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Abstract

The Sony–Toshiba–IBM Cell Broadband Engine (Cell/B.E.) is a heterogeneous multicore architecture that consists of a
traditional microprocessor (PPE) with eight SIMD co-processing units (SPEs) integrated on-chip. While the Cell/B.E. pro-
cessor is architected for multimedia applications with regular processing requirements, we are interested in its performance
on problems with non-uniform memory access patterns. In this article, we present two case studies to illustrate the design
and implementation of parallel combinatorial algorithms on Cell/B.E.: we discuss list ranking, a fundamental kernel for
graph problems, and zlib, a data compression and decompression library.

List ranking is a particularly challenging problem to parallelize on current cache-based and distributed memory archi-
tectures due to its low computational intensity and irregular memory access patterns. To tolerate memory latency on the
Cell/B.E. processor, we decompose work into several independent tasks and coordinate computation using the novel idea
of Software-Managed threads (SM-Threads). We apply this generic SPE work-partitioning technique to efficiently imple-
ment list ranking, and demonstrate substantial speedup in comparison to traditional cache-based microprocessors. For
instance, on a 3.2 GHz IBM QS20 Cell/B.E. blade, for a random linked list of 1 million nodes, we achieve an overall
speedup of 8.34 over a PPE-only implementation.

Our second case study, zlib, is a data compression/decompression library that is extensively used in both scientific as
well as general purpose computing. The core kernels in the zlib library are the LZ77 longest subsequence matching algo-
rithm and Huffman data encoding. We design efficient parallel algorithms for these combinatorial kernels, and exploit con-
currency at multiple levels on the Cell/B.E. processor. We also present a Cell/B.E. optimized implementation of gzip, a
popular file-compression application based on the zlib library. For our Cell/B.E. implementation of gzip, we achieve an
average speedup of 2.9 in compression over current workstations.
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1. Introduction

The Cell Broadband Engine (or the Cell/B.E.) [17] is a novel architectural design by Sony, Toshiba, and
IBM (STI), primarily targeting high performance multimedia and gaming applications. It is a heterogeneous
multicore chip that is significantly different from conventional multiprocessor or multicore architectures. It
consists of a traditional microprocessor (called the PPE) that controls eight SIMD co-processing units called
synergistic processor elements (SPEs), a high speed memory controller, and a high bandwidth bus interface
(termed the element interconnect bus, or EIB), all integrated on a single chip. There are several unique archi-
tectural features in Cell/B.E. that clearly distinguish it from current microprocessors: the Cell/B.E. chip is a
computational workhorse, and it offers a theoretical peak single-precision floating-point performance of
204.8 GFlop/s. We can exploit parallelism at multiple levels on the Cell/B.E.: each chip has eight SPEs with
two-way instruction-level parallelism on each SPE. Further, the SPE supports both scalar as well as single-
instruction, multiple data (SIMD) computations [14]. The on-chip interconnection network elements have
been specially designed to cater for high performance on bandwidth-intensive applications (such as those in
gaming and multimedia).

All these features make the Cell Broadband Engine attractive for scientific computing, as well as an alterna-
tive architecture for general purpose computing. Williams et al. [25] analyzed the performance of Cell/B.E. for
key scientific kernels such as dense matrix multiply, sparse matrix vector multiply and 1D and 2D fast Fourier
transforms. They demonstrate that the Cell/B.E. performs impressively for applications with predictable mem-
ory access patterns, and that communication and computation can be overlapped more effectively on the Cell/
B.E. than on conventional cache-based approaches. Noting that while Cell/B.E. is architected for multimedia
applications with regular processing requirements, we are interested in its performance on problems with pre-
dominantly integer-based computations and non-uniform memory access patterns. We challenge the general
perception that the Cell/B.E. architecture is not suited for problems that involve fine-grained memory accesses,
and where there is insufficient computation to hide memory latency. In this article, we present two representa-
tive case studies from the class of combinatorial computing problems, the list ranking kernel and zlib data com-
pression and decompression library, for which we achieve impressive performance on the Cell/B.E. processor.

List ranking [7,23,15] is a fundamental paradigm for the design of many parallel combinatorial and graph-
theoretic applications. Given an arbitrary linked list that is stored in a contiguous area of memory, the list
ranking problem determines the distance from each node to the head of the list. In prior work, using list rank-
ing as a sub-routine, we designed fast parallel algorithms for shared memory computers, and demonstrated
speedups compared with the best sequential implementation for graph-theoretic problems such as ear decom-
position, tree contraction and expression evaluation [4], spanning tree [1] and minimum spanning forest [2].
Due to its low computational intensity and lack of locality, it is difficult to attain parallel speedup for this
problem. By applying our new techniques for latency tolerance and load balancing with Software-Managed

threads (SM-Threads), our list ranking implementation on the Cell/B.E. processor achieves significant
speedup. We conduct an extensive experimental study comparing our Cell/B.E. code with implementations
on current microprocessors and high-end shared memory and multithreaded architectures. Our main results
are summarized here:

• Our latency-hiding technique boosts Cell Broadband Engine performance by a factor of about 4.1 for both
random and ordered lists.

• By tuning just one algorithm parameter, our list ranking implementation is load-balanced across the SPEs
with high probability, even for random lists.

• The Cell/B.E. achieves an average speedup of eight over the performance on current cache-based micropro-
cessors (for input instances that do not fit into the L2 cache).

• On a random list of 1 million nodes, we obtain a speedup of 8.34 compared to a single-threaded PPE-only
implementation. For an ordered list (with stride-1 accesses only), the speedup over a PPE-only implemen-
tation is 1.56.

We discuss the list ranking case study in Section 4, and introduce SM-threads and our latency-hiding tech-
nique in Section 4.3.
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Data compression and decompression applications are extensively used in scientific and general purpose
computing, and the open-source zlib package [9] is a popular library for compression/decompression. zlib
is based on the LZ77 subsequence matching algorithm: data is compressed by first identifying repeating sub-
sequences of characters, and then replacing duplicate strings with reference to their previous occurrences. The
strings and references are further Huffman-coded to improve compression. The performance of the compres-
sion algorithm is data-dependent, while the decompression algorithm involves a high percentage of table look-
ups for finding matches. We exploit concurrency at multiple levels for both compression and decompression.
Since the SPEs support SIMD instructions, we identify compute-intensive routines and vectorize them. At a
higher level, we also partition the computation among various SPEs. For performance evaluation, we design a
Cell/B.E. optimized implementation of gzip, a popular file-compression application based on the zlib library.
We use the full flushing technique supported by gzip to partition a data file across multiple SPEs, and achieve
an average speedup of five over current cache-based microprocessors. We present a detailed discussion of our
design and implementation of the zlib library in Section 5.

The heterogeneous processors, limited on-chip memory and multiple avenues for parallelism on the Cell/
B.E. processor make algorithm design and implementation a new challenge, with potentially high payoffs
in terms of performance. Analyzing algorithms using traditional sequential complexity models like the
RAM model fail to account for several Cell/B.E. architectural intricacies. There is currently no simple and
accepted model of computation for the Cell/B.E., and in general, for multicore architectures. We use a simple
complexity model for the design and analysis of parallel algorithms on the Cell Broadband Engine architec-
ture. We express the algorithm complexity on the Cell/B.E. processor using the triplet hTC,TD,TBi, where TC

denotes the computational complexity, TD the number of DMA requests, and TB the number of branching
instructions, all expressed in terms of the problem size. We explain the rationale behind the choice of these
three parameters in Section 3. We then present a systematic methodology for analyzing algorithms using this
complexity model, and illustrate this with an example of matrix multiplication.

2. Cell Broadband Engine architecture

The Cell Broadband Engine (Cell/B.E.) is a heterogeneous multicore chip that is significantly different from
conventional multiprocessor or multicore architectures. It consists of a traditional microprocessor (called the
PPE) that controls eight SIMD co-processing units called synergistic processor elements (SPEs), a high speed
memory controller, and a high bandwidth bus interface (termed the element interconnect bus, or EIB), all inte-
grated on a single chip. Fig. 1 gives an architectural overview of the Cell/B.E. We refer the reader to [21,10,18]
for additional details.

The PPE is a 64-bit PowerPC core with a vector multimedia extension (VMX) unit, 32 KB L1 instruction
and data caches, and a 512 KB L2 cache. It is a dual issue, in-order execution design, with two-way simulta-
neous multithreading. Ideally, all the computation should be partitioned among the SPEs with PPE handling
the control flow.
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Fig. 1. Cell Broadband Engine architecture.
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Each SPE consists of a synergistic processor unit (SPU) and a memory flow controller (MFC). The MFC
includes a DMA controller, a memory management unit (MMU), a bus interface unit, and an atomic unit for
synchronization with other SPUs and the PPE. The SPU is a micro-architecture designed for high perfor-
mance data streaming and data intensive computation. It includes a 256 KB local store (LS) memory to hold
SPU program’s instructions and data. The SPU cannot access main memory directly, but it can issue DMA
commands to the MFC to bring data into the local store or write computation results back to the main mem-
ory. DMA is non-blocking so that the SPU can continue program execution while DMA transactions are
performed.

The SPU is an in-order dual-issue statically scheduled architecture. Two SIMD [14] instructions can be
issued per cycle: one compute instruction and one memory operation. The SPU branch architecture does
not include dynamic branch prediction, but instead relies on compiler-generated branch hints using pre-

pare-to-branch instructions to redirect instruction prefetch to branch targets. Thus branches should be mini-
mized on the SPE as much as possible.

The MFC supports naturally aligned transfers of 1,2,4, or 8 bytes, or a multiple of 16 bytes to a maximum
of 16 KB. DMA list commands can request a list of up to 2048 DMA transfers using a single MFC DMA
command. Peak performance is achieved when both the effective address and the local storage address are
128 bytes aligned and the transfer is an even multiple of 128 bytes. In the Cell/B.E. processor, each SPE
can have up to 16 outstanding DMAs, for a total of 128 across the chip, allowing unprecedented levels of par-
allelism in communication. Kistler et al. [18] analyze the communication network of the Cell/B.E. processor
and state that applications that rely heavily on random scatter and or gather accesses to main memory can
take advantage of the high communication bandwidth and low latency.

With a clock speed of 3.2 GHz, the Cell/B.E. processor has a theoretical peak performance of 204.8 GFlop/
s (single precision). The EIB supports a peak bandwidth of 204.8 GB/s for intrachip transfers among the SPEs.
The memory interface controller (MIC) provides a peak bandwidth of 25.6 GB/s to main memory. The I/O
controller provides peak bandwidths of 25 GB/s inbound and 35 GB/s outbound.

3. Algorithm design and analysis

3.1. A complexity model for Cell/B.E.

There are several architectural features of the Cell/B.E. processor that can be exploited for performance:

• The (SPEs) are designed as compute-intensive co-processors, while the PowerPC unit (the PPE) orches-
trates the control flow. So it is necessary to partition the computation among the SPEs, and an efficient
SPE implementation should also exploit the SIMD instruction set.

• The SPEs operate on a limited on-chip memory (256 KB local store) that stores both instructions and data
required by the program. Unlike the PPE, the SPE cannot access memory directly, but has to transfer data
and instructions using asynchronous coherent DMA commands. Algorithm design must account for DMA
transfers (i.e., the latency of DMA transfers, as well as their frequency), which may be a significant cost.

• The SPE also differs from conventional microprocessors in the way branches are handled. The SPE does
not support dynamic branch prediction, but instead relies on compiler-generated branch hints to improve
instruction prefetching. Thus, there is a significant penalty associated with branch misprediction, and
branching instructions should be minimized for designing an efficient implementation.

We present a complexity model to simplify the design of parallel algorithms on the Cell/B.E.. Let n denote
the problem size. We model the execution time using the triplet hTC,TD,TBi, where TC denotes the computa-
tional complexity, TD the number of DMA requests, and TB the number of branching instructions. We con-
sider the computation on the SPEs (TC,SPE) and PPE (TC,PPE) separately, and TC denotes the sum of these
terms. TC,SPE is the maximum of TC,SPE(i) for 1 6 i 6 p, where p is number of SPEs. In addition, we have
TD, an upper bound on the number of DMA requests made by a single SPE. This is an important parameter,
as the latency due to a large number of DMA requests might dominate over the actual computation. In cases
when the complexity of TC,SPE dominates over TD, we can ignore the overhead due to DMA requests. Sim-
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ilarly, branch mispredictions constitute a significant overhead. Since it may be difficult to compute the actual
percentage of mispredictions, we just report the asymptotic number of branches in our algorithm. For algo-
rithms in which the misprediction probability is low, we can ignore the effects of branching.

Our model is similar to the Helman–JáJá model for SMPs [11] in that we try to estimate memory
latency in addition to computational complexity. Also, our model is more tailored to heterogeneous mul-
ticore systems than general purpose parallel computing models such as LogP [8], BSP [24] and QSM [22].
The execution time is dominated by the SPE that does the maximum amount of work. We note that
exploiting the SIMD features results in only a constant factor improvement in the performance, and does
not affect the asymptotic analysis. This model does not take into account synchronization mechanisms
such as on-chip mailboxes, and SPU operation under the isolated mode. Also, our model does not con-
sider the effect of floating-point precision on the performance of numerical algorithms, which can be quite
significant [25].

3.2. A procedure for algorithm analysis

We now discuss a systematic procedure for analyzing algorithms using the above model:

(1) We compute the computational complexity TC,SPE.
(2) Next, we determine the complexity of DMA requests TD in terms of the input parameters:
• If the DMA request complexity is a constant, then typically computation would dominate over mem-
ory accesses and we can ignore the latency due to DMA transfers.

• Otherwise, we need to further analyze the algorithm, taking into consideration the size of DMA trans-
fers, as well as the computational granularity.
(3) It is possible to issue non-blocking DMA requests on the SPE, and so we can keep the SPE busy with

computation while waiting for a DMA request to be completed. However, if there is insufficient compu-
tation in the algorithm between a DMA request and its completion, the SPE will be idle. We analyze this
effect by computing the computational complexity in the average case between a DMA request and its
completion. If this term is a function of the input parameters, this implies that memory latency can
be hidden by computation.

(4) Finally, we compute the number of branching instructions TB in the algorithm. These should be mini-
mized as much as possible in order to design an efficient algorithm.

We present a simple example to illustrate the use of our model, as well as the above algorithm analysis
procedure.

Matrix multiplication (C = A*B, cij ¼
Pn

k¼1aik � bkj, for 1 6 i, j 6 n) on the Cell/B.E. is analyzed as
follows:

• We partition computation among the eight SPEs by assigning each SPE the Matrix B and n
p rows of Matrix A.

• Let us assume that each SPE can obtain b rows of A and b columns of B in a single DMA transfer. Thus, we
would require O n2

b2

� �
DMA transfers, and TD is O n2

pb2

� �
.

Chen et al. describe their Cell/B.E. implementation of this algorithm in [6]. The algorithmic complexity is
given by T C ¼ O n3

p

� �
, T D ¼ O n2

pb2

� �
and T B ¼ Oðn2Þ. Using the analysis procedure, we note that the DMA

request complexity is not a constant. Following Step 3, we compute the average case of the computational
complexity between the DMA request and its completion, assuming non-blocking DMAs and double-buffer-
ing. This is given by O(nb2) (as the complexity of computing b2 elements in C is O(n)). Thus, we can ignore the
constant DMA latency for each transfer, and the algorithm running time is dominated by computation for
sufficiently large n. However, note that we have O(n2) branches due to the absence of a branch predictor
on the SPE, which might degrade performance if they result in mispredicts. Using SIMD and dual-issue fea-
tures within the SPE, it is possible to achieve a peak CPI of 0.5. Chen et al. in fact obtain a CPI of 0.508 for
their implementation of the above algorithm, incorporating optimizations such as SIMD, double-buffering
and software pipelining.
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Algorithm design and analysis is more complex for irregular, memory-intensive applications, and problems
exhibiting poor locality. List ranking is representative of this class of problems, and is a fundamental technique
for the design of several combinatorial and graph-theoretic applications on parallel processors. After a brief
introduction to list ranking in the next section, we describe our design of an efficient algorithm for the Cell/B.E.

4. List ranking using the Cell Broadband Engine

Given an arbitrary linked list that is stored in a contiguous area of memory, the list ranking problem deter-
mines the distance of each node to the head of the list (see Fig. 2). For a random list, the memory access pat-
terns are highly irregular, and this makes list ranking a challenging problem to solve efficiently on parallel
architectures. Implementations that yield parallel speedup on shared memory systems exist [11,3], yet none
are known for distributed memory systems.

4.1. Parallel algorithm

List ranking is an instance of the more general prefix problem [3]. Let X be an array of n elements stored in
arbitrary order. For each element i, let X(i) Æ value denote its value and X(i) Æ next the index of its successor.
Then for any binary associative operator �, compute X(i) Æ prefix such that X(head) Æ prefix = X(head) Æ value

and X(i) Æ prefix = X(i) Æ value � X(predecessor) Æ prefix, where head is the first element of the list, i is not equal
to head, and predecessor is the node preceding i in the list. If all values are 1 and the associative operation is
addition, then prefix reduces to list ranking. We assume that we know the location of the head h of the list,
otherwise we can easily locate it. The parallel algorithm for a canonical parallel computer with p processors is
as follows:

(1) Partition the input list into s sublists by randomly choosing one node from each memory block of
n/(s � 1) nodes, where s is X(p logn). Create the array Sublists of size s.

(2) Traverse each sublist computing the prefix sum of each node within the sublists. Each node records its
sublist index. The input value of a node in the Sublists array is the sublist prefix sum of the last node in
the previous Sublists.

(3) The prefix sums of the records in the Sublists array are then calculated.
(4) Each node adds its current prefix sum value (value of a node within a sublist) and the prefix sum of its cor-

responding Sublists record to get its final prefix sums value. This prefix sum value is the required label of the
leaves.

We map this to the Cell/B.E. and analyze it as follows. Assume that we start with eight sublists, one per
SPE. Using DMA fetches, the SPEs continue obtaining the successor elements until they reach a sublist
end, or the end of the list.
  1     8 6 10 5 12 11

  1     872 3 104 1211

Ranks

Ranks

Ordered List

Random List

43927

95 6

Fig. 2. List ranking for ordered (top) and random (bottom) list.
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4.2. Applying the complexity model to list ranking

Analyzing the complexity of this algorithm using our model, we have T C ¼ O n
p

� �
, T D ¼ O n

p

� �
and

T B ¼ Oð1Þ. From Step 2 of the procedure, since the complexity of DMA fetches is a function of n, we analyze
the computational complexity in the average case between a DMA request and its completion. This is clearly
O(1), since we do not perform any significant computation while waiting for the DMA request to complete.
This may lead to processor stalls, and since the number of DMA requests is O(n), stall cycles might dominate
the optimal O(n) work required for list ranking. Our asymptotic analysis offers only a limited insight into the
algorithm, and we have to inspect the algorithm at the instruction-level and design alternative approaches to
hide DMA latency.

4.3. A novel latency-hiding technique for irregular applications

Due to the limited local store (256 KB) within a SPE, memory-intensive applications that have irregular
memory access patterns require frequent DMA transfers to fetch the data. The relatively high latency of a
DMA transfer creates a bottleneck in achieving performance for these applications. Several combinatorial
problems, such as the ones that arise in graph theory, belong to this class of problems. Formulating a general
strategy that helps overcome the latency overhead will provide direction to the design and optimization of
irregular applications on the Cell/B.E.

Since the Cell/B.E. supports non-blocking memory transfers, memory transfer latency will not be a prob-
lem if we have sufficient computation between a request and completion. However, if we do not have enough
computation in this period (for instance, the Helman–JáJá list ranking algorithm), the SPE will stall for the
request to be completed. A generic solution to this problem would be to restructure the algorithm such that the
SPE does useful computation until the memory request is completed. This essentially requires identification of
an additional level of parallelism/concurrency within each SPE. Note that if the computation can be decom-
posed into several independent tasks, we can overcome latency by exploiting concurrency in the problem.

Our technique is analogous to the concept of tolerating latency in architectures such as the Cray MTA-2
and NVIDIA G80 that use massive multithreading to hide latency. The SPE does not have support for hard-
ware multithreading, and so we manage the computation through Software-Managed threads. The SPE com-
putation is distributed to a set of Software-Managed threads (SM-Threads) and at any instant, one thread per
SPE is active. We keep switching software contexts so that we do computation between a DMA request and its
completion. We use a round-robin schedule for the threads (see Fig. 3).

Through instruction-level profiling, it is possible to determine the minimum number of SM-Threads that
are needed to hide the memory latency. Note that utilizing more SM-Threads than required incurs a significant
SPE 1 SPE 2 SPE i SPE p 

Round-robin policy to 
schedule the SM-Threads

SPE computation
divided among

SM-Threads

       SPE
           computation

Fig. 3. Illustration of the technique.
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overhead. Each SM-Thread introduces additional computation and also requires memory on the limited local
store. Thus, we have a trade-off between the number of SM-Threads and latency due to DMA stalls. In the
next section, we will use this technique to efficiently implement list ranking on the Cell/B.E.

4.4. Implementation

Our Cell/B.E. implementation (described in high-level in the following four steps) is similar to the Helman–
JáJá algorithm. Let us assume p SPEs in the analysis:

(1) We uniformly pick s head nodes in the list and assign them to the SPEs. So, each SPE will traverse s/p
sublists.

(2) Using these s/p sublists as independent SM-Threads, we adopt the latency-hiding technique. We divide the
s/p sublists into b DMA list transfers. Using one DMA list transfer, we fetch the next elements for a set of s/
pb lists. After issuing a DMA list transfer request, we move onto the next set of sublists and so forth, thus
keeping the SPU busy until this DMA transfer is complete. Fig. 4 illustrates Step 3 of this algorithm.
We maintain temporary structures in the local store (LS) for these sublists, so that the LS can create a con-
tiguous sublist out of these randomly scattered sublists, by creating a chain of next elements for the sublists.
After one complete round, we manually revive this SM-Thread and wait for the DMA transfer to complete.
Note that there will be no stall if we have sufficient number of SM-Threads (we determine this number in
Section 4.5) to hide the latency. We store the elements that are fetched into the temporary structures, initiate
a new DMA list transfer request for fetching the successors of these newly fetched elements, and move on to
the next set of sublists.
When these temporary structures get full, we initiate a new DMA list transfer request to transfer back these
elements to the main memory.
At the end of Step 2, we have the prefix sum of each node within the sublist for each sublist within the SPU.
Also, we have the randomly scattered sublists stored into a contiguous area of memory.

(3) Compute the rank of each sublist head node using the PPU.

The running time for Step 2 of the algorithm dominates over the rest of algorithm by an order of magni-
tude. In the asymptotic notation, this step is O(n). It consists of an outer loop of O(s) and an inner loop of
Fig. 4. Step 2 of list ranking on the Cell/B.E. (a) Linked list for which list ranking is to be done. Highlighted nodes in this figure are
allocated to SPE(i); (b) View from SPE(i), it has s/p sublist head nodes to traverse concurrently; (c) This array is used to store sublists in
contiguous area of memory. When this gets full, we transfer it back to the main memory.
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O(length of the sublist). Since the lengths of the sublists are different, the amount of work performed by each
SM-Thread differs. For a large number of threads, we get sufficient computation for the SPE to hide DMA
latency even when the load is imbalanced. Helman and JáJá [11,12] established that with high probability,
no processor would traverse more aðsÞ n

p elements for a(s) P 2.62. Thus, the load is balanced among various
SPEs under this constraint.

In our implementation, we incorporate recommended software strategies [5] and techniques to exploit the
architectural features of the Cell/B.E. For instance, we use manual loop unrolling, branch hints, and design
our implementation for a limited local store.
4.5. Performance results

We report our performance results from actual runs on a IBM BladeCenter QS20, with two 3.2 GHz Cell/
B.E. processors, 512 KB Level 2 cache per processor, and 1 GB memory (512 MB per processor). We use one
processor for measuring performance and compile the code using the gcc compiler provided with Cell SDK
2.0, with level 3 optimization.

Similar to [11,3] we use two classes of lists to test our code, Ordered and Random. An ordered list rep-
resentation places each node in the list according to its rank. Thus node i is placed at position i, and its
successor is at position i + 1. A random list representation places successive elements randomly in the
array.

Our significant contribution in this paper is a generic work partitioning technique to hide memory latency.
We demonstrate the results of this technique for list ranking: we use SM-threads to vary the number of out-
standing DMA requests on each SPE, as well as partition the problem and allocate more sublists to each SPE.
Fig. 5 shows the performance boost we obtain as we tune the DMA parameter.

From instruction-level profiling of our code we determine that the exact number of computational clock
cycles between a DMA transfer request and its completion are 75. Comparing this with the DMA transfer
latency (90 ns, i.e. about 270 clock cycles) suggests that four outstanding DMA requests should be sufficient
for hiding the DMA latency. Our results confirm this analysis and we obtain an improvement factor of 4.1
using eight DMA buffers.

In Fig. 6, we present the results for load balancing among the eight SPEs, as the number of sublists are
varied. For ordered lists, we allocate equal chunks to each SPE. Thus, load is balanced among the SPEs in
this case. For random lists, since the length of each sublist varies, the work performed by each SPE varies.
We achieve a better load balancing by increasing the number of sublists. Fig. 6 illustrates this: load balancing
is better for 64 sublists than the case of eight sublists.

We present a performance comparison of our implementation of list ranking on the Cell/B.E. with other
single processor and parallel architectures. We consider both random and ordered lists with 8 million nodes.

Fig. 7 shows the running time of our Cell/B.E. implementation compared with efficient implementations of
list ranking on the following architectures:

Intel_x86: 3.2 GHz Intel Xeon processor, 1 MB L2 cache, Intel C compiler v9.1.
Intel_i686: 2.8 GHz Intel Xeon processor, 2 MB L2 cache, Intel C compiler v9.1.
Intel_ia64: 900 MHz Intel Itanium 2 processor, 256 KB L2 cache, Intel C compiler v9.1.

SunUS_III: 900 MHz UltraSparc-III processor, Sun C compiler v5.8.
Intel_WC: 2.67 GHz Intel Dual-Core Xeon 5150 processor (Woodcrest), Intel C compiler v9.1.

MTA-[1,2,8]: 220 MHz Cray MTA-2 processor, no data cache. We report results for 1, 2, 8 processors.
SunUS-[1,2,8]: 400 MHz UltraSparc II Symmetric Multiprocessor system (Sun E4500), 4 MB L2 cache,

Sun C compiler. We report results for 1, 2 and 8 processors.

For Intel Xeon 5150 (Woodcrest) we use a parallel implementation [3] running on two threads (see Table 1).
Table 2 gives the comparison of running time of various steps in the list ranking algorithm. The table shows
that Step 2 dominates the entire running time of the algorithm. Finally, we demonstrate a substantial speedup
of our Cell/B.E. implementation over a sequential implementation using the PPE-only. We compare the best



Fig. 5. Achieving latency tolerance through DMA parameter tuning for ordered (top) and random (bottom) list of size 220.
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sequential approach that uses pointer-chasing to our algorithm using different problem instances. Fig. 8 shows
that for random lists we get an overall speedup of 8.34 (1 million vertices), and even for ordered lists we get a
speedup of 1.5.

5. Data compression/decompression on the Cell Broadband Engine

We now discuss the next case study of optimizing compression/decompression on the Cell/B.E. processor
using zlib [9].



Fig. 6. Load balancing among SPEs for ordered (top) and random (bottom) for list ranking on the Cell/B.E. with a list of size 220.
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5.1. Description of zlib algorithm

The zlib library is based on the LZ77 algorithm [26] and Huffman coding [13]. In the LZ77 algorithm, a
data stream is compressed by first identifying the longest repeating string, and then replacing the duplicated
string with a reference to its previous occurrence. This reference is represented by a length–distance pair, where
length specifies the length of the repeated string and distance gives the offset of this occurrence. During com-
pression, a hash table is constructed and used to make the process of finding matches faster. For strings that
do not have a previous match, the input literal contained in the string is added to the compressed data. A
further compression is achieved by Huffman coding. Huffman coding enhances the compression ratio by



Fig. 7. Performance of list ranking on the Cell/B.E. as compared to other single processor and parallel architectures for lists of size 8
million nodes. The speedup of the Cell/B.E. implementation over the architectures is given above the respective bars.
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encoding symbols with varying bit lengths according to the frequency of occurrences. In particular, shorter
codes are assigned for more frequent symbols, and longer codes are assigned for less frequent symbols. During
decompression, length–distance pairs and literals are retrieved from Huffman-coded data and the reference
pairs are replaced to obtain original data from the compressed data.

In Fig. 9, we have an illustration of the LZ77 algorithm. Suppose the current sliding window covers literals
starting with index 8 in the input sequence. The hash function generates a hash key by using the first 3 bytes
(index from 8 to 10) of the input string that helps locate the most recent occurrence of this string. The algo-



Table 1
Speedup of our Cell/B.E. implementation of list ranking as compared with other architectures

Architecture Speedup (ordered) Speedup (random)

Intel_x86 0.85 4.15
Intel_i686 0.9 4.1
Intel_ia64 1.5 5.5
SunUS_III 5.4 12.1
Intel_WC 0.82 2.5
MTA-1 5.0 1.05
SunUS_II-1 42.5 14.5
SunUS_II-2 23.9 8.5
SunUS_II-8 10.8 3.1

Table 2
Running time comparison of the various steps of list ranking on Cell/B.E. for ordered and random lists of size 8 million nodes

Task Ordered (%) Random (%)

Step 1: Identification of sublist head nodes 0.09 0.02
Step 2: Traversal of sublists 99.84 99.96
Step 3: Computing the ranks 0.07 0.02
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rithm also maintains a backward chain for the strings with the identical hash key value using a separate data
structure. This is used during a backward traversal, during which a comparison is made with each string to
identify the match length. The string that has the longest match is located and the repeated string is replaced
by a reference to the located string. Also, the hash table is updated to point to this location and the backward
chain is updated to start from this location.

Several input parameters in zlib result in a trade-off between compression ratio, speed and memory require-

ments. One such parameter is the window size, which determines the size of the recent input data to be stored
for searching matches. A large window size can help achieve a better compression ratio, but results in a large
working set. Another configuration option is the hash table size. A big hash table leads to less collisions that
makes the program run faster. It also helps achieve a better compression ratio, but leads to higher memory
utilization.

The compression/decompression stages in zlib are highly dependent in data processing which makes it dif-
ficult to parallelize. For example, during decompression of the Huffman-coded data, the stream of input sig-
nals needs to be decoded sequentially. This is because the symbols have varying bit lengths and we do not
know where the next symbol starts before its previous symbol is decoded. Also, Huffman-coded data is a
mix of literals and length–distance pairs. In order to determine if the next symbol is a literal, length, or dis-
tance, the previous symbol must be decoded.

Another design issue is that the zlib algorithm requires a substantial number of table lookups. For example,
finding matches and decoding the Huffman-coded data stream require accessing the hash and code tables,
respectively. Since the SPE does not support scatter and gather type memory access to the local store, this
cannot be vectorized. In addition, zlib algorithm has many branches which are dependent on input data
and hard to predict statically. For a stream with poor compression ratio, almost every symbol is a literal.
On the other hand, for highly compressible streams, most symbols are length–distance pairs. This leads to dif-
ferent branch behaviors and due to the absence of a dynamic branch predictor in the SPEs, these branch mis-
predictions reduce the performance.

5.2. Applying the complexity model to zlib

We apply the complexity model discussed in Section 3.1 to analyze zlib algorithm. The computational com-
plexity of the sequential algorithm is O(n), as we make one pass over the data stream and the hash table look-
ups are constant-time. In our parallel implementation of zlib, we partition the input data into multiple blocks.



Fig. 8. Performance comparison of sequential implementation on PPE to our parallel implementation of list ranking on the Cell/B.E. for
ordered (top) and random (bottom) lists.
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We use the work-queue strategy detailed in Section 5.4 for load-balanced computation. Thus, TC,SPE becomes
O n

p

� �
.

Let us assume that the DMA transfer block size is b. TD, the complexity of DMA requests, is given by
O(n/pb). Note that in zlib the DMA transfer block size is larger than that of list ranking, where we use a block
size of O(1). From Step 2 of the algorithm analysis procedure, since the complexity of DMA fetches is a



Fig. 9. An illustration of the LZ77 algorithm.
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function of n, we analyze the computational complexity in the average case between a DMA request and its
completion. For zlib this is given by O(b). Since this is not a function of the input parameters, further analysis
is required to determine the amount of data buffering required.

The zlib algorithm is branch intensive, and branch instructions on the Cell/B.E. are hard to predict stati-
cally. TB, the number of branch instructions, is O(n). However, we can still achieve speed-up by paralleliza-
tion, vectorization and other Cell/B.E. processor specific optimizations, which suggests that the Cell/B.E.
processor can be used for wider range of applications.

5.3. Optimizing zlib for the Cell Broadband Engine

The first step towards optimization of an algorithm on the Cell/B.E. involves the identification of the com-
pute-intensive parts. Table 3 shows the result of profiling for the compression routine in zlib.

During compression, a new string is inserted into the hash table whenever a match is found. This step also
consists of a intensive loop that iterates over for the length of the match and inserts a single byte into the hash
table in each iteration. The hash key is computed using the 3 bytes starting from the inserting byte, with an
overlap of 2 bytes that were considered during the previous iteration. In the original implementation, this
overlap is exploited and the hash key is computed from the previous key to reduce the amount of computa-
tion. This gives performance benefit on a scalar machine. However, this generates a false dependency which
makes it tough to vectorize for the Cell/B.E. processor. We break this dependency by calculating the hash key
using all 3 bytes in every iteration without using the previous hash key. This generates redundancy in compu-
tation but improves performance in overall by vectorization.
Table 3
Percentage of execution time of the various tasks during compression

Task Execution time (%)

Fill window for previous data to find matches 11.73
Find the longest matches in LZ77 algorithm 32.69
Update the output buffers and statistics according to the availability of the matches 36.89
Perform Huffman coding on the data 11.81
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Another step in compression requires finding the longest match where a comparison is made between the
current string and the previous strings. This step consists of intensive loops with byte comparisons, which can
be implemented using the 16 byte byte-wise vector comparison instruction. This optimization leads to a sig-
nificant speed up if data has high redundancy, whereas for a less redundant input data comparison is made
with only small number of bytes which reduces the performance benefit.

In the compression process, zlib manages a sliding window for finding the longest match using the LZ77
algorithm. The window is divided into two parts, the first half stores the previous data stream that is used
to find the matches and the second half stores the current stream that needs to be compressed. When the cur-
rent pointer reaches to the end of the sliding window, the second half of the sliding window is copied to the
first half, and a new data stream is loaded to the second half. Accordingly, the hash table and backward chain,
which have the pointers to the sliding window, need to be updated. This is a intensive loop and the iteration
count of the loop depends on window and hash table size. We vectorized this loop and manually unroll it to
achieve better pipeline utilization. The pointer variable in this loop is 2 bytes long, thus vectorization reduces
the loop iterations by a factor of eight.

Table 4 shows the result of profiling for the decompression routine in zlib. The most compute-intensive task
during decompression is first, converting the Huffman-coded data to literals or length-distance pairs and then,
replacing the references with the original data. The first step, is highly data-dependent, which makes it hard to
vectorize. The second step is essentially a byte-wise memory copy that can be vectorized. We can copy 16 bytes
at once using vector instructions. However, if there is an overlap between the source and destination vectors
this technique does not work (Fig. 10). To overcome this problem we shuffle the source vector using a table
lookup for shuffle pattern, and copy the generated output vector to the destination.

Another computation intensive step during decompression involves the calculation of CRC values. CRC
algorithms for SIMD architectures have been studied by Joshi et al. [16] and Lin [19]. Lin [19] introduced
the concept of ‘congruent equivalence’, and replaced table lookups with the shuffle instructions. Table lookups
Table 4
Percentage of execution time of the various tasks during decompression

Task Execution time (%)

Convert Huffman-coded data to literal, and length–distance pairs, and copy data from previous input according to
these pairs

77.25

Construct table for decompression 8.72
Calculate the CRC value 7.96
Parse header data 5.97

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Source Destination

1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Source Destination

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Source Destination

Original

Output using
vector copy

Desired
Output

Fig. 10. Illustration of problem in byte-wise memory copy using vector instruction.
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can be replaced with the shuffle instructions if table size is equal to or smaller than 32 bytes. Joshi et al. and
Lin used nibble-wise table lookup instead of traditional byte-wise lookup to reduce the table size. These
approaches are attractive for the Cell/B.E. processor as the SPE supports the shuffle instruction. We also vec-
torize the Adler32 algorithm [20], which can be used instead of the crc32( ) function.

We use statistical approaches for branch hinting and loop optimization. Loop unrolling works for intensive
loops, but adds overhead and increases code size. This does not help for loops with a small number of itera-
tions. So we identify the compute-intensive loops and apply optimization techniques on them. This gives a
performance boost and saves local store space. Branch hint instruction benefits especially when the branch off-
set is large, and branch is highly predictable statically. When compiler encounters branch hint intrinsic, com-
piler inserts branch hint instruction which facilitates prefetching the instruction and also make hinted case as
the fall through case if possible. We use branch hint intrinsics wherever possible to reduce the number of
branch mispredictions. Reducing memory usage is also important in the optimization. In a virtual memory sys-
tem, unused function code resides on disk and never loaded to the main memory or the cache. In the SPE, the
entire executable image is loaded to the local store. Considering that the size of local store is only 256 KB, this
is undesirable. We separate compression and decompression routines to reduce code size.

5.4. Optimizing gzip on the Cell Broadband Engine

Gzip is an application that uses the zlib library for file-compression and decompression. The zlib algorithms
are highly data-dependent which makes it hard to partition the input data for parallel processing. We use full
flushing (supported by zlib API) to break this data dependency. We can then restart the algorithm after the full
flush point, making the algorithm data-dependent only between two consecutive flush points. This helps in
partitioning the data and enables parallel processing. However, during decompression a complete search of
the compressed file is required to find the flush points (0, 0,0xff,0xff). This is an additional overhead particu-
larly for the files compressed without full flushing. By extending gzip header format we can avoid this search
overhead keeping the file compatible with the legacy gzip decompressors.

We use an extra field to indicate that the file has multiple blocks with full flush between blocks. The size of the
each block is also included in the header in order to avoid full search to find synchronization points. During the
decompression stage, the decompressor inspects the flags. If the sub-field ID for Cell/B.E. gzip extension is found
on systems with the Cell/B.E. zlib, it decompresses the file in parallel using multiple SPEs. If not, it sequentially
decompresses the file as a normal gzip file. A legacy decompressor would ignore the extra field with unknown sub-
field ID and skip the bytes. Therefore, the file can still be decompressed correctly. Full flushing and additional
information will slightly increase the file size by a negligible amount (0.2% increase for 900 KB block size).

The new field is structured as follows:

• Byte 1 stores the character ‘C’ which stands for Cell /B.E.
• Byte 2 stores the character ‘E’ which stands for Extension.
• We use 2 bytes for storing n, number of blocks.
• We use 4 bytes for storing the size of each block, and this requires 4n bytes.

We also consider load balancing and file I/O delay in our parallel implementation. It is important to note
that dividing input file into chunks of equal size will not distribute work uniformly among the processors, as
the compression time is highly dependent on the input file characteristics. We achieve load balancing by par-
titioning input file to multiple blocks. Each SPE is initially assigned with a work-task, and on completion it
picks up another work-task from the work queue. We also create two additional threads for file read and
write. The file read thread reads the data to be processed in advance and fill the memory buffer. The write
thread writes the computed result in background.

5.5. gzip performance results

The gzip code is compiled with gcc provided with the Cell SDK 2.0 using optimization level 5 (�O5). We
used the Cell SDK simulator for measuring clock cycles, and the IBM QS20 Cell/B.E. blade for running time



Table 5
Parameters used for compiling the zlib library

zlib library windowBits memLevel

Basic 13 6
Compression 13 7
Decompression 15 –

Fig. 11. Speedup of Cell/B.E. optimized gzip application on a single SPE for compression (top) and decompression (bottom).
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measurements. The parameters used to compile the original zlib library, Cell/B.E. optimized compression, and
decompression, are given in Table 5. The total memory use is given by

• Compression: 2windowBits+2 + 2memLevel+9 bytes.
• Decompression: 2windowBits+2 bytes.

Fig. 11 shows the speedup obtained for different file types using our optimized SPE implementation as com-
pared to the gzip program using original zlib library run on the single SPE. The speedup is achieved by SIM-
Dization and other Cell/B.E. specific optimizations including branch hints and loop unrolling. The test files we
have used for performance analysis consist of an already compressed file that has very less redundancy, Bit-
map file 1, 2 and 3 that have increasing level of redundancy, with Bitmap file 3 having 100% redundancy.
Please refer to Table 6 for the compression ratio of these file types. Fig. 11 shows that the speedup obtained,
during compression and decompression stages, is highly dependent on the input file type where we get perfor-
mance improvement of over 4 for Bitmap file 3 and an improvement of 1.5 for an already compressed file.

Fig. 12 shows the performance comparison of the Cell/B.E. optimized gzip compression as compared with
other single processor architectures. Please refer to Section 4.5 for details of these architectures. For Intel
Xeon 5150 (Woodcrest) we ran gzip using a single thread. Due to the unavailability of a opensource parallel
gzip application our performance is limited to single processor architectures.
Table 6
Compression ratio compressed file size

original file size
� 100

� �
using gzip for the various test files

Test file Compression level 1 (%) Compression level 5 (%) Compression level 9 (%)

Compressed file (484 KB) 100 100 100
Bitmap file (355 KB) 35.8 31.0 29.4
Text file (460 KB) 11.3 8.16 7.48
Bitmap file 2 (546 KB) 7.84 7.35 7.08
Bitmap file 3 (2.40 MB) 0.499 0.158 0.138

Fig. 12. Performance comparison of Cell/B.E. optimized gzip compression with the original zlib implementation on other single processor
architectures.
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6. Conclusions

In summary, we present two case studies to illustrate the design and implementation of parallel combina-
torial algorithms on the Cell/B.E. processor: list ranking, a fundamental kernel in graph algorithms, and zlib,
a data compression and decompression library. We introduce the idea of Software-Managed threads (SM-
Threads), a generic work-partitioning technique for latency tolerance and load balancing on the Cell/B.E.
We apply this technique to develop a fast parallel implementation of list ranking, and confirm its efficacy
by demonstrating an improvement factor of 4.1 as we tune relevant parameters. Most importantly, we achieve
an overall speedup of 8.34 of our implementation over an efficient PPE-only sequential implementation. Sim-
ilarly, for the zlib library, we exploit concurrency at multiple levels: we vectorize compute-intensive kernels in
compression and decompression, and also parallelize the functions to run on multiple SPEs. Our Cell/B.E.
implementation of the gzip application, based on the zlib library, achieves a speedup of 2.9 for compression
over a high-end Intel Pentium-4 system. With these case studies, we highlight the potential of the Cell/B.E.
processor as an accelerator for combinatorial applications.
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