoding an MPEG-2 stream is described by Fig. 3.
Huffman and run-length decoding are performed to decode
headers (sequence, GOP, and slice headers) and to gener-
ate the quantized block (quantization introduces the lossy
portion of the standard). Performing inverse quantization
on each block gives the coefficients for the next step, the
inverse discrete cosine transform (IDCT). The IDCT is ap-
plied to obtain the block’s spatial data (I-Picture) or predic-
tion error (P- and B-pictures). If necessary, motion com-

pensation is performed to generate the final data from the
prediction error data and reference pictures.

Each level in the MPEG-2 hierarchy provides a possible
point of parallelization. Bilas ef al. [1] examine each point
and discover that the only acceptable parallelism points are
at the GOP level and at the slice level. The authors test
on a multiprocessor system and consider several important
factors in coming to this conclusion. The points of compari-
son include memory footprint, load balancing between pro-
cessors, and scalability when adding additional processors.
Other levels of MPEG-2 are rejected as points of parallelism
because doing so would create too many serial portions of
execution, due to dependencies, or tasks too variable in size
to properly load balance. Drake et al. [2], however, use
macroblock decoding as their point of parallelism. Within
macroblocks, the authors parallelize motion vector decod-
ing and applying the IDCT. Since the focus of their work
is primarily message passing and using a streaming data
model, we thought a similar approach might work well on
the Cell/B.E.

We confirmed these findings using test implementations
on the Cell/B.E. Slice level parallelism works very well.
Through profiling we find that the majority of the execu-
tion time is spent in the IDCT portion of decoding, con-
firming macroblock decoding as a candidate for parallelism.
However, when we examine macroblock level parallelism
closely, we observe that the next largest portion of execution
time is spent in header decoding on the PPE. Also, since
the SPEs are issuing DMA commands for small amounts
of memory, the EIB is not being utilized fully. Therefore
we use parallelism at the slice level. Doing so achieves a

I — 4” ‘ ‘"" ‘ % Block
T EEm — =3 Slice
] Sequence Macroblock
Video Stream Group of Picture
Pictures
Figure 2: MPEG-2 Structural Hierarchy
Compressed Huffman Run-Length Inverse Inverse Motion Uncompressed
Video Decoding Decoding Quanitzation DCT Compensation Video

Figure 3: Sequential decode sequence for a MPEG-2 block

balance between utilizing the EIB, the Local Store, and par-
allelizing a larger portion of header decoding.

4. Cell/B.E. MPEG-2 Decoding

The mantra of achieving high performance on the
Cell/B.E. should be iterative performance optimization of
the code. Given the complexity involved in extracting max-
imum performance from the architecture, particularly the
SPEs, a single pass approach would be too overwhelming
for a programmer, particularly a novice. To emphasize this
point, we outline each optimization step of our process. The
source file names from our final implementation are also
provided. Except for the following changes, most of the
reference implementation was not modified.

Our software is based on the reference implementation
of MPEG-2 provided by MPEG (Moving Pictures Expert
Group) [4]. In this implementation, most of the data is in
global space, which makes the initial analysis step relatively
simple. The first step consists of simply splitting the code
base in two, one part to run on the PPE and the other part
to run on the SPEs. The PPE code primarily handles the
I/O and global data structures, while the SPE part contains
the computational tasks involved with decoding MPEG-2
streams. We analyze the slice decoding function (in get-
pic.c) to determine the inputs and outputs, including the de-
pendent global data. Since each functional unit is compiled
separately, we rely mostly on the compiler generated errors
in this step after splitting the code base into separate PPE
and SPE bases.

Once we created two separate code bases, we started an
incremental procedure of parallelizing the program on the
Cell/B.E. First, we achieve program correctness. To sim-
plify debugging, we limited the program to synchronously
decoding a single slice from the first frame on one SPE and
then exiting. The first slice of the first picture should always
be from an I-picture, so this eliminates the motion compen-
sation code and allows for faster iteration. This step creates

a control block structure containing data that the SPE needs
from the PPE’s global space, and the DMA commands on
the SPE side for bringing the control block in and writing
the decoded slice back out. We create the control block and
launch the decoding job in a blocking fashion inside the
function for decoding a picture (getpic.c:picture_data()).
After successfully completing this task, we move next to
decoding one I-picture completely on one SPE.

The next step requires decoding a P- or B- picture, and
would prove very challenging. Located in recon.c is the
code which uses the decoded motion vectors and the ref-
erence pictures to reconstruct a macroblock in the current
picture. This should not be confused with motion.c, which
is the code dealing with decoding the motion vectors. This
task requires the ability to perform potentially random ac-
cess in the reference pictures from the SPE side. This would
clearly require a software cache system on the SPE side, be-
cause of the limited amount of Local Store space. We exam-
ine the methodology used in optimizing this software cache
system in Section 4.1. For now, we simply issue a block-
ing DMA command to bring in the necessary data from the
reference pictures for each motion vector.

The final task we face is the creation of a work-queue
system so that the PPE can execute in parallel with the
SPEs. This is also the step where we introduce the abil-
ity to run on multiple SPEs at once. We design a standard
work-queue model, with providers and consumers, and use
the Cell/B.E. mailbox messaging system. The latency of the
mailbox system is negligible compared with the overall time
needed to decode a slice. This code is in Celllnterface.c on
the PPE side. After completing this task, we begin the next
phase of the process — improving the performance of the
application.

One possible optimization we found during profiling re-
lates to decoding variable length headers on the SPEs. Each
level of the MPEG-2 hierarchy has an associated startcode
and header. To conserve space, the headers are stored us-
ing a variable length scheme, which means that decoding

these headers requires a significant amount of branches.
Since the branch miss penalty on the SPE is higher than
on the PPE, there are two options. The first option is that
all header decoding can be performed on the PPE and all
relevant information can be passed using the control block.
The other option is to decode as much of the headers as
possible on the SPEs. The first option emphasizes minimiz-
ing branch penalties while the second emphasizes increased
parallelization.

Because the structure of the reference implementation
made it easy, we decided to simply implement two meth-
ods and compare directly. Through performance analyses,
we discover that performing all header decoding on the PPE
does not scale at all. Using more than 3 SPEs results in SPE
starvation while the PPE decodes the next work unit. There-
fore, empirically, we find that the increase in parallelization
and load-balancing far outweighs the branch miss penalties
that the SPEs incur.

After solidifying the algorithm, and performing the mo-
tion vector optimization described in Section 4.1, we apply
common low-level techniques for improving performance
on the Cell/B.E. Primarily, we double buffer DMA transfers
and, where possible, apply SIMD instructions in computa-
tionally expensive portions of the code.

A potential problem we notice during profiling is the
amount of code needed in order to decode a slice. The com-
plete executable on the SPE side is approximately 142 KB.
This does not leave much room for software cache systems
or double buffering, especially considering the amount of
data associated with each slice and picture. Overlays could
potentially be used, but almost all of the code is used be-
tween DMA commands. Therefore, currently most of the
DMA commands issued are blocking.

Using this iterative performance optimization process is
indicative of how development for the Cell/B.E. should be
approached. Attempting to tackle all of the nuances of the
Cell/B.E. at once can be a daunting task, especially for a
novice Cell/B.E. programmer. Fig. 4 shows the overall se-
quence of events in decoding a picture.

4.1. Optimizing Motion Reconstruction

During the performance optimization process, we find
that the majority of the running time is spent waiting on the
DMA commands in recon.c to complete. Our procedure for
optimization uses profiling combined with simply removing
the DMA commands while maintaining the same amount
of SPU computation, not worrying about the program’s cor-
rectness, and then measuring the effect on running time.

The technique of removing the DMA commands while
maintaining the computational nature of the application
helps determine whether the dual-issue capability of the
SPE:s is being utilized completely. If the running time im-

proves dramatically, then the DMA commands are a bot-
tleneck and double-buffering or a software cache should be
considered. If the running time is not improved, then the
running time is bound to the amount of computation and
SIMD-ization or other techniques should be utilized to im-
prove running time.

In our case, the running time of the application improves
dramatically without the DMA commands used by the mo-
tion reconstruction code. Through further analysis of access
patterns, we find that the majority of our test files required
alternating access to slices during motion reconstruction.
Although this is not indicative of the general case, we intro-
duce a software cache system which maintains the last two
accessed slices. The software cache also utilizes the least
recently used (LRU) eviction policy since, once a slice is
used completely (after several alternating accesses) in mo-
tion reconstruction, it is not likely to be accessed again un-
til the next picture. Each cache line refers to an entire slice
from a reference picture, in order to exploit locality in the
references along the z-axis.

The process we use for finding the performance bottle-
neck in motion reconstruction highlights the effectiveness
of two simple techniques when dealing with the Cell/B.E.
The first technique is to simply eliminate all DMA com-
mands that could potentially be double-buffered or cached
and see how running time is affected. The second technique
is to simply profile access patterns in order to determine the
best method of hiding DMA latency, with either a double-
buffering scheme or the use of a software cache.

5. Performance Results

In order to analyze the performance and scalability of
our MPEG-2 library for the Cell Broadband Engine proces-
sor, we use a benchmark video stream for our experimental
studies. Our test runs take as input a 704 x 480 MPEG-2
stream with 450 frames. We remove all display duties in
order to remove variability between graphical display oper-
ations between architectures.

We use two types of Cell/B.E. platforms to compare
the performance of our MPEG-2 implementation: an
IBM QS20 dual-Cell/B.E. blade (IBM QS20) and a Sony
PlayStation 3 (Sony PS3). The IBM QS20 uses two 3.2
GHz Cell/B.E. processors, 1 GB of RAM, and 16 avail-
able SPEs. We compile our application using the IBM XLC
compiler with the -O3 flag and we compile a PPE-only
reference implementation with both XLC and gcc. The
stock Sony PS3 runs YellowDog Linux, and has a single
3.2 GHz Cell/B.E. processor, 256 MB of RAM, and 6 avail-
able SPEs. On the Sony PS3, we compile our application
using the IBM XLC compiler, and as a comparison we com-
pile one version of the PPE-only version using gcc. Both
compilers are called with the -O3 flag.

MPEG-2 Stream

\

Header Decode
(Variable-length)

Y

Prepare Slice Jobs

»

4
Slice Header Slice Header
Decode Decode
A4 A4
Decode MB Decode MB
\' \J
Decode Motion |(m Decode Motion
Vectors Vectors
Y Y
IDCT IDCT
\ \J
Motion Compen- Motion Compen-
sation sation
v \J
Write Back Write Back

Decoded Slice

Decoded Slice

y=

‘Wait for all Slices

)Y

Mark Current Picture as
Reference
(if Applicable)

\J
Decoded Stream

Figure 4: Parallel decode sequence. The parallel portion is run on the SPEs and the serial portions are run on the PPE.

Comparison of MPEG-2 Decoding Performance

20
15
@
(0]
S
|_
o 10
C
c
C
=}
x
5 -
O _
%'b\ 6(5\
NS N
Q’OO ;‘30 00
Q\)' Q‘> \)’Q
Q ¢ R

System

Figure 5: Comparing the fastest Cell/B.E. implementation of MPEG-2 against other architectures and PPE-only references.

As a comparison, we also run the reference implemen-
tation on a 3.2 GHz Intel Xeon Processor with 4 GB of
RAM. We compile the program with gcc using the -O3
flag. The difference in RAM is not significant since the ap-
plication and benchmark fits within the memory of all three
platforms.

Platform Sony PS3 | IBM QS20
1 PPE + 0 SPEs (gcc) 18.836 16.909
1 PPE + 0 SPEs (x1c) 12.759 12.777
1 PPE + 1 SPEs (x1c) 13.413 13.805
1 PPE + 2 SPEs (x1c¢) 6.766 6.983
1 PPE + 3 SPEs (x1c¢) 4.549 4.663
1 PPE + 4 SPEs (x1c¢) 3.636 3.726
1 PPE + 5 SPEs (x1c) 2.788 2.863
1 PPE + 6 SPEs (x1c) 2.354 2.399
1 PPE + 7 SPEs (x1c) 2.330
1 PPE + 8 SPEs (x1c) 1.952
1 PPE + 9 SPEs (x1c) 1.905
1 PPE + 10 SPEs (x1c) 1.575
1 PPE + 11 SPEs (x1c) 1.513
1 PPE + 12 SPEs (x1c) 1.482
1 PPE + 13 SPEs (x1c) 1.469
1 PPE + 14 SPEs (x1c) 1.434
1 PPE + 15 SPEs (x1c) 1.212
1 PPE + 16 SPEs (x1c) 1.210

Table 1: MPEG-2 Decoder Execution Times (in seconds)
on the Sony PlayStation 3 and the IBM QS20 Dual-Cell
Blade. As a reference, the benchmark takes 3.736 seconds
on a 3.2GHz Intel Xeon processor.

Table 1 shows the raw running-time numbers for vary-
ing numbers of SPEs on the PS3. Both tables also include
the running-times for the reference implementation com-
piled with XL.C and gcc on each platform. Running-time
here means the amount of time each program needs to com-
pletely decode every picture in the datastream.

In Fig. 6 we plot the results from using varying numbers
of SPEs (in order to show scalability) for the IBM QS20
and Sony PS3. Finally, we compare the 6 SPE run-time on
the PS3, the 16 SPE run-time on the QS20, the PPE-only
reference compiled using gcc on both PS3 and QS20, a
PPE-only reference compiled with XL.C on both PS3 and
QS20, and a reference on a 3.2 GHz Intel Xeon compiled
using gcc in Fig. 5.

We first observe that using 4 SPEs on either the QS20 or
PS3 beats the running-time of the reference implementation
running on the Intel Xeon processor. After this, the notice-
able result is that, when using SPEs, the QS20 performs
slightly slower than the PS3 when both use the same num-
ber of SPEs. Also, using profiling we observe that memory
allocation seems to run slightly slower on the QS20 than the

PS3. Both of these results are due to the two platforms run-
ning different operating systems and the fact that the PS3
will always have the same amount of RAM. We believe
that this limitation allows the operating system to optimize
memory allocation.

Another result between the QS20 and the PS3 is the dif-
ference in running-times of the reference implementations
compiled with XLC and gcc when run only on the PPE.
Both runs of the XLC compiled application are similar in
running-time, but the running-time of the two gcc com-
piled applications differ greatly. The difference between the
XLC versions can be explained by the operating system dif-
ferences, while the differences between the gcc versions
can be attributed to the use of slightly different versions of
gcc.

6. Conclusions

By using various techniques for programming with the
Cell/B.E., we have developed what we believe is the first
open-source implementation of a multimedia application
optimized for this architecture. Our experience highlights
some of the general techniques that may be employed
for optimizing other algorithms and applications for this
highly-capable architecture. These techniques should be
similarly useful when implementing other decoders or im-
age processing applications. Our choice of implementing
MPEG-2 should be useful to others porting other decoders
to the Cell/B.E. since MPEG-2 utilizes many similar tech-
niques to achieve compression.

Our application achieves significant performance gains
over the Intel Xeon when using 4 or more SPEs. Using 6
SPEs, the maximum available on the PS3, our application
achieves a speedup of 1.587 over the Xeon on the PS3 and
a speedup of 1.557 over the Xeon on the QS20. Using 16
SPEs, the maximum available on the QS20 without code
modification, our application achieves a speedup of 3.088
over the Xeon.

7. Acknowledgments

This work was supported in part by an IBM Shared
University Research (SUR) award and NSF Grants CNS-
0614915, CAREER CCF-0611589, and DBI-0420513. We
acknowledge our Sony-Toshiba-IBM Center of Compe-
tence for the use of Cell Broadband Engine resources that
have contributed to this research.

Performance of MPEG-2 Decoder On Sony PlayStation 3

O

(0]
£ S
= 2
()] [0
= [oR
£ 3
c

]
o Intel Xeon

0 T T T T T T O
1 2 3 4 5 6
Number of SPEs
Performance of MPEG-2 Decoder On IBM QS20

O

(0]

£ S
= 2

(@] [0}

= Q.
£ 3

c

]

i

Intel Xeon
0 T T T T T T T T T T T T T T T T O

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of SPEs

Figure 6: A comparison of the MPEG-2 decoder performance on the Sony PS3 / 3.2GHz Cell/B.E. processor (top) and IBM
QS20/two 3.2GHz Cell/B.E. processors (bottom). These plots gives the running time (in seconds) and speedup (with respect
to the running time on the same platform using a single SPE) as the number of SPEs is increased to the maximum number of
SPEs on each platform. Note that horizontal dashed line is the running time for the same benchmark problem using a 3.2GHz

Intel Xeon processor.

References

[1] A. Bilas, J. Fritts, and J. Singh. Real-time parallel MPEG-2
decoding in software. Technical Report TR-516-96, Depart-
ment of Computer Science, Princeton University, 1996.

[2] M. Drake, H. Hoffmann, R. Rabbah, and S. Amarasinghe.
MPEG-2 decoding in a stream programming language. In
Proc. Int’l Parallel and Distributed Processing Symp. (IPDPS
2006), Rhodes, Greece, Apr. 2006.

[3] B. Flachs, S. Asano, S. Dhong, P. Hofstee, G. Gervais,
R. Kim, T. Le, P. Liu, J. Leenstra, J. Liberty, B. Michael,
H. Oh, S. Mueller, O. Takahashi, A. Hatakeyama, Y. Watan-
abe, and N. Yano. A streaming processor unit for a Cell pro-
cessor. In International Solid State Circuits Conference, vol-
ume 1, pages 134135, San Fransisco, CA, USA, February
2005.

[4] M. S. S. Group. MPEG-2 encoder/decoder, version 1.2, July

1996.

C. Jacobi, H.-J. Oh, K. Tran, S. Cottier, B. Michael,

H. Nishikawa, Y. Totsuka, T. Namatame, and N. Yano. The

vector floating-point unit in a synergistic processor element

of a Cell processor. In Proc. 17th IEEE Symposium on Com-

puter Arithmetic, pages 59-67, Washington, DC, USA, 2005.

IEEE (ARITH ’05) Computer Society.

[6] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and
D. Shippy. Introduction to the Cell multiprocessor. IBM J.
Res. Dev., 49(4/5):589-604, 2005.

[7]1 M. Kistler, M. Perrone, and F. Petrini. Cell multiproces-
sor communication network: Built for speed. IEEE Micro,
26(3):10-23, 2006.

[8] M. P.E. G. MPEG). ISO/IEC 13818-2: 1995 (e) recommen-

dation ITU-T H.262 (1995 e).

D. Pham, S. Asano, M. Bolliger, M. Day, H. Hofstee,

C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi,

M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M. Wang,

J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and

K. Yazawa. The design and implementation of a first-

generation Cell processor. In International Solid State Cir-

cuits Conference, volume 1, pages 184-185, San Fransisco,

CA, USA, February 2005.

(5

—

[9

—

