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Abstract. Graphproblems are finding increasing applications in high performance
computing disciplines. Although many regular problems can be solved efficiently
in parallel, obtaining efficient implementations for irregular graph problems re-
mains a challenge. We propose techniques for designing and implementing effi-
cient parallel algorithms for graph problems on symmetric multiprocessors and
chip multiprocessors with a case study of parallel tree and connectivity algorithms.
The problems we study represent a wide range of irregular problems that have fast
theoretic parallel algorithms but no known efficient parallel implementations that
achieve speedup without serious restricting assumptions about the inputs. We be-
lieve our techniques will be of practical impact in solving large-scale graph
problems.

Keywords: Spanning Tree, Minimum Spanning Tree, Biconnected Components,
Shared Memory.

1 Introduction

Graph theoretic problems arise in several traditional and emerging scientific disciplines
such as VLSI design, optimization, databases, and computational biology. There are
plenty of theoretically fast parallel algorithms, for example, optimal PRAM algorithms,
for graph problems; however, in practice few parallel implementations beat the best
sequential implementations for arbitrary, sparse graphs. Much previous algorithm de-
sign effort aimed at reducing the complexity factors with work-time optimality as the
ultimate goal. In practice this often yields complicated algorithms with large hidden
constant factors that frustrate attempt of implementation on real parallel machines [[TI2]].

Modern symmetric multiprocessors (SMPs) and chip multiprocessors (CMPs) are
becoming very powerful and common place. Most of the high performance computers
are clusters of SMPs and/or CMPs. PRAM algorithms for graph problems can be emu-
lated much easier and more efficiently on SMPs than on distributed memory platforms
because shared memory allows for fast, concurrent access to an irregular datastructure
that is often difficult to partition well for distributed memory systems. Unfortunately,
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emulation — even with aggressive algorithm engineering efforts — oftentimes does not
produce parallel implementations that beat the best sequential implementation. There
remains a big gap between the algorithmic model and SMPs. Architectural factors in-
cluding memory hierarchy and synchronization cost are hard to encompass into a par-
allel model, yet they greatly affect the performance of a parallel algorithm. For many
parallel models, it is hard to predict for a given problem whether an O(logn) algorithm
runs faster than an O (log2 n) algorithm on any real architecture. New design paradigm
that considers these factors are called for.

We have conducted extensive study on the design of practical parallel algorithms
for graph problems that run fast on SMPs. Our parallel implementations for the span-
ning tree, minimum spanning tree (MST), biconnected components, and other prob-
lems, achieved for the first time good parallel speedups for sparse, arbitrary inputs on
SMPs [31413]]. In this paper we present techniques that are proven to be effective either
by our experimental study or by theoretic analysis on realistic models for fast graph
algorithm design. These techniques address factors of modern architectures that are
transparent to most parallel models but crucial to performance. For example, we pro-
pose asynchronous algorithms for reducing the synchronization overhead and I/O effi-
cient PRAM simulation for designing cache-friendly parallel algorithms with irregular
graph inputs. The problems we study are fundamental in graph theory. We believe our
techniques can help build efficient parallel implementations for a wide range of graph
algorithms on SMPs, and future manycore systems.

The rest of the paper is organized as follows. The remainder of Section[I]summarizes
previous studies of experimental results and our new results. Sections 2} [ and [
discuss the impact of limited number of processors, synchronization and multiple levels
of memory hierarchy on performance, respectively, and present parallel techniques for
the corresponding scenarios. Section 3] presents an example for reducing the constants
in algorithmic overhead. In Section [6] we conclude and give future work. Throughout
the paper, we use n and m to denote the number of vertices and the number of edges of
an input graph G = (V, E), respectively.

1.1 Previous Studies and Results

Different variations of the spanning tree and connected components algorithms based
on the “graft-and-shortcut” approach have been implemented (see, e.g., [6/7I819]) on a
number of platforms including Cray Y-MP/C90, TMC CM-2 and CM-5, and Maspar
MP-1. These implementations achieve moderate speedups for regular inputs, and are
slower than the best sequential implementation for irregular inputs.

Chung and Condon implemented parallel Bortvka’s algorithm on the CM-5.
Dehne and Gotz [11]] studied practical parallel algorithms for MST using the BSP
model. The parallel implementations either do not beat the sequential implementation,
or are not appropriate for handling large, sparse graphs.

Woo and Sahni presented an experimental study of computing biconnected com-
ponents on a hypercube. They use an adjacency matrix as the input representation that
wastes a huge amount of memory for sparse graphs.
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1.2 Our Results

We have developed a number of practical parallel algorithms [3/43]. Our methodology
for designing these parallel algorithms is based upon an in-depth study of available PRAM
approaches and techniques as discussed in this paper. Our spanning tree algorithm is the
first to achieve good parallel speedups for the notoriously hard arbitrary, sparse instances
[3]]; our MST algorithm is the only one known that achieves parallel speedups for all test
inputs [4]; our biconnected components algorithm filters out edges that are not essential
in computing the components, and runs fast with relatively low memory consumption
compared with previous implementations [3]]. Table [[lsummarizes our performance re-
sults on SUN Enterprise 4500 with 10 processors. All the input graphs have 1M vertices
but different number of edges. Comparing against the best sequential implementation, the
“prior speedup” column shows the speedups we achieve for our implementation of the
best performing algorithms published prior to our study, and the “our speedup” column
shows the speedups we achieve for algorithms designed with techniques presented in this
paper. We see that prior algorithms run slower than the best sequential implementation
with a moderate number of processors, while our new algorithms achieve good parallel
speedups.

Table 1. Performance comparison of our algorithms and best performing previously published
algorithms. Here 1M = 1048576, n = 1M, and m is the number of edges.

Problem Input Type Edges(m) Prior speedup Our speedup
Spannine Tree random graph  20M 0.36 3.1
panmmg Torus am 0.5 2.6
. . random graph  20M 0.46 4.5
Minimum Spanning Tree Torus aM 29 37
Biconnected Components random graph  20M 0.72 3.8

2 Adapting to the Available Parallelism

Nick’s Class (ALC) is defined as the set of all problems that run in polylog-time with
a polynomial number of processors. Whether a problem P is in A is a fundamental
question. The PRAM model assumes an unlimited number of processors, and explores
the maximum inherent parallelism of P. Although several massively parallel supercom-
puters now have thousands of processors, the number of processors available to a paral-
lel program is still nowhere near the size of the problem. Acknowledging the practical
restriction of limited parallelism provided by real computers, Kruskal et al. argued
that non poly-logarithmic time algorithms (e.g., sublinear time algorithms) could be
more suitable than polylog algorithms for implementation with practically large input
size. We observe this is still true for current problems and parallel machines. In practice
if an A_C algorithm does not perform well, it is worthwhile to consider £ (short for ef-
ficient parallel) algorithms which by the definition in is the class of algorithms that
achieve a polynomial reduction in running time with a poly-logarithmic inefficiency.
More formally, let 7'(n) and P(n) be the running time of a parallel algorithm and the
number of processors employed, and #(n) be the running time of the best sequential
algorithm, then ‘£ is the class of algorithms that satisfies
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T(n) <t(n)and T'(n)-P(n) = O(t(n)).

We refer to EP as a class of algorithms where the design focus is shifted from reducing
the complexity factors to solving problems of realistic sizes efficiently with a limited
number of processors.

Many N C algorithms take drastically different approaches than their respective se-
quential algorithms and incur significant parallel overhead. For many algorithms it
could take impractically large problem sizes to show any performance advantage. The
‘E® algorithms, on the other hand, can have advantages coming from limited paral-
lelism, i.e., larger granularity of parallelism, and hence less synchronization. E® al-
gorithms also tend to work better with distributed-memory environments (e.g., many
practical LogP and BSP algorithms [14/13])).

We propose a technique that blends the £2 and A/ C approaches so that an algorithm
adapts to the number of available processors. The implementation is efficient when there
are few processors such as in a multicore chip or a small SMP, and provides enough
parallelism when scaling to a larger number of processors. As a case study next we
present the design of our MST algorithm — MST-BC.

Many parallel MST algorithms in the literature are based on Bortivka’s approach [16/4].
These algorithms run in O(log“n) (k is a constant) time with O(n) processors. Perfor-
mance in general is not good on current SMPs. MST-BC uses multiple, coordinated in-
stances of Prim’s sequential algorithm running on the graph’s shared data structure. In
fact, it marries Prim’s algorithm with that of the naturally parallel Bortivka approach.
The basic idea of MST-BC is to let each processor simultaneously run Prim’s algorithm
from different starting vertices. Each processor keeps growing its subtree when there ex-
ists a lightweight edge that connects the tree to a vertex not yet in another tree, and the
subtree matures when it can grow no further. The lightest incident edges are then found
for the isolated vertices (the Bortivka step). Special care is taken to ensure the isolation
of mature subtrees that is crucial to the correctness of the algorithm. When all of the
vertices have been incorporated into mature subtrees, each subtree is contracted into a
supervertex, and the approach is called recursively until only one supervertex remains.
We refer interested readers to [4] for details of the algorithm and proof of correctness.

MST-BC is adaptive to the available number of processors. When there are n pro-
cessors available, each processor can grow only a subtree of one edge in an iteration,
MST-BC behaves exactly as parallel Bortivka’s algorithm; when there is only one pro-
cessor available, MST-BC degenerates to Prim’s algorithm. The interesting case is that
when p (p < n) processors are available, multiple instances of Prim’s algorithm runs
in each iteration alternated with Bortivka steps. MST-BC performs well when the graph
is large and sparse and the number of processors is small compared with the input size.
The technique of adapting to the number of available processors is also applicable in
the case of parallel spanning tree.

3 Reducing Synchronization Cost

Synchronization is achieved by using barriers or locks. Synchronization is crucial to
correctness and performance. In Section B.1] we present a technique called lazy syn-
chronization that aggressively reduces the amount of synchronization primitives in an
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algorithm. Section [3.2] shows how to trade a large number of expensive locking opera-
tions with a small number of barrier operations.

3.1 Lazy Synchronization

Barriers can be placed after each statement of the program to ensure PRAM-like syn-
chronous execution. For many algorithms, however, this practice will seriously degrade
the performance. Barriers are only needed at steps where events should be observed
globally.

When adapting a PRAM algorithm to SMPs, a thorough understanding of the algo-
rithm usually suffices to eliminate unnecessary barriers. Reducing synchronization is
a pure implementation issue. Lazy synchronization, on the other hand, is an algorithm
design technique. Lazy synchronization means much more than inserting a minimum
number of synchronization primitives. More importantly, we design algorithms that are
as asynchronous as possible. Reduced level of synchronization in general yields greater
granularity of parallelism. Lazy synchronization also allows nondeterministic interme-
diate results but deterministic solutions. For example, in MST-BC, the selection of a
light edge is nondeterministic, while we are guaranteed that the answer is one of the
possible spanning trees of minimum weight. In a parallel environment, to ensure cor-
rect final results oftentimes we do not need to define a total ordering on all the events
occurred, and a partial ordering in general suffices. Relaxed constraints on ordering re-
duce the number of synchronization primitives in the algorithm. Application of lazy
synchronization generally involves a careful arrangement of read/write operations to
reach consensus with proofs of correctness.

Here we take the spanning tree problem as a case study. Our parallel spanning tree
algorithm for shared-memory multicores and multiprocessors has two main steps: 1)
stub spanning tree, and 2) work-stealing graph traversal. In the first step, one processor
generates a stub spanning tree, that is, a small portion of the spanning tree by randomly
walking the graph for O(p) steps. The vertices of the stub spanning tree are evenly
distributed into each processor’s queue, and each processor in the next step will traverse
from the first element in its queue. After the traversals in step 2, the spanning subtrees
are connected to each other by this stub spanning tree. In the graph traversal step, each
processor traverses the graph (by coloring the nodes) similar to the sequential algorithm
in such a way that each processor finds a subgraph of the final spanning tree. Work-
stealing is used to balance the load for graph traversal (We refer interested readers to
[3] for details of work-stealing).

One problem related to synchronization that we have to address is that there could
be portions of the graph traversed by multiple processors and be in different subgraphs
of the spanning tree. The immediate remedy is to synchronize using either locks or
barriers. With locks, coloring the vertex becomes a critical section, and a processor
can only enter the critical section when it gets the lock. Although the nondeterministic
behavior is now prevented, it does not perform well on large graphs due to an excessive
number of locking and unlocking operations.

In our algorithm there are no barriers introduced in graph traversal. As we will show
the algorithm runs correctly without barriers even when two or more processors color
the same vertex. In this situation, each processor will color the vertex and set as its
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parent the vertex it has just colored. Only one processor succeeds at setting the vertex’s
parent to a final value. For example, using Fig. [Il processor P; colored vertex u, and
processor P, colored vertex v, at a certain time they both find w unvisited and are now in
a race to color vertex w. It makes no difference which processor colored w last because
w’s parent will be set to either u or v (and it is legal to set w’s parent to either of them;
this will not change the validity of the spanning tree, only its shape). Further, this event
does not create cycles in the spanning tree. Both P; and P record that w is connected to
each processor’s own tree. When each of w’s unvisited children are visited by various
processors, its parent will be set to w, independent of w’s parent.

P1 P2

\4

Fig. 1. Two processors Py and P, see vertex w as unvisited, so each is in a race to color w and set
w’s parent pointer. The shaded area represents vertices colored by Py, the black area represents
those marked by P», and the white area contains unvisited vertices.

Lemma 1. On a shared-memory parallel computer with sequential memory consis-
tency, the spanning tree algorithm does not create any cycles.

We refer interested readers to [3] for details of the proof. Note that different runs of the
algorithm may produce trees of different topologies, yet each is a correct spanning tree.

3.2 Barriers and Locks

Locks and barriers are meant for different types of synchronizations. In practice, the
choice of using locks or barriers may not be very clear. Take the “graft and shortcut”
spanning tree algorithm for example. For graph G = (V, E) represented as an edge list,
we start with n isolated vertices and 2m processors. For edge ¢; = (u,v), processor P;
(1 <i < m)inspects u and v, and if v < u, it grafts vertex u to v and labels ¢; to be a
spanning tree edge. The problem here is that for a certain vertex v, its multiple incident
edges could cause grafting v to different neighbors, and the resulting tree may not be
valid (note that Shiloach-Vishkin’s original algorithm is based on priority CRCW [17]).
To ensure that v is only grafted to one of the neighbors, locks can be used. Associated
with each vertex v is a flag variable protected by a lock that shows whether v has been
grafted. In order to graft v a processor has to obtain the lock and check the flag, thus race
conditions are prevented. A different solution uses barriers in a two-phase election.
No checking is needed when a processor grafts a vertex, but after all processors are done
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(ensured with barriers), a check is performed to determine which one succeeds and the
corresponding edge is labeled as a tree edge. There is no clear winner between the two
synchronization scheme for performance. Whether to use a barrier or lock is dependent
on the algorithm design as well as the barrier and lock implementations. Locking typi-
cally introduces large memory overhead. When contention among processors is intense,
the performance degrades seriously.

4 Cache Friendly Design

The increasing speed difference between processor and main memory makes cache and
memory access patterns important factors for performance. The number (and pattern)
of memory accesses could be the dominating factor of performance instead of compu-
tational complexities. For sequential algorithms, there have emerged quite a number of
cache-aware and cache-oblivious algorithms that are shown to have good cache perfor-
mance (see, e.g.[19.20]).

The fact that modern processors have multiple levels of memory hierarchy is gen-
erally not reflected by most of the parallel models. As a result, few parallel algorithm
studies have touched on the cache performance issue. The SMP model proposed by
Helman and JaJ4 is the first effort to model the impact of memory access and cache
over an algorithm’s performance [21]. The model forces an algorithm designer to re-
duce the number of non-contiguous memory accesses. However, it does not give hints
to the design of cache-friendly parallel algorithms. Park er al. [22] proposed adjacency
array representation of graphs that is more cache-friendly than adjacency list, and the
access pattern can still be erratic. Simultaneous memory accesses to “random’ memory
locations determined by the irregular structure of the input make it hard to come up
with cache friendly designs.

Chiang ef al. [23] presented a PRAM simulation technique for designing and an-
alyzing efficient external-memory (sequential) algorithms for graph problems. This
technique simulates the PRAM memory by keeping a task array of O(N) on disk in
O(scan(N)) blocks. For each PRAM step, the simulation sorts a copy of the contents
of the PRAM memory based on the indices of the processors for which they will be
operands, and then scans this copy and performs the computation for each processor
being simulated. The following can be easily shown:

Theorem 1. Ler A be a PRAM algorithm that uses N processors and O(N) space and
runs in time T. Then A can be simulated in O(T - sort(N)) I/Os [23]].

Here sort(N) represents the optimal number of I/Os needed to sort N items striped
across the disks, and scan(N) represents the number of I/Os needed to read N items
striped across the disks. Specifically,

sort(x) = logzg *

X
DB B
X

scan(x) = DB
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where M = # of items that can fit into main memory, B = # of items per disk block, and
D =# of disks in the system.

We observe that a similar technique can be applied to the cache-friendly parallel im-
plementation of PRAM algorithms. I/O efficient algorithms exhibit good spatial locality
behavior that is critical to good cache performance. We apply the PRAM simulation tech-
nique to the efficient parallel implementation. Instead of having one processor simulate
the PRAM step, we have p < n processors perform the simulation concurrently. The
simulated PRAM implementation is expected to incur few cache block transfers between
different levels. For small input sizes it would not be worthwhile to apply this technique as
most of the data structures can fit into cache. As the input size increases, the cost to access
memory becomes more significant, and applying the technique becomes beneficial.

Our experimental studies show that on current SMPs oftentimes memory writes have
larger impact than reads on the performance of the algorithm [4]]. This is because with
the snoopy-cache consistency protocol for current SMPs, memory writes tend to gener-
ate more protocol transactions than memory reads and concurrent writes also create
consistency issues of memory management for the operating system and the corre-
sponding memory management is of higher cost than reads. We could have incorpo-
rated this fact into a parallel model by separating the number of memory reads and
writes as different parameters, but then other questions like how to weigh their different
importance would emerge. Here the message is that for graph problems that are gener-
ally irregular in nature, when standard techniques of optimizing the algorithm for cache
performance do not apply, trading memory reads for writes might be an option. For a
detailed example, we refer interested readers to the parallel Bortivka’s implementation
described in [4].

5 Algorithmic Optimizations

For most problems, parallel algorithms are inherently more complicated than the se-
quential counterparts, incurring large overheads with many algorithm steps. Instead of
lowering the asymptotic complexities, in many cases we can reduce the constant factors
and improve performance. Algorithmic optimizations are problem specific. We demon-
strate the benefit of such optimizations with our biconnected components algorithm [3].

We developed a new algorithm that eliminates edges that are not essential in comput-
ing the biconnected components. For any input graph, edges are first eliminated before
the computation of biconnected components is done so that at most min(m,2n) edges
are considered. Although applying the filtering algorithm does not improve the asymp-
totic complexity, in practice, the performance of the biconnected components algorithm
can be significantly improved.

We say an edge e is non-essential for biconnectivity if removing e does not change
the biconnectivity of the component to which it belongs. Filtering out non-essential
edges when computing biconnected components (of course we will place these edges
back in later) may produce performance advantages. Recall that the Tarjan-Vishkin al-
gorithm (TV) is all about finding the equivalence relation R.* [18I16]. Of the three
conditions for Ré, it is trivial to check for condition 1 which is for a tree edge and
a non-tree edge. Conditions 2 and 3, however, are for two tree edges and checking



Techniques for Designing Efficient Parallel Graph Algorithms 145

involves the computation of high and low values. To compute high and low, we need to
inspect every nontree edge of the graph, which is very time consuming when the graph
is not extremely sparse. The fewer edges the graph has, the faster the Low-high step.
Also when we build the auxiliary graph, the fewer edges in the original graph means
the smaller the auxiliary graph and the faster the Label-edge and connected-components
steps.

Suppose T is a BFS tree, then we have

Theorem 2. The edges of each connected component of G—T are in one biconnected
component [13].

Combining our algorithm for eliminating non-essential edges and TV, the new bicon-
nected components algorithm runs in max(O(d),0(logn)) time with O(n) processors
on CRCW PRAM, where d is the diameter of the graph. Asymptotically the new al-
gorithm is not faster than TV. In practice, however, we achieve parallel speedups upto
4 with 12 processors on SUN Enterprise 4500 using the filtering technique. This is
remarkable, given that the sequential algorithm runs in linear time with a very small
hidden constant in the asymptotic complexity.

6 Conclusion and Future Work

We present algorithm design and engineering techniques for running parallel algorithms
on SMPs, multicore, and manycore processors, with case studies taken from tree and
connectivity problems. Our implementations are the first that achieve good speedups
over a wide range of inputs. PRAM algorithms provide a good resource of reference
when solving problems with parallel computers, yet with real machines, modifications
to PRAM algorithms or new designs are necessary for high performance. We discussed
the impact of limited number of processors, synchronization and multiple level of mem-
ory hierarchies on algorithm designs, and presented techniques that deal with these
factors. As these factors we discussed will continue to be crucial to an algorithm’s per-
formance on multiprocessor systems, we expect our studies have significant impact on
the experimental studies of parallel computing. We are also investigating running par-
allel graph algorithms on systems with transactional memory.
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