
J. Parallel Distrib. Comput. 67 (2007) 1007–1017
www.elsevier.com/locate/jpdc

On the design of high-performance algorithms for aligning multiple protein
sequences on mesh-based multiprocessor architectures

Diana H.P. Lowa, Bharadwaj Veeravallia,∗, David A. Baderb

aDepartment of Electrical and Computer Engineering, The National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
bCollege of Computing, Georgia Institute of Technology, Atlanta, Georgia, USA

Received 5 June 2006; received in revised form 8 February 2007; accepted 22 March 2007
Available online 17 May 2007

Abstract

In this paper, we address the problem of multiple sequence alignment (MSA) for handling very large number of proteins sequences on
mesh-based multiprocessor architectures. As the problem has been conclusively shown to be computationally complex, we employ divisible
load paradigm (also, referred to as divisible load theory, DLT) to handle such large number of sequences. We design an efficient computational
engine that is capable of conducting MSAs by exploiting the underlying parallelism embedded in the computational steps of multiple sequence
algorithms. Specifically, we consider the standard Smith–Waterman (SW) algorithm in our implementation, however, our approach is by no
means restrictive to SW class of algorithms alone. The treatment used in this paper is generic to a class of similar dynamic programming
problems. Our approach is recursive in the sense that the quality of solutions can be refined continuously till an acceptable level of quality is
achieved. After first phase of computation, we design a heuristic scheme that renders the final solution for MSA. We conduct rigorous simulation
experiments using several hundreds of homologous protein sequences derived from the Rattus Norvegicus and Mus Musculus databases of
olfactory receptors. We quantify the performance based on speed-up metric. We compare our algorithms to serial or single machine processing
approaches. We testify our findings by comparing with conventional equal load partitioning (ELP) strategy that is commonly used in the parallel
processing literature. Based on our extensive simulation study, we observe that DLT paradigm offers an excellent speed-up characteristics and
provides avenues for its use in several other biological sequence processing related problem. This study is a first time attempt in using the DLT
paradigm to devise efficient strategies to handle large scale multiple protein sequence alignment problem on mesh-based multiprocessor systems.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Mesh topology; Smith–Waterman algorithm; Multiple sequence alignment; Divisible loads; Protein sequences

1. Introduction

Biological sequence alignment has significance in under-
standing genetic and molecular evolution. Biological sequences
are made up of residues. In DNA (deoxyribonucleic acid) se-
quences, these residues are nucleic acids, while in protein se-
quences, these residues are amino acids. Aligning or comparing
biological sequences is a computationally intensive operation
as we need to take into consideration that biological sequences
may mutate or evolve over time. The process of aligning two or
more sequences is often an imperative step to quantify the qual-
ity of the samples under consideration. For instance in case of

∗ Corresponding author. Fax: +65 777 8804.
E-mail addresses: dianalow@nus.edu.sg (D.H.P. Low), elebv@nus.edu.sg

(B. Veeravalli), bader@cc.gatech.edu (D.A. Bader).

0743-7315/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2007.03.007

protein structure predictive methods and structure comparison
methods, sequence alignment for maximum similarity score is
often one of the crucial steps [10]. As such, in aligning biolog-
ical sequences, residues can be inserted, deleted or substituted
from either two sequences to obtain the optimum alignment.
For two sequences with x number of residues each, there are
as much as (1 + √

2)2x+1√x possible alignment combinations
[32]. Hence, over the years various algorithms have been pro-
posed in order to speed up the alignment process.

Protein sequence analysis, unlike DNA sequence analysis,
tries to match protein sequences and find conserved domains
within the sequences in order to classify them into families of
similar functions. Multiple sequence alignment (MSA) analy-
sis provides a wealth of information; protein structure, active
domain sites and protein binding sites can be revealed through
such analysis. In 1970, Needleman and Wunsch [20] have

http://www.elsevier.com/locate/jpdc
mailto:dianalow@nus.edu.sg
mailto:elebv@nus.edu.sg
mailto:bader@cc.gatech.edu


1008 D.H.P. Low et al. / J. Parallel Distrib. Comput. 67 (2007) 1007–1017

designed an algorithm for aligning biological sequences
without going through all the possible combinations. Never-
theless, the Needleman–Wunsch algorithm still has a com-
plexity of O(x2). This algorithm is later improved by Sellers
[26] and generalized by Smith and Waterman [27,33]. The
Smith–Waterman (SW) algorithm, on the other hand, has a
complexity of O(x3) but was later improved by Gotoh [13] to
just O(x2). Considering the vast amount of sequences avail-
able today from databases such as [9,12,29], a complexity of
O(x2) may still be unacceptable in many cases especially in
the case of aligning multiple sequences. Further, these gigantic
databases are growing rapidly, i.e., the GenBank is growing at
an exponential rate, with rate as much as of 1.2 million new
sequences a year [3].

In order to cope with the computationally intensive opera-
tion and vast amount of available data, various heuristic meth-
ods have been proposed. These include FASTP [16], FASTA
[21,22], BLAST [1], variants of BLAST such as mpiBLAST
[11] and FLASH [7]. These heuristics obtain computation
speed-up at the cost of less sensitivity. Other methods, such
as [19], are able to achieve speed-ups without losing sensitiv-
ity. Nevertheless, the algorithms are only effective in aligning
similar sequences as the computational time is directly propor-
tional to the number of differences in between the sequences.
Further, they do not generate the complete SW matrix that can
be used to detect multiple subsequence similarities.

With the recently evolved cluster/grid computing paradigm,
researchers attempt to gain high speed-ups in handling such
computationally intensive applications. In [36], a speculative
strategy was presented for multi-sequence alignment. The strat-
egy exploits the independence between alignment group pairs
in the Berger–Munson [4] algorithm. It achieves speed-up by
processing multiple iterations in parallel with the speculation
that the current iteration is independent of the previous iter-
ation. Nevertheless, due to the working style of this strategy,
the number of processors that can be utilized is limited and the
speed-up is dependant on the similarities of the sequences.

In [31], a clustering strategy was introduced for multi-
sequence alignment. In this strategy, sequences are cleverly
filtered and group pairs identified. These group pairs are then
processed concurrently hence achieving speed-up. Nonethe-
less, in this strategy, there are relatively large amount of idle
processors during the early stages of the strategy when the
number of group pairs that can be processed in parallel are
limited. Further, homogenous processors are required in for
this strategy for high degree of parallelism.

In a recent work [25], a parallel strategy was introduced that
utilizes the advantages offered by the generic Intel processor
with MultiMedia eXtensions (MMX) and Streaming SIMD Ex-
tensions (SSE) technology. As shown in the paper, the strategy
utilizes the technology offered by the processor to execute eight
computational processes in parallel. The major disadvantage
of this strategy is that it is nonscalable and dependent on the
micro-processor technology, i.e., the Pentium processor shown
in the paper can only support a maximal of eight simultaneous
computations. The human genome project has made tremen-
dous progress in sequencing the genomes, and large amount

of new sequences are being generated everyday. There is a
need to improve processing time and also the quality of the re-
sults. Parallel and/or distributed computing can certainly help
to reduce the load by disseminating the total computational
process among several nodes on the network [37]. This has
been attempted by several authors in this bioinformatics do-
main [23,25]. Divisible load theory (DLT) [6] offers quality
solution at a minimum time by partitioning the total load to be
processed among several nodes. DLT is proven to be suitable
for handling large scale computational loads. In DLT compu-
tational loads are divided among the nodes [24], however, the
question of which of the entities must be considered as divis-
ible loads is the first step to be decided. In our context, the
computational space (which will be described in Section 2) is
divided among the nodes as opposed to dividing a protein se-
quence among the nodes. This is mainly because of the depen-
dencies arising among the processed results on different nodes,
if the sequences were partitioned. Thus, we exploit both the
space as well as time dimensions to maximize the throughput
(number of sequences that can be processed) in our strategy. In
a recent work [34], a bus network topology is considered for
aligning two biological sequences and the applicability and the
power of DLT model is conclusively demonstrated. A linear
speed-up was achieved and a very high utilization of processors
in the system were demonstrated in this work. This naturally
sets a motivation to use the DLT paradigm to handle multiple
sequences and develop an alignment engine for carrying out
MSA. The relevance is obvious when network-based comput-
ing is to be rendered using modern day Bio-Grid architectures
and Clusters. Sections 2 and 3 describe our approach in detail.

1.1. Motivation and our contributions

In this paper, we consider the problem of aligning multiple
protein sequences on a tightly coupled mesh-based multipro-
cessor networks. Our venture in this paper is motivated by the
fact that there exists a very few online MSA engines that can
handle several large number of sequences. Moreover these en-
gines may not serve as a middle-ware plug-and-play module
for infrastructures such as, Bio-Grid and network-based ser-
vice rendering. Further such engines schedule a given set of
sequences only once and do not attempt to refine the quality
of solution. This poses a serious limitation for biologists and
computational researchers to perform a comparative study in-
volving more than hundreds of sequences. Applications such
as drug targeting/manufacturing requires a higher level preci-
sion in quality of results. All these factors collectively set a
demand in designing an (network-based) alignment engine that
can handle very large number of sequences. Mesh architec-
tures being commonly used infrastructure in parallel processing
community, ranging for a wide variety of applications, we aim
to design a generic massively parallel alignment engine that
is capable of handling several sequences using a mesh-based
multiprocessor topology. We develop algorithms to achieve sig-
nificant speed-up in processing time as compared to serial or
single machine processing approaches. We testify all our find-
ings by comparing with conventional equal load partitioning



D.H.P. Low et al. / J. Parallel Distrib. Comput. 67 (2007) 1007–1017 1009

(ELP) strategy that is commonly used in the parallel process-
ing literature. We use DLT paradigm and exploit parallelism in
space as well as in time dimensions. Our strategy fundamen-
tally exploits the underlying parallelism embedded in the com-
putational steps of multiple sequence algorithms. We consider
the standard SW algorithm in our implementation, however, it
may be noted that our approach is by no means restrictive to
SW algorithm alone. Our approach can be readily applied to
a generic class of such similar dynamic programming prob-
lems. After initial phase of computation, we design a heuristic
scheme, a modified version of Taylor’s methodology [10], that
renders the final solution for MSA. Our scheme can be recur-
sively used to continuously refine the scores till a satisfactory
result is achieved. We conduct rigorous simulation experiments
using several hundreds of homologous protein sequences de-
rived from the Rattus Norvegicus and Mus Musculus databases
of olfactory receptors. This is also a first time in the domain
of DLT that such an application involving multiple sequences
is explicitly attempted. Finally, it may be noted that although
we consider a mesh topology, an underlying physical infras-
tructure could be a cluster or any HPC system with a group of
computer nodes and a logical organization could be a mesh.

2. Preliminary information and problem formulation

We shall now present some of the required technical back-
ground material first before we present our approach. Firstly,
a variant of SW algorithm [27,35] proposed by Gotoh [13] as
well as some characteristics of the matrix generated by the al-
gorithm is discussed. In aligning two sequences Seq1 and Seq2,
of length � and �, respectively, the algorithm fundamentally
generates three matrices, S, P and Q. Each row and column of
these matrices represents a residue of Seq1 and Seq2, respec-
tively. Given s(ax, by), the substitution score for replacing the
xth residue from Seq1 with the yth residue from Seq2, w1 as the
penalty for introducing a gap, and v as the penalty for extend-
ing a gap, the S, P and Q matrices are related by the following
recursive equations:

S0,y = Sx,0 = P0,y = Qx,0 = 0, (1)

Sx,y = max
{
Px,y, Sx−1,y−1 + s(ax, by), Qx,y

}
, (2)

Px,y = max
{
Sx−1,y + w1, Px−1,y + v

}
, (3)

Qx,y = max
{
Sx,y−1 + w1, Qx,y−1 + v

}
(4)

for the range 1�x��, 1�y�� where Sx,y, Px,y, and Qx,y

represent the matrix elements in the xth row, yth column of the
matrices S, P and Q, respectively. Residues in Seq1 and Seq2
are tested for a best possible alignment in a recursive fashion,
and leads to a possible alignment of the respective sequences.
The score of the matrix element, Sx,y , quantifies the quality
of alignment until the xth residue of Seq1 and the yth residue
of Seq2. The higher the score at Sx,y , the better the alignment
between the sequences up to those residues. The finer details
of this algorithm and an illustrative example demonstrating the

Seq B

Seq A

Fig. 1. Computational dependency in generating S matrix in Smith–Waterman
algorithm.

generation of the above matrices S, P , and Q can be found in
[35].

As can be seen from the equations, the element Sx,y is de-
pendent on the (x − 1, y − 1), (x − 1, y), and (x, y − 1) el-
ements from the S, P and Q matrices, respectively, shown in
Fig. 1. Due to this dependency, the S matrix elements cannot
be computed independently (either column-wise or row-wise)
but the elements along the diagonal line with the same (x + y)

values can be computed independently. This property will be
exploited in our strategy in the attempt to distribute computa-
tions among several processors in the mesh. Secondly, we use
Taylor’s [28] clustering strategy 1 for multiple protein sequence
alignment. It must be stressed that the choice of this strategy
is due to its simplicity in implementation and in our strategy,
any clustering strategy could be used in general. Basically this
strategy makes use of the similarity scores obtained via SW
and orders the sequences into a cluster by decreasing similar-
ity scores. Thirdly, divisible load paradigm is employed [5,24]
to partition the computational space among the processors in
the mesh to enable simultaneous processing in order to achieve
higher speed-up. DLT is a methodology that partitions the load
arbitrarily to various processors in order to minimize overall
processing time. Details on how we use DLT paradigm will be
presented in the next section after introducing a description on
the underlying mesh network.

We now describe the underlying mesh architecture, as in
Fig. 2. We envisage our mesh architecture as a tightly coupled
(no communication delays) structure comprising N × M pro-
cessing nodes (or processors/CPUs) as shown in the figure. We
designate each row as Ri, i = 1, 2, . . . , N and the processors
on each row as Pk, k = 1, . . . , M . Each row has a master node
that co-ordinates the activities of the processors in that row.

1 Other alternative methods like, Martinez’s [17], Barton and Sternberg’s
[2] strategies can also be used.



1010 D.H.P. Low et al. / J. Parallel Distrib. Comput. 67 (2007) 1007–1017

Processor 3 

Row 1 

Processor 2

Row 1 

Processor 1 

Row 1 

Processor 3

Row 10

Processor 2

Row 10

Processor 1 

Row 10

Fig. 2. N × M mesh structure.

We assume that a process which starts an instance of MSA
retrieves a set of sequences to be aligned from a database and
injects to the mesh following the distribution strategy to be
described in the following subsections. The main sequence pool
O (see Fig. 3) is divided equally among all the rows so that
each row handles the same number of sequences, say, Q. Thus,
each row of the mesh will be processing a subset of sequences
and arrive at an alignment that is best for that subset. All master
nodes of a each row will collate the results to recommend an
ultimate aligned sequence set.

In this paper, Taylor’s method is considered as a heuristic to
align the sequences. Then this set of locally aligned sequences,
are passed to another module, referred to as improved Taylor’s
method (ITM), to realign all the locally aligned sequences from
each row to improve the overall score. This overall aligned
set (only the indices or name tags 2) is temporarily stored for
comparing the quality of the output from the next iteration.
We re-designate the sequences following this aligned order and
randomly form a set of sequences Q for each row of the mesh
for the next iteration for obtaining a refined score. The process
is repeated until a satisfactory score and performance gain is
achieved. Fig. 3 shows this entire process. It is assumed that all
the processors that are involved in the computation of the SW
matrices will be furnished with an information on the respective
subset of sequences involved, in their local memories. In Table
1 we list an index of notations and terminology that are used
throughout this paper.

3. Design and analysis of MSA strategies

3.1. Load distribution strategy

Processing time computation involves capturing the time
taken to generate the S, P and Q matrices. All M processors

2 We can store the FASTA name tags associated with each sequence in the
order.

in a row will be involved in the alignment of any one pair of
sequences at any particular time. Thus, the matrices will be
partitioned into M sections, both in row- and column-wise di-
rections. All three matrices are partitioned into sub-matrices
Lk,l, k = 1, . . . , M; l = 1, . . . , M , with each sub-matrix con-
taining a portion of Seq1 and Seq2 as shown in Fig. 4. Com-
putation starts at L11. Since L12 and L21 has dependency on
L11 as described in previous sections (see Fig. 1) they cannot
begin computation until L11 is completed. This applies to the
rest of the matrix entries as well. The effect of this dependency
will be seen in the processing time calculation procedure later
in this paper.

Following the DLT paradigm, the amount of computational
load allocated to each processor will be proportional to its
speed, so that all the processes will complete its computation
at the same instant. In this paper, the computation space is
partitioned as follows. All processors are assigned an identical
amount of computational space along Seq2 (�/M) following
an ELP strategy, whereas the number of rows is derived using
DLT paradigm, along Seq1 direction. Thus, our aim is to have,
on each row Ri ,

�k�k = �k+1�k+1, k = 1, . . . , M − 1, (5)

where

M∑
k=1

�k = �. (6)

Rewriting (5) in a recursive fashion in terms of �M , we have,

�k = �M

(
�M

�k

)
. (7)

Substituting (7) into (6) we obtain,

�M

⎡
⎣1 +

M−1∑
j=1

(
�M

�j

)⎤
⎦ = �,

�M = �

1 + ∑M−1
j=1

(
�M

�j

) .

Using Eqs. (7) and (8) the net computation space assigned to
processor k is

�k = �

1 + ∑M−1
j=1

(
�M

�j

)
(

�M

�k

)
. (8)

Thus, this effectively completes the task of load distribution to
the various processors. ELP is a subset of the DLT problem, in
which all the loads are partitioned equally. In this paper, this
applies to the division of computation space of Seq2, where
�k = �k+1. This means only �k values will differ while �k

values are constant (for a particular N × M mesh).



D.H.P. Low et al. / J. Parallel Distrib. Comput. 67 (2007) 1007–1017 1011

.

.

.

.

.

.

Sequence

pool O

Mesh

R1

.

.

.

RN

Database

Taylor’s

Taylor’s

Original

sequences, K1

Original

sequences, K10

Store the pair-wise 

aligned sequences

Improved

Taylor’s

Temporary sequence 

order defined by 

Taylor’s method

Improved

Taylor’s

Database

Different strategies 

for Multiple

Sequence Alignment

Sort Final

Aligned

MS

Taylor’s

Fig. 3. Design and implementation of the system.

Table 1
Table of definitions

Ri The row number, i = 1, . . . , N

Pk kth processor on a row, k = 1, . . . , M

� Length of Seq1 or number of amino acid residues in Seq1
� Length of Seq2 or number of amino acid residues in Seq2
�k Length/computation space of Seq1 processed by Pk , where∑M

k=1 �k = �
�k Length/computation space of Seq2 processed by Pk , where∑M

k=1 �k = �
�k Inverse of speed of processor Pk (in s/load)
Lk,l lth sub-matrix of S, P and Q that is assigned to Pk for computation.

All the sub-matrices have the same dimensions for the same value
of k

T (m) Processing time, calculated as the time period for the generation
of the S, P and Q matrices

Fig. 4. Distribution of the Smith–Waterman matrices S, P and Q.

3.2. ITM for MSA

In Taylor’s strategy, clustering of multiple sequences are
done based on pair-wise sequence alignments of the various se-
quences with each other. A brief description of Taylor’s method
is presented below and an illustrative example is presented in
an Appendix for readers.

After the sequences have been clustered, overlapping
alignments are preserved by adding gaps into already pair-
wise-aligned sequences to maintain overall cluster alignment.
However, this might not assure an improved quality solution
or an optimal solution. Therefore, an ITM that is proposed
aims to realign sequences before they are added into an or-
der set. Firstly, let XY represent modified sequence X due to
its alignment with Y. Suppose the ordered set now contains
aligned sequences B and D namely, (BD ,DB ). Following the
original method, the sequence with the highest pair-wise score
with either B or D will be added to the set. Let us suppose that
this pair be (A, B). Thus the ordered set will now be (AB , BD ,
DB ). However with ITM, instead of adding AB to the set, we
will now realign A to BD , thus ending up with a set of (ABD

,
BD , DB ). This is shown to produce a more accurate MSA, as
an altered alignment of sequences are considered rather than
original sequences.

3.3. Center-to-center heuristic strategy

While individual rows align a subset of sequences, we need
to align all these subsets to generate a fully aligned set of se-
quences. One can follow a simple concatenation of sequences,
however, in this case there is no influence or exchange of knowl-
edge of sequences between rows of mesh so as to generate a
final alignment that has a better score. In other words, if final
alignment involves a comparison among the scores secured by
each row, then the quality of the solution can be improved.



1012 D.H.P. Low et al. / J. Parallel Distrib. Comput. 67 (2007) 1007–1017

We propose a methodology for generating a final alignment
using the locally aligned sequences from each row. The method
described here will not be manipulating or modifying sequences
within the local clusters but rather describing an approach in
ordering the clusters. This is also due to the fact that MSA prob-
lem usually comprises a very large number of sequences to be
aligned thereby increasing the complexity of this sequencing
process. Our method, referred to as “center-to-center” strategy
(CCS) is proposed to carry out this ordering. In this strategy,
the center sequence 3 in all the clusters is extracted into a set
and are aligned against each other, similar to a single cluster
alignment process. ITM is then used to decide the positioning
of these sequences, i.e., ordering is carried out. Once individ-
ual positions of these (center) sequences are determined, we
consider ordering the individual subsets according to their re-
spective center sequence positions.

The reason why a CCS is proposed as opposed to any other
heuristics is due the way ITM (or in fact, Taylor’s) operate. In
Taylor’s methodology, a sequence can be added to the front or
to the back of the already aligned set depending on whether it
had a highest score affinity with the sequence at the front or at
the back of the set. As such, there is no certainty on whether the
sequence with the highest similarity score (i.e., the one that is
aligned at the very beginning) would end up at the front, back
or center. However, the probability of it being in the center of
the cluster is higher than being either at the beginning or the
end of the cluster. Thus, this CCS is recommended.

4. Processing time calculations

We will describe the methods we have used to compute the
serial and parallel processing times. As in the parallel process-
ing literature, there exist several flavors of speed-up [18] and
we define our metrics below.

A. Serial time calculation: The serial time, T (s), is defined
as the time taken by the fastest processor available on the en-
tire mesh to process all the sequences. This is done to evaluate
whether the parallel times are always better compared to serial
times, especially when the architecture has fastest serial pro-
cessors in place for such large scale problems.

B. Parallel time calculation:
DLT approach. As described in the above sections, the mul-

tiprocessor strategy essentially parallelizes the computation.
However, even with DLT paradigm in place, all the compu-
tations cannot proceed simultaneously, due to the dependency
in matrix information, as described in Section 2. Only sub-
matrices with the same diagonal values of (k + l) can be
computed concurrently. Therefore, the total processing time,
referring to Fig. 5 is, T (p) = t1 + t2 + t3 + t4 + t5.

ELP approach. Here the ELP approach will be used as a
benchmark against the DLT approach, to observe any advan-
tage gained in using DLT. In ELP, the computation space of
a sequence will be divided equally among all processors, and
thus, time taken for each processor to complete their load will

3 Assume that we have odd number of sequences for the ease of
understanding.

L1,1 L1,2 L

L2,1 L2,2 L2,3

L3,1 L3,2 L3,3

t1

t2

t3 t4 t5

P1

P2

P3

time

Fig. 5. Parallel time by DLT for a 3-processor problem.

time

Idle time

Idle time

t2’

t3’

t4’

L1,1 L1,2 L1,3

L2,1 L2,2 L2,3

L3,1 L3,2 L3,3

t1

t2

t3 t4 t5

P1

P2

P3

Fig. 6. Parallel time by ELP for a 3-processor problem.

vary. Hence, all processes will be limited by the speed of the
slowest processor involved. Only when the slowest processor
completes its load may the processing in the next computation
segment begin. Therefore, the total processing time, referring
to Fig. 6 is T (p) = t1 + t2 + t ′2 + t3 + t ′3 + t4 + t ′4 + t5.

4.1. Definition of speed-up

Before we define the speed-up, we need to define the final
parallel processing time. As mentioned in the previous section,
the parallel time, T (p) is the time taken by a row to align M
number of sequences. As there are N rows, working concur-
rently with one another, the T (p) defined above is time taken
by a particular row, and this may differ from row to row. There-
fore, the overall parallel time, taking into consideration N rows,
is defined to be

Overall parallel time, T ′(p)= max{Ti(p)}, i=1, . . . , N,

(9)

where Ti(p) is parallel time obtained from row i.



D.H.P. Low et al. / J. Parallel Distrib. Comput. 67 (2007) 1007–1017 1013

Thus, speed-up is defined as the ratio of time taken by the
fastest processor, serial time, T (s), over the time taken by N ×
M processors in the mesh, the parallel time, T ′(p):

Speed-up = T (s)

T ′(p)
. (10)

We will use this metric to quantify the performance of the
strategies.

5. Performance evaluation

We now describe the environment we used to simulate and
conduct performance of our approaches. All the experiments
were done utilizing the NUS ACAD-HPC Linux Cluster com-
prising nodes running on Linux platforms. The 16-node Linux
Cluster has 32 2.2 GHz Intel Xeon CPUs for interactive and
batch jobs. 4 All experiments are set to run in an automated
fashion for every strategy used. Below we describe the settings
on the hardware used.

5.1. Simulation settings

In the simulation experiments carried out, the N × M mesh
size was fixed, with N, the number of rows in the mesh, is set
to be 10 and M, the number of processors in a row, is set to
vary from 2 to 10. The cluster nodes comprises heterogeneous
processors, whose speeds are set with one of the values 2, 4, 6,
8 and 10. The sequences used for this simulation are homolo-
gous protein sequences derived from the Rattus Norvegicus and
Mus Musculus databases of olfactory receptors and have an av-
erage length of approximately 300 amino acid residues each. A
total of 200 sequences is used in the serial time, parallel time,
and speed-up computations. Sequences used for this simulation
have been collected from GenBank [12]. Each simulation run is
carried out for 100 times and average results are reported. The
SW constants (described in Section 2) used are as in Table 2

We conduct simulation experiments to study two important
issues—one on the influence of number of sequences on time
and the other on the effect of mesh size (network scalability),
use of DLT and ELP techniques. These two experiments serve
to analyze the different parameters and factors that affects the
parallel time and speed-up of the system in our context. The
experiments and results are described in the next two sections.

5.2. Results and discussions

We will present our experiences and results now. We will
also discuss on the implications and usefulness of the results.

5.2.1. Effect of mesh size, DLT and ELP on finish time
In this study, we consider 200 protein sequences. The mesh

size is varied from a dimension 10×2 to 10×10 to analyze the

4 ACAD-HPC stands for academic and high performance computing pro-
vided by the Supercomputing and Visualization Unit of the Computer Center.
Two types of hardware resources are currently accessible through the Portal:
a Windows-based PC compute farm and a Linux-based cluster.

Table 2
Smith Waterman parameters

wk Gap penalty function u + vk

k Gap length Number of gaps inserted into sequence
u Penalty for initiating gap −5
v Penalty for extending gap −1

Parallel processing times for DLT and ELP

0

20

40

60

80

100

120

140

2 3 4 5 6 7 8 9 10

No. of processors per row

T
im

e
(s

)

Ave Parallel ELP

Ave Parallel DLT

Fig. 7. Parallel processing times of DLT and ELP approach.

effect of overall speed-up with respect to the varying number
of processors per row. This study is particularly useful when
number of sequences to be handled grows very large. Simula-
tion is carried out for both the ELP and DLT techniques. The
serial, parallel times and speed-up for both the approaches are
recorded. As shown in Fig. 7, the parallel processing times for
both the DLT and ELP approach seem to exponentially de-
crease. The DLT approach always produces a lower finish time
than the ELP approach. This is due to the fact that when ELP
is used, the faster processors always have to wait for the slow-
est processor to complete the task in a row (generating longer
idle times) due to the computational dependency operations. On
the other hand, DLT approach gains an advantage of partition-
ing the computation space according to a processor’s speed to
minimize the delay experienced, if at all any exist. Fig. 8 illus-
trates speed-up performance for both DLT and ELP methods.
The speed-up exhibited seems approximately linear in both the
cases. The DLT approach, however, delivers a higher speed-
up—almost as a function of number of processors per row com-
pared to the ELP approach, again due to the data dependency
as described before. Fig. 9 essentially compares the serial and
parallel processing times in a row, because each row processes
a total of 20 protein sequences, with a total of 200 sequences
in the 10 rows of the mesh.

In Fig. 9 it may be observed that the serial time is found
to be faster than both parallel approaches at first, however, the
DLT approach eventually guarantees better finish times than
the serial and parallel ELP strategies. The reason for this be-
havior initially is due to the heterogeneity (random spread of
heterogenous processors) throughout the mesh cluster. For ex-
ample, with two processors-per-row, there is no guarantee that



1014 D.H.P. Low et al. / J. Parallel Distrib. Comput. 67 (2007) 1007–1017

Speed-up Comparison

R2 = 0.9948

R2 = 0.9778

0

2

4

6

8

10

12

14

16

18

20

S
p

e
e
d

-u
p

Speed-up ELP

Speed-up DLT

Linear (Speed-up DLT)

Linear (Speed-up ELP)

2 3 4 5 6 7 8 9 10

No. of processors per row

Fig. 8. Speed-up through DLT and ELP approach.

Average computation time for 20 sequences

0

20

40

60

80

100

120

140

2 3 5 974 6 8 10

No. of processors per row

T
im

e
 (

s
)

Average Parallel ELP

Average Parallel DLT

Average Serial 

Fig. 9. Average serial and parallel processing times for 20 sequences per row.

their speeds match the fastest processor in the mesh. However,
the chances are that they may be slower. Thus, the processing
time, although running in parallel could be higher than the serial
time. However, increasing the number of processors actually
increases the chances of higher and faster computing power,
resulting in minimum processing time.

The same argument will not hold for ELP approach, as the
processing time always depends on the slowest processor in-
volved. Further, due to network heterogeneity it is very unlikely
that the ELP approach will surpass even the serial approach.
This is also because the serial time is defined as the time taken
by the fastest processor in the mesh. In this set of results (aver-
aged), the ELP reaches the serial approach when 10 processors
per row is used.

5.2.2. Effect of number of sequences on finish time
In this study, we vary the number of sequences to be pro-

cessed, while the mesh size is kept constant at 10 × 10 (100

Serial and parallel times vs. no. of sequences

0

100

200

300

400

500

600

50 100 150 200

No. of sequences

T
im

e
(s

)

Serial Time Hetero (s) 

Parallel Time Hetero

Fig. 10. Serial and parallel time with respect to varying number of sequences.

Table 3
Number of sequence comparisons

Number of sequences Number of comparisons

50 (5 per row/cluster) 5C2 × 10 rows = 100
100 (10 per row/cluster) 10C2 × 10 rows = 450
150 (15 per row/cluster) 15C2 × 10 rows = 1050
200 (20 per row/cluster) 20C2 × 10 rows = 1900

nodes). The number of sequences range from 50 to 200. This
is done to analyze the effects on serial and parallel times with
respect to the number of sequences. As shown in Fig. 10, both
serial and parallel times increases when number of sequences
becomes large. It may be noted that the tendency is not strictly
linear, but more like an exponential variation. This is essentially
due to the fact that the amount of computation (i.e., in this case
the number of sequence comparisons and score generation) in-
volved in processing larger set of sequences does not scale up
in a linear fashion with increasing number of sequences, as
shown in Table 3. Therefore, as the number of comparisons
needed increases exponentially, the finish time (both serial and
parallel) also found to be increasing exponentially.

5.2.3. Quality of the solutions
At this juncture, it is natural to measure the quality of solu-

tions delivered by our approaches. Thus, in our experimenta-
tions, we measure the quality by computing the overall score
at three different points in our architecture and report our
findings. The overall score is defined similar to the case of
pair-wise alignment. 5 First set of measures are tapped af-
ter Taylor’s method (a standard approach), second measure is
tapped from the output of ITM module, the third one is the out-
put of our center-to-center heuristic strategy. Following table

5 Column-wise score computation first and then adding all the column
scores for a given alignment.



D.H.P. Low et al. / J. Parallel Distrib. Comput. 67 (2007) 1007–1017 1015

Table 4
Quality of solutions (averaged over 30 runs)

Number of sequences S(TM) S(ITM) S(C-to-C)

50 (5 per row/cluster) 42 49 53
100 (10 per row/cluster) 63 69 74
150 (15 per row/cluster) 54 60 76
200 (20 per row/cluster) 61 68 117

summarizes the findings wherein S(TM) represents an over-
all score of multiple sequence alignment after Taylor’s method
(TM), S(ITM) is an overall score after ITM module, and S(C-
to-C) is the refined overall score after our heuristic strategy,
respectively. Each entry in the following table is a result of sev-
eral runs of a single experiment and we took an average score.
From the results shown, we observe that the ITM and C-to-C
strategy plays a key role in improving the overall cost.

Remark. It should be noted that the results in Table 4 reflects
the fact that there is an improvement in quality gradually from
TM to ITM and to C-to-C strategy. However, by no means
the results must be compared against the number of sequences
across each experiment, as the quality of the score depends on
net alignment and does not depend on the number of sequences
involved.

6. Conclusions and future work

In this paper we have designed a high-performance strategy
for mesh-based architectures for processing very large num-
ber of biological sequences. Motivated by the fact that cur-
rent online engines performing MSA impose severe restrictions
in handling more than few tens of sequences, our methodol-
ogy demonstrated here conclusively shows that practically any
number of sequences can be handled. We had systematically
described the design, and presented the load distribution strat-
egy. We had designed an improved Taylor’s methodology and
proposed a heuristic (center-to-center) to realign and refine the
overall score of the entire set of sequences. With a feedback
mechanism in place, we have shown that the mechanism is re-
silient to the choice of sequences and ultimately evolves an
acceptable aligned sequence with a high score. This study is
particulary useful to develop online engines that can handle sev-
eral hundreds of sequences for MSA process. As DLT paradigm
is shown to be an invaluable tool in handling large scale data
processing for network-based computing systems, we have em-
ployed and demonstrated the use of DLT paradigm in our de-
sign. For comparative purposes, we have also employed the
conventional ELP strategy. Our simulation results generated
from clusters clearly produced high quality solutions and DLT
approach is shown to generate results in a minimum amount
of time. As seen from the approach proposed, it may be ob-
served that although we consider a mesh topology in handling
the sequences, an underlying physical infrastructure could be a
cluster or any HPC system with a group of compute nodes on

which the logical organization could assume a mesh topology.
Further, the recursive nature of the problem has been exploited
to schedule and the solution approach is readily suitable for
SW-like dynamic programming class of algorithms.

Immediate extensions to this work can be in an attempt to
practically implement this strategy and to open up a portal for
public use. This venture is currently underway. Further, more
accurate and comprehensive work can be done on how the pro-
cessing time is calculated and also the distribution of load to
processors in the real-life implementation on a network. Firstly,
communication delay time between processors can be factored
in to give a more realistic representation of the processing time
involved. Secondly, the computational space (load) can be made
to be distributed on a wider scale, which means the one can
attempt distributing at a much finer level of computation in-
volving both the rows and columns. Although our work uses
mesh topology, handling such computationally intensive loads
can be easily entertained on computational grids following a
software framework that is suitable for parallelizable work-
loads. One such contribution in the existing literature that sug-
gests a software methodology for grid environments is reported
in [14]. The work deals with implementation aspects and also
proposes scheduling scheme for a master–slave kind of work-
able approach. Certainly this is one of the methods that can
be used and is applicable for the problem tackled in our paper
too. Finally, sophisticated heuristic methods can be designed to
improve the overall alignment of sequences. We hope that the
contributions in this paper would spur further interest in this
direction.

Appendix A. Taylor’s method

Below we will illustrate Taylor’s clustering strategy as de-
scribed in [35]. Consider the following table that gives scores
for pair-wise alignment of sequences A, B, C, D, and E. Tay-
lor’s clustering strategy begins by computing pair-wise align-
ment scores between all sequences to be clustered. The best
score is then identified and placed in the ordered set. From
Table 5, this would be (B, D). Then the next best alignment to
B or D is identified. This would be (B, A). Thus the sequence A
is now enters the ordered set next to its pair, B. The ordered set
is now (A, B, D). Next, Taylor’s identifies the next best align-
ment involved with the two end sequences of the ordered set, A
and D. The item selected is added to the appropriate end. This
continues until the entire set is ordered—(E, A, B, D, C).

Table 5
A pair-wise alignment score matrix

A B C D E

A –
B 393 –
C 188 390 –
D 298 401 372 –
E 200 254 180 320



1016 D.H.P. Low et al. / J. Parallel Distrib. Comput. 67 (2007) 1007–1017

References

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D. Lipman, A basic
local alignment search tool, J. Mol. Biol. 215 (1990) 403–410.

[2] G.J. Barton, M.J. Sternberg, A strategy for the rapid multiple alignment of
protein sequences. Confidence levels from tertiary structure comparisons,
J. Mol. Biol. 198 (2) (1987) 327–337.

[3] D.A. Benson, K.-M. Ilene, J.L. David, O. James, A.R. Barbara,
L.W. David, GenBank, Nucleic Acids Res. 28 (1) (2000) 15–18.

[4] M.P. Berger, P.J. Munson, A novel randomized iteration strategy for
aligning multiple protein sequences, Comput. Appl. Biosci. 7 (1991)
479–484.

[5] V. Bharadwaj, G. Debasish, G.R. Thomas, Divisible Load Theory: A
New Paradigm for Load Scheduling in Distributed Systems, Special
Issue on Divisible Load Scheduling in Cluster Computing, vol. 6(1),
Kluwer Academic Publishers, Dordrecht, 2003.

[6] V. Bharadwaj, G. Debasish, M. Venkataraman, G.R. Thomas, Scheduling
Divisible Loads in Parallel and Distributed Systems, IEEE Computer
Society Press, Los Almitos, California, 1996.

[7] A. Califano, I. Rigoutsos, FLASH: a fast look-up algorithm for string
homology, in: Proceedings of the First International Conference on
Intelligent Systems for Molecular Biology, 1993, pp. 56–64.

[8] CLUSTALW, 〈http://www.ebi.ac.uk/clustalw/〉.
[9] DNA Data Bank of Japan, 〈http://www.ddbj.nig.ac.jp〉.

[10] I. Eidhammer, I. Jonassen, W.R. Taylor, Protein Bioinformatics: An
Algorithmic Approach to Sequence and Structure Analysis, Wiley, New
York, 2004 ISBN: 0-470-84839-1.

[11] W. Feng, Green Density + mpiBLAST = Bioinfomagic, in: The
Proceedings of International Conference on Parallel Computing (ParCo
2003), September 2003.

[12] GenBank, 〈http://www.ncbi.nlm.nih.gov〉.
[13] O. Gotoh, An improved algorithm for matching biological sequences,

J. Mol. Biol. 162 (1982) 705–708.
[14] J.P. Goux, S. Kulkarni, J. Linderoth, M. Yoder, An enabling

framework for master–worker applications on the computational grid,
in: Proceedings of High Performance Distributed Computing (HPDC),
2000, pp. 43–50.

[15] K. Ko, T.G. Robertazzi, Equal allocation scheduling for data intensive
applications, IEEE Trans. Aerospace Electron. Systems (2004).

[16] D.J. Lipman, W.R. Pearson, Rapid and sensitive protein similarity
searches, Science 227 (1985) 1435–1441.

[17] H.M. Martinez, A flexible multiple sequence alignment program, Nucleic
Acids Res. 16 (5 Part A) (1988) 1683–1691.

[18] J.Q. Michael, Parallel Programming in C with MPI and OpenMP,
McGraw-Hill, New York, USA, 2003.

[19] E.W. Myers, An O(ND) difference algorithm and its variations,
Algorithmica 1 (2) (1986) 251–266.

[20] S.B. Needleman, C.D. Wunsch, A general method applicable to the
search for similarities in the amino acid sequence of two sequences,
J. Mol. Biol. 48 (1970) 443–453.

[21] W.R. Pearson, Rapid and sensitive sequence comparison with FASTA
and FASTP, Methods Enzymology 183 (1990) 63–98.

[22] W.R. Pearson, D.J. Lipman, Improved tools for biological sequence
comparison, Proc. Nat. Acad. Sci. USA 85 (1988) 2444–2448.

[23] D. Pekurovsky, I.N. Shindyalov, P.E. Bourne, A case study of
high-throughput biological data processing on parallel platforms,
Bioinformatics 20 (2004) 1940–1947.

[24] T.G. Robertazzi, Ten reasons to use divisible load theory, Computer 36
(5) (2003) 63–68.

[25] T. Rognes, S. Erling, Six-fold speed-up of Smith Waterman sequence
database searches using parallel processing on common microprocessors,
Bioinformatics 16 (8) (2000) 699–706.

[26] P.H. Sellers, On the theory and computation of evolutionary distances,
SIAM J. Appl. Math. 26 (1974) 787–793.

[27] T.F. Smith, M.S. Waterman, Identification of common molecular
subsequence, J. Mol. Biol. 147 (1981) 195–197.

[28] W.R. Taylor, Multiple sequence alignment by a pairwise algorithm,
Comput. Appl. Biosci. 3 (2) (1987) 81–87.

[29] The EMBL (European Molecular Biology Laboratory) Nucleotide
Sequence Database, 〈http://www.ebi.ac.uk/embl〉.

[31] O. Trelles, M.A. Andrade, A. Valencia, E.L. Zapata, J.M. Carazo,
Computational space reduction and parallelization of a new clustering
approach for large groups of sequences, Bioinformatics 14 (5) (1998)
439–451.

[32] M.S. Waterman, Mathematical Methods for DNA Sequences, CRC Press
Inc., Boca Raton, FL, 1986.

[33] M.S. Waterman, T.F. Smith, W.A. Beyer, Some biological sequence
metrics, Adv. Math. 20 (1976) 367–387.

[34] H.M. Wong, V. Bharadwaj, Aligning biological sequences on distributed
bus networks: a divisible load scheduling approach, IEEE Trans. Inform.
Technol. Biomed. 9 (4) (2005) 1910–1924.

[35] T.K. Yap, O. Frieder, R.L. Martino, High Performance Computational
Methods for Biological Sequence Analysis, Kluwer Academic
Publishers, Dordrecht, 1996.

[36] T.K. Yap, O. Frieder, R.L. Martino, Parallel computation in biological
sequence analysis, IEEE Trans. Parallel Distrib. Systems 9 (3) (1998).

[37] X. Zhang, Y. Yan, Modeling and characterizing parallel computing
performance on heterogeneous networks of workstations, in: Proceedings
of the Seventh IEEE Symposium on Parallel and Distributed Processing,
October 1995.

Diana H.P. Low is currently a graduate stu-
dent in Computational and Systems Biology
under the Singapore–MIT Alliance Gradu-
ate Fellowship—a collaboration between The
National University of Singapore and Mas-
sachusetts Institute of Technology. An ASEAN
scholar, she received her B.Eng. in Electrical
Engineering from The National University of
Singapore in 2005. Her research interests in-
cludes molecular immunology, computational
biology and biological engineering.

Bharadwaj Veeravalli, Senior Member, IEEE
& IEEE-CS, received his Ph.D. from Depart-
ment of Aerospace Engineering, Indian Institute
of Science (IISc), Bangalore, India in 1994,
Master’s in Electrical Communication Engi-
neering from IISc, Bangalore, India in 1991 and
B.Sc in Physics, from Madurai-Kamaraj Uni-
versity, India in 1987. He did his post-doctoral
research in the Department of Computer Sci-
ence, Concordia University, Montreal, Canada,
in 1996. He is currently with the Depart-
ment of Electrical and Computer Engineering,
Communications and Information Engineering

Division, at The National University of Singapore, Singapore, as a tenured
Associate Professor. His main stream research interests include, Cluster/Grid
computing, Scheduling in Parallel and Distributed systems, Bioinformatics,
Multiprocessor systems, and Multimedia computing. He has published ex-
tensively in high-quality international journals and conferences and has co-
authored several book chapters and had published three research monographs
in the areas of Parallel and Distributed Systems, Distributed Databases, and
Networked Multimedia Systems, in the years 1996, 2003 and 2005, respec-
tively. He is currently serving the Editorial Board of IEEE Transactions on
Computers, IEEE Transactions on SMC-A, and International Journal of Com-
puters and Applications, USA, as an Associate Editor.

http://www.ebi.ac.uk/clustalw/
http://www.ddbj.nig.ac.jp
http://www.ncbi.nlm.nih.gov
http://www.ebi.ac.uk/embl


D.H.P. Low et al. / J. Parallel Distrib. Comput. 67 (2007) 1007–1017 1017

David A. Bader is an Associate Professor in
Computational Science and Engineering, a divi-
sion within the College of Computing, Georgia
Institute of Technology. He received his Ph.D.
in 1996 from The University of Maryland, was
awarded a National Science Foundation (NSF)
Postdoctoral Research Associateship in Experi-
mental Computer Science. He is an NSF CA-
REER Award recipient, an investigator on sev-
eral NSF awards, and supported by research
awards from IBM, Sony, Microsoft Research
and Sun Microsystems. Dr. Bader serves on the
Steering Committees of the IPDPS and HiPC

conferences, and was the General co-Chair for IPDPS (2004–2005), and Vice
General Chair for HiPC (2002–2004). David has chaired several major con-
ference program committees: Program Chair for HiPC 2005, Program Vice-
Chair for IPDPS 2006 and Program Vice-Chair for ICPP 2006. He has served
on numerous conference program committees related to parallel processing
and computational science and engineering, is an associate editor for several
publications including the IEEE Transactions on Parallel and Distributed Sys-
tems (TPDS), the ACM Journal of Experimental Algorithmics (JEA), IEEE
DSOnline, and Parallel Computing, is a Senior Member of the IEEE Com-
puter Society and a Member of the ACM. Dr. Bader has been a pioneer
in the field of high-performance computing for problems in bioinformatics
and computational genomics. He has co-chaired a series of meetings, the
IEEE International Workshop on High-Performance Computational Biology
(HiCOMB), written several book chapters, and co-edited special issues of the
Journal of Parallel and Distributed Computing (JPDC) and IEEE TPDS on
high-performance computational biology. He has co-authored over 80 articles
in peer-reviewed journals and conferences, and his main areas of research are
in parallel algorithms, combinatorial optimization, and computational biology
and genomics.


