
J. Parallel Distrib. Comput. 66 (2006) 854–866
www.elsevier.com/locate/jpdc

Designing irregular parallel algorithms with mutual exclusion
and lock-free protocols

Guojing Conga, David A. Baderb,∗,1
aIBM T.J. Watson Research Center, Yorktown Heights, NY, USA
bCollege of Computing, Georgia Institute of Technology, USA

Received 21 April 2005; received in revised form 29 October 2005; accepted 22 December 2005
Available online 15 February 2006

Abstract

Irregular parallel algorithms pose a significant challenge for achieving high performance because of the difficulty predicting memory access
patterns or execution paths. Within an irregular application, fine-grained synchronization is one technique for managing the coordination of
work; but in practice the actual performance for irregular problems depends on the input, the access pattern to shared data structures, the
relative speed of processors, and the hardware support of synchronization primitives. In this paper, we focus on lock-free and mutual exclusion
protocols for handling fine-grained synchronization. Mutual exclusion and lock-free protocols have received a fair amount of attention in
coordinating accesses to shared data structures from concurrent processes. Mutual exclusion offers a simple programming abstraction, while
lock-free data structures provide better fault tolerance and eliminate problems associated with critical sections such as priority inversion and
deadlock. These synchronization protocols, however, are seldom used in parallel algorithm designs, especially for algorithms under the SPMD
paradigm, as their implementations are highly hardware dependent and their costs are hard to characterize. Using graph-theoretic algorithms
for illustrative purposes, we show experimental results on two shared-memory multiprocessors, the IBM pSeries 570 and the Sun Enterprise
4500, that irregular parallel algorithms with efficient fine-grained synchronization may yield good performance.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Parallel algorithms; Irregular algorithm; Shared memory; High-performance algorithm engineering

1. Introduction

Irregular problems are challenging to parallelize and to
achieve high performance because typically their memory ac-
cess patterns or execution paths are not predictable a priori,
and straightforward data decompositions or load balancing
techniques, such as those used for regular problems, often are
not efficient for these applications. Fine-grained synchroniza-
tion, a technique for managing the coordination of work within
an irregular application, can be implemented through lock-free

∗ Corresponding author.
E-mail addresses: gcong@us.ibm.com (G. Cong), bader@cc.gatech.edu

(D.A. Bader).
1 This work was supported in part by NSF Grants CAREER CCF 06-

11589, ACI-00-93039, ITR ACI-00-81404, DEB-99-10123, ITR EIA-01-
21377, Biocomplexity DEB-01-20709, DBI-0420513, ITR EF/BIO 03-31654;
and DARPA Contract NBCH30390004.

0743-7315/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2005.12.004

protocols, system mutex locks, and spinlocks. However, fine-
grained locks and lock-free protocols are seldomly employed
in implementations of parallel algorithms.

System mutex locks, widely used for interprocess synchro-
nization due to their simple programming abstractions, provide
a common interface for synchronization, and the performance
depends on the implementation and the application scenario.
User-defined spinlocks are customizable; however, the disad-
vantages are that the user is exposed to low-level hardware de-
tails and portability can be an issue. For large-scale application
of locks in a high-performance computing environment, spin-
locks have the advantage of economic memory usage and sim-
ple instruction sequences. Each spinlock can be implemented
using one memory word, while a system mutex lock can take
multiple words for its auxiliary data structures, which exacer-
bates the problem with accessing memory.

Mutual exclusion locks have an inherent weakness in a (pos-
sibly heterogeneous and faulty) distributed computing envi-
ronment; that is, the crashing or delay of a process in a critical

http://www.elsevier.com/locate/jpdc
mailto:gcong@us.ibm.com
mailto:bader@cc.gatech.edu

G. Cong, D.A. Bader / J. Parallel Distrib. Comput. 66 (2006) 854–866 855

section can cause deadlock or serious performance degradation
of the system [32,46]. Lock-free data structures (sometimes
called concurrent objects) were proposed to allow concurrent
accesses of parallel processes (or threads) while avoiding the
problems of locks. In theory we can coordinate any number of
processors through lock-free protocols. In practice, however,
lock-free data structures are primarily used for fault-tolerance.

In this paper, we illustrate the performance of fine-grained
locks and lock-free protocols using irregular applications such
as those from graph theory, using large, sparse instances on
shared-memory multiprocessors. Graph abstractions are used
in many computationally challenging science and engineering
problems. For instance, the minimum spanning tree (MST)
problem finds a spanning tree of a connected graph G with
the minimum sum of edge weights. MST is one of the most
studied combinatorial problems with practical applications in
VLSI layout, wireless communication, and distributed networks
[48,59,67], recent problems in biology and medicine such as
cancer detection [12,37,38,47], medical imaging [2], and pro-
teomics [52,23], and national security and bioterrorism such as
detecting the spread of toxins through populations in the case
of biological/chemical warfare [13], and is often a key step in
other graph problems [50,45,58,64]. Graph abstractions are also
used in data mining, determining gene function, clustering in
semantic webs, and security applications. For example, studies
(e.g. [16,39]) have shown that certain activities are often suspi-
cious not because of the characteristics of a single actor, but be-
cause of the interactions among a group of actors. Interactions
are modeled through a graph abstraction where the entities are
represented by vertices, and their interactions are the directed
edges in the graph. This graph may contain billions of vertices
with degrees ranging from small constants to thousands. Due
to our interest in large graphs, we explore the performance of
graph applications that use a tremendous number (e.g., millions
to billions) of fine-grained synchronizations.

Most theoretic parallel algorithmic models are either syn-
chronous (e.g., PRAM [36]) or for network-based systems (e.g.,
LogP [21] and BSP [61]) with no explicit support for fine-
grained synchronization. In these models, coarse synchroniza-
tion is performed through a variety of mechanisms such as
lock-step operation (as in PRAM), algorithm supersteps (as in
BSP) and collective synchronization primitives such as barriers
(as in LogP), rather than fine-grained coordination of accesses
to shared data structures. In practice, the performance of paral-
lel algorithms that use locks and lock-free protocols are highly
dependent on the parallel computer architecture and the con-
tention among processors to shared regions.

In this paper we investigate the performance of fine-grained
synchronization on irregular parallel algorithms using shared-
memory multiprocessors. These high-performance parallel sys-
tems typically have global access to large, shared memories
and avoid the overhead of explicit message passing. Fast par-
allel algorithms for irregular problems have been developed
for such systems. For instance, we have designed fast parallel
graph algorithms and demonstrated speedups compared with
the best sequential implementation for problems such as ear
decomposition [9], tree contraction and expression evaluation

[10], spanning tree [6,8], rooted spanning tree [20], and min-
imum spanning forest [7]. Many of these algorithms achieve
good speedups due to algorithmic techniques for efficient de-
sign and better cache performance. For some of the instances,
for example, arbitrary, sparse graphs, while we may be able to
improve the cache performance to a certain degree, there are no
known general techniques for cache performance optimization
because the memory access pattern is largely determined by the
structure of the graph. Our prior studies have excluded certain
design choices that involve fine-grained synchronizations. This
paper investigates these design choices with lock-free protocols
and mutual exclusion. Our main results include novel appli-
cations of fine-grained synchronization where the performance
beats the best previously known parallel implementations.

The rest of the paper is organized as follows: Section 2
presents lock-free parallel algorithms with an example of lock-
free spanning tree algorithm; Section 3 presents parallel algo-
rithms with fine-grained locks; Section 4 compares the perfor-
mance of algorithms with fine-grained synchronizations with
prior implementations; and Section 5 gives our conclusions and
future work.

2. Lock-free parallel algorithms

Lamport [42] first introduced lock-free synchronization to
solve the concurrent readers and writers problem and improve
fault-tolerance. Before we present its application to the design
of parallel algorithms, we first give a brief review of lock-free
protocols and some theoretic results in Section 2.1. Section 2.2
summarizes prior results on lock-free parallel algorithms.

2.1. Lock-free shared data structures

Early work on lock-free data structures focused on theoret-
ical issues of the synchronization protocols, for example, the
power of various atomic primitives and impossibility results
[4,14,22,24,25,28], by considering the simple consensus prob-
lem where n processes with independent inputs communicate
through a set of shared variables and eventually agree on a
common value. Herlihy [30] unified much of the earlier theo-
retic results by introducing the notion of consensus number of
an object and defining a hierarchy on the concurrent objects
according to their consensus numbers. Consensus number mea-
sures the relative power of an object to reach distributed con-
sensus, and is the maximum number of processes for which the
object can solve the consensus problem. It is impossible to con-
struct lock-free implementations of many simple and useful data
types using any combination of atomic read, write, test&set,
fetch&add, and memory-to-register swap, because these prim-
itives have consensus numbers either one or two. On the other
hand, compare&swap and load-linked, store-conditional have
consensus numbers of infinity, and hence are universal mean-
ing that they can be used to solve the consensus problem of any
number of processes. Lock-free algorithms and protocols are
proposed for many commonly used data structures, for exam-
ple, linked lists [63], queues [33,43,60], set [44], union-find sets
[3], heaps [11], and binary search trees [26,62]; and also for the

856 G. Cong, D.A. Bader / J. Parallel Distrib. Comput. 66 (2006) 854–866

performance improvement of lock-free protocols [1,11]. While
lock-free data structures and algorithms are highly resilient to
failures, unfortunately, they seem to come at a cost of degraded
performance. Herlihy et al. [31,32] studied practical issues and
architectural support of implementing lock-free data structures,
and their experiments with small priority queues show that lock-
free implementations do not perform as well as lock-based im-
plementations. With 16 processors on an Encore Multimax, the
lock-free implementation, for a benchmark that enqueues and
dequeues 1M elements, with exponential back-off to reduce
contention is about 30% slower than the corresponding lock-
based implementation. (Note that throughout this paper, we use
M to represent 220.) LaMarca [41] developed an analytic model
based on architectural observations to predict the performance
of lock-free synchronization protocols. His analysis and exper-
imental results show that the benefits of guaranteed progress
come at the cost of decreased performance. Shavit and Touitou
[55] studied lock-free data structures through software trans-
actional memory, and their experimental results also show that
on a simulated parallel machine lock-free implementations are
inferior to standard lock-based implementations.

2.2. Asynchronous parallel computation

Cole and Zajicek [19] first introduced lock-free protocols into
parallel computing when they proposed asynchronous PRAM
(APRAM) as a more realistic parallel model than PRAM be-
cause APRAM acknowledges the cost of global synchroniza-
tion. Their goal was to design APRAM algorithms with fault-
resilience that perform better than straightforward simulations
of PRAM algorithms on APRAM by inserting barriers. A par-
allel connected components algorithm without global synchro-
nization was presented as an example. It turned out, however,
according to the research of lock-free data structures in dis-
tributed computing, that it is impossible to implement many
lock-free data structures on APRAM with only atomic regis-
ter read/write [4,30]. Attiya et al. [5] proved a lower bound of
log n time complexity of any lock-free algorithm on a com-
putational model that is essentially APRAM that achieves ap-
proximate agreement among n processes in contrast to constant
time of non-lock-free algorithms. This suggests an � (log n)

gap between lock-free and non-lock-free computation models.
Vishkin et al. introduced the “independence of order semantics
(IOS)” that provides lock-free programming on explicit multi-
threading (XMT) [65].

2.3. Lock-free protocols for resolving races among processors

A parallel algorithm often divides into phases and in each
phase certain operations are applied to the input with each pro-
cessor working on portions of the data structure. For irregular
problems there usually are overlaps among the portions of data
structures partitioned onto different processors. Locks provide
a mechanism for ensuring mutually exclusive access to critical
sections by multiple working processors. Fine-grained locking
on the data structure using system mutex locks can bring large

A:

P1 P2 P3

C:

1 2 3 4 5 6

1, op1 2, op1 3, op2 3, op3 4, op2 5, op1 4, op2 6, op3 5, op2

Fig. 1. Conflicts when partitioning work among the processors. Here for
simplicity we assume every condition in C is true and they are not shown.

memory overhead. What is worse is that many of the locks are
never acquired by more than one processor. Most of the time
each processor is working on distinct elements of the data struc-
ture due to the large problem size and relatively small number
of processors. Yet still extra work of locking and unlocking
is performed for each operation applied to the data structure,
which may result in a large execution overhead depending on
the implementation of locks.

We consider the following problem. For a given input array
A of size n, a certain operation op from a set of operations
is to be applied to the elements in A according to the condi-
tions specified in the condition array C of size m with m�n.
C(j) (1�j �m) specifies an element A(i), a condition cond
which may be a Boolean expression involving elements of A,
and an operation op; if cond is evaluated as true, operation op
is applied to A(i). In case multiple conditions in C for a certain
element A(i) are satisfied, there is a potential race condition for
all processors as applying the operation involves the evaluation
of the condition (which, in general, is not atomic). Depending
on different algorithms, either one operation or a certain subset
of the operations are applied. Here we consider the case when
only one arbitrary operation is applied.

In Fig. 1, array C is partitioned onto three processors P1, P2,
and P3. Processor P1 and P2 will both work on A(3), and P2
and P3 will both work on A(4). To resolve the conflicts among
processors, we can either sort array C, which is expensive, to
move the conditions for A(i) into consecutive locations and
guarantee that only one processor works on A(i) or use fine-
grained synchronization to coordinate multiple processors.

Here we show that lock-free protocols via atomic machine
operations are an elegant solution to the problem. When there
is work partition overlap among processors, it suffices that the
overlap is taken care of by one processor. If other processors
can detect that the overlap portion is already taken care of,
they no longer need to apply the operations and can abort.
Atomic operations can be used to implement this “test-and-
work” operation. As the contention among processors is low,
we expect the overhead of using atomic operations to be small.
Note that this is very different from the access patterns to the
shared data structures in distributed computing; for example,
two producers attempting to put more work into the shared
queues. Both producers must complete their operations, and
when there is conflict they will retry until success.

To illustrate this point in a concrete manner, we consider
the application of lock-free protocols to the Shiloach–Vishkin
parallel spanning tree algorithm [56,57]. This algorithm is
representative of several connectivity algorithms that adapt
the graft-and-shortcut approach, and is implemented in prior

G. Cong, D.A. Bader / J. Parallel Distrib. Comput. 66 (2006) 854–866 857

experimental studies (e.g., see [29,40,34]). For graph G =
(V , E) with |V | = n and |E| = m, the algorithm achieves
complexities of O (log n) time and O ((m+ n) log n) work
under the arbitrary CRCW PRAM model.

The algorithm takes an edge list as input and starts with n iso-
lated vertices and m processors. Each processor Pi (1� i�m)
inspects edge ei = (vi1 , vi2) and tries to graft vertex vi1 to vi2

under the constraint that i1 < i2. Grafting creates k�1 con-
nected components in the graph, and each of the k components
is then shortcut to a single supervertex. Grafting and shortcut-
ting are iteratively applied to the reduced graphs G′ = (V ′, E′)
(where V ′ is the set of supervertices and E′ is the set of edges
among supervertices) until only one supervertex is left. For a
certain vertex v with multiple adjacent edges, there can be mul-
tiple processors attempting to graft v to other smaller-labeled
vertices. Yet only one grafting is allowed, and we label the
corresponding edge that causes the grafting as a spanning tree
edge. This is a partition conflict problem.

Algorithm 1. Parallel lock-free spanning tree algorithm
(span-lockfree).

Data : (1) EdgeList[1 . . . 2m]: edge list representation
for graph G = (V , E), |V | = n, |E| = m; each
element of EdgeList has two field, v1 and v2 for
the two endpoints of an edge
(2) integer array D[1 . . . n] with D[i] = i

(3) integer array Flag[1 . . . n] with Flag[i] = 0

Result : a sequence of edges that are in the spanning tree
begin

n′ = n

while n′ �= 1 do
for k← 1 to n′ in parallel do

i = EdgeList[k].v1
j = EdgeList[k].v2
if D[j]< D[i] and D[i] = D[D[i]] and
compare&swap(&Flag[D[i]], 0, PID) =
0 then

label edge EdgeList[k] to be in the spanning
tree
D[D[i]] = D[j]

for i ← 1 to n′ in parallel do
while D[i] �= D[D[i]] do

D[i] = D[D[i]]
n′ = the number of super-vertices

end

Two-phase election is one method that can be used to resolve
the conflicts. The strategy is to run a race among processors,
where each processor that attempts to work on a vertex v writes
its processor id into a tag associated with v. After all the pro-
cessors are done, each processor checks the tag to see whether
it is the winning processor. If so, the processor continues with
its operation, otherwise it aborts. A global barrier synchro-
nization among processors is used instead of a possibly large

number of fine-grained locks. The disadvantage is that two runs
are involved.

Another more natural solution to the work partition problem
is to use lock-free atomic instructions. When a processor at-
tempts to graft vertex v, it invokes the atomic compare&swap
operation to check on whether v has been inspected. If not, the
atomic nature of the operation also ensures that other proces-
sors will not work on v again. The detailed description of the
algorithm is shown in Algorithm 1, and inline assembly func-
tions for compare&swap can be found in Algorithms 2 and 3
in Section 2.4.

2.4. Implementation of compare&swap

Algorithm 2. The compare&swap function implementation
on Sun Sparc.

.inline compare&swap
cas [%o0], %o1, %o2
mov %o2, %o0
.end

As atomic instructions are generally not directly available to
high level programming languages, we show in Algorithm 2
the design of an atomic compare&swap instruction in an inline
C function for Sun Sparc. In the example, [o0] stands for the
address held in register o0. On Sun Sparc, the cas instruction
compares the word at memory address [o0] and the word in
register o1. If they are the same, then the word in register o2
and word are swapped; otherwise no swapping is done but o2
still receives the value stored in [o0].

Algorithm 3. The compare&swap function implementation
using load-linked, store-conditional on PowerPC.

#pragma mc_func compare&swap { \
"7cc01828" /* cas_loop: lwarx 6,0,3 */ \
"7c043000" /* cmpw 4,6 */ \
"4082000c" /* bc 4,2,cas_exit */ \
"7ca0192d" /* stwcx. 5,0,3 */ \
"4082fff0" /* bc 4,2,cas_loop */ \
"7cc33378" /* cas_exit: or 3,6,6 */ \
}
#pragma reg_killed_by CASW gr0,gr3,gr4,
gr5,gr6,cr0

For the IBM PowerPC architecture, Algorithm 3 demon-
strates the compare&swap implemented through load-linked,
store-conditional instructions. Inline assembly is not directly
supported with IBM’s native C compiler. Instead, the assembly
code is first translated into machine code and then linked. In
the example, the comments show the corresponding assembly
code for the machine code.

In this example, the pair of instructions lwarx and stwcx.
are used to implement a read-modify-write operation to mem-
ory. Basically lwarx is a special load, and stwcx. a special
store. If the store from a processor is performed, then no other

858 G. Cong, D.A. Bader / J. Parallel Distrib. Comput. 66 (2006) 854–866

processor or mechanism has modified the target memory loca-
tion between the time the lwarx instruction is executed and
the time the stwcx. instruction completes.

3. Parallel algorithms with fine-grained mutual exclusion
locks

Mutual exclusion provides an intuitive way for coordinat-
ing synchronization in a parallel program. For example, in the
spanning algorithm in Section 2.3, we can also employ mutual
exclusion locks to resolve races among processors. Before a
processor grafts a subtree that is protected by critical sections,
it first gains access to the data structure by acquiring locks,
which guarantees that a subtree is only grafted once. In Sec-
tion 3.1 we discuss the design and implementation of spinlocks
for mutual exclusion.

To illustrate the use of mutex locks, in this section we present
a new implementation of the minimum spanning tree (MST)
problem based on parallel Borůvka’s algorithm that outper-
forms all previous implementations. We next introduce parallel
Borůvka’s algorithm and previous experimental results.

3.1. Implementation of spinlocks

Algorithm 4. The implementation of a spinlock on Sun
Sparc.

.inline spin_lock
1:
mov 0,%o2
cas [%o0],%o2,%o1
tst %o1
be 3f
nop
2:
ld [%o0], %o2
tst %o2
bne 2b
nop
ba,a 1b
3:
membar #LoadLoad | #LoadStore
.end

.inline spin_unlock
membar #StoreStore
membar #LoadStore !RMO only
mov 0, %o1
st %o1,[%o0]
.end

Implementations of spinlocks on Sun Sparc and IBM Pow-
erPC are shown in Algorithms 4 and 5, respectively. Note
that cas and load-linked, store-conditional are used. In addi-
tion, there are also memory access synchronizing instructions.
For example membar on Sparc and sync on PowerPC, are

Algorithm 5. The implementation of a spinlock on IBM
PowerPC.

#pragmamc_funcspin_lock{ \
"7cc01828"/*TRY:lwarx6,0,3*/ \
"2c060000"/*cmpwi6,0*/ \
"4082fff8"/*bc4,2,TRY*/ \
"4c00012c"/*isync*/ \
"7c80192d"/*stwcx.4,0,3*/ \
"4082ffec"/*bc4,2,TRY*/ \
"4c00012c"/*isync##instructionsync*/\
}
#pragma reg_killed_by spin_lock gr0, gr3,
gr4, gr6

#pragmamc_funcspin_unlock{ \
"7c0004ac"/*sync*/ \
"38800000"/*addi4,0,0*/ \
"90830000"/*stw4,0(3)*/ \
}
#pragma reg_killed_by spin_unlock gr0,
gr3, gr4

employed to guarantee consistency in relaxed memory mod-
els which are related to the implementation of synchronization
primitives, but are largely outside the scope of this paper. We
refer interested readers to [66,35] for documentation on atomic
operations and memory synchronization operations.

3.2. Parallel Borůvka’s algorithm

Given an undirected connected graph G with n vertices and
m edges, the minimum spanning tree problem finds a spanning
tree with the minimum sum of edge weights. In our previous
work [7], we studied the performance of different variations
of parallel Borůvka’s algorithm. Borůvka’s algorithm is com-
prised of Borůvka iterations that are used in several parallel
MST algorithms (e.g., see [53,54,17,18]). A Borůvka iteration
is characterized by three steps: find-min, connected-components
and compact-graph. In find-min, for each vertex v the incident
edge with the smallest weight is labeled to be in the MST;
connect-components identifies connected components of the in-
duced graph with the labeled MST edges; compact-graph com-
pacts each connected component into a single supervertex, re-
moves self-loops and multiple edges, and re-labels the vertices
for consistency.

Here we summarize each of the Borůvka algorithms. The
major difference among them is the input data structure and the
implementation of compact-graph. The compact-graph is the
most expensive of the three steps. Bor-ALM takes an adjacency
list as input and compacts the graph using parallel sample sort
plus sequential merge sort; Bor-FAL takes our flexible adja-
cency list as input and runs parallel sample sort on the vertices
to compact the graph. For most inputs, Bor-FAL is the fastest
implementation. In the compact-graph step, Bor-FAL merges
each connected component into a single supervertex that com-
bines the adjacency list of all the vertices in the component.

G. Cong, D.A. Bader / J. Parallel Distrib. Comput. 66 (2006) 854–866 859

32 41

65

1 2 1

43

2

4

3
1′ 2′

1 2 3

2 1 21

5 6

4

Fig. 2. Example of the race condition between two processors when Borůvka’s
algorithm is used to solve the MST problem.

Bor-FAL does not attempt to remove self-loops and multiple
edges, and avoids runs of extensive sortings. Instead, self-loops
and multiple edges are filtered out in the find-min step. Bor-
FAL greatly reduces the number of shared memory writes at
the relatively small cost of an increased number of reads, and
proves to be efficient as predicted on current SMPs.

3.3. A new implementation with fine-grained locks

Now we present an implementation with fine-grained locks
that further reduces the number of memory writes. In fact the
input edge list is not modified at all in the new implementation,
and the compact-graph step is completely eliminated. The main
idea is that instead of compacting connected components, for
each vertex there is now an associated label supervertex show-
ing to which supervertex it belongs. In each iteration all the
vertices are partitioned as evenly as possible among the pro-
cessors. For each vertex v of its assigned partition, processor p

finds the adjacent edge e with the smallest weight. If we com-
pact connected components, e would belong to the supervertex
v′ of v in the new graph. Essentially processor p finds the ad-
jacent edge with smallest weight for v′. As we do not compact
graphs, the adjacent edges for v′ are scattered among the adja-
cent edges of all vertices that share the same supervertex v′, and
different processors may work on these edges simultaneously.
Now the problem is that these processors need to synchronize
properly in order to find the edge with the minimum weight.
Again this is an example of the irregular work-partition prob-
lem. Fig. 2 illustrates the specific problem for the MST case.

On the top in Fig. 2 is an input graph with six vertices.
Suppose we have two processors P1 and P2. Vertices 1, 2, and
3, are partitioned on to processor P1 and vertices 4, 5, and 6
are partitioned on to processor P2. It takes two iterations for
Borůvka’s algorithm to find the MST. In the first iteration, the
find-min step labels 〈1, 5〉, 〈5, 3〉, 〈2, 6〉, and 〈6, 4〉, to be in the
MST. connected-components finds vertices 1, 3, and 5, in one

component, and vertices 2, 4, and 6, in another component. The
MST edges and components are shown in the middle of Fig. 2.
Vertices connected by dashed lines are in one component, and
vertices connected by solid lines are in the other component.
At this time, vertices 1, 3, and 5, belong to supervertex 1′, and
vertices 2, 4, and 6, belong to supervertex 2′. In the second
iteration, processor P1 again inspects vertices 1, 2, and 3, and
processor P2 inspects vertices 4, 5, and 6. Previous MST edges
〈1, 5〉, 〈5, 3〉, 〈2, 6〉 and 〈6, 4〉 are found to be edges inside
supervertices and are ignored. On the bottom of Fig. 2 are the
two supervertices with two edges between them. Edges 〈1, 2〉
and 〈3, 4〉 are found by P1 to be the edges between supervertices
1′ and 2′, edge 〈3, 4〉 is found by P2 to be the edge between the
two supervertices. For supervertex 2′, P1 tries to label 〈1, 2〉
as the MST edge while P2 tries to label 〈3, 4〉. This is a race
condition between the two processors, and locks are used to
ensure correctness. The formal description of the algorithm
is given in Algorithm 6. Note that Algorithm 6 describes the
parallel MST algorithm with generic locks. The locks in the
algorithm can be either replaced by system mutex locks or
spinlocks.

Algorithm 6. Parallel BorůvkaMinimum Spanning Tree Al-
gorithm.

Data : (1) graph G = (V , E) with adjacency list repre-
sentation, |V | = n

(2) array D[1 . . . n] with D[i] = i

(3) array Min[1 . . . n] with Min[i] =MAXINT
(4) array Graft[1 . . . n] with Graft[i] = 0

Result : array EMST of size n − 1 with each element
being a MST tree edge

begin
while not all D[i] have the same value do

for i ← 1 to n in parallel do
for each neighbor j of vertex i do

if D[i] �= D[j] then
lock(D[i])
if Min[D[i]] < w(i, j) then

Min[D[i]] ← w(i, j)

Graft[D[i]] ← D[j]
Record/update edge e = 〈i, j〉with
the minimum weight

unlock(D[i])
for i ← 1 to n in parallel do

if Graft[i] �= 0 then
D[i] ← Graft[i]
Graft[i] ← 0
Min[i] ←MAXINT
Retrieve the edge e that caused the grafting
Append e to the array EMST

for i ← 1 to n in parallel do
while D[i] �= D[D[i]] do

D[i] ← D[D[i]]
end

860 G. Cong, D.A. Bader / J. Parallel Distrib. Comput. 66 (2006) 854–866

Fig. 3. Contention among processors for span-spinlock and Bor-spinlock. The input graphs are random graphs with n vertices and 4n edges.

Depending on which types of locks are used, we have two im-
plementations, Bor-spinlock with spinlocks and Bor-lock with
system mutex locks. We compare their performance with the
best previous parallel implementations in Section 4.

4. Experimental results

We ran our shared-memory implementations on two plat-
forms, the Sun Enterprise 4500 (E4500) and IBM pSeries 570
(p570). They are both uniform-memory-access shared memory
parallel machines. The Sun Enterprise 4500 system has 14 Ul-
traSPARC II processors and 14 GB of memory. Each processor
has 16 Kbytes of direct-mapped data (L1) cache and 4 Mbytes
of external (L2) cache. The clock speed of each processor is
400 MHz. The IBM p570 has 16 IBM Power5 processors and
32 GB of memory, with 32 Kbytes L1 data cache, 1.92 Mbytes
L2 cache. There is a L3 cache with 36 Mbytes per two proces-
sors. The processor clock speed is 1.9 GHz.

Our graph generators include several employed in previous
experimental studies of parallel graph algorithms for related
problems. For instance, mesh topologies are used in the con-
nected component studies of [27,29,34,40], the random graphs
are used by [15,27,29,34], and the geometric graphs are used
by [15,27,29,34,40].

• Meshes: Mesh-based graphs are commonly used in physics-
based simulations and computer vision. The vertices of the
graph are placed on a 2D or 3D mesh, with each vertex
connected to its neighbors. 2DC is a complete 2D mesh;
2D60 is a 2D mesh with the probability of 60% for each edge
to be present; and 3D40 is a 3D mesh with the probability
of 40% for each edge to be present.
• Random graph: A random graph of n vertices and m edges

is created by randomly adding m unique edges to the vertex
set. Several software packages generate random graphs this
way, including LEDA [49].

Table 1
Five implementations of Shiloach–Vishkin’s parallel spanning tree algorithm

Implementation Description

span-2phase Conflicts are resolved by two-phase election
span-lock Conflicts are resolved using system mutex locks
span-lockfree No mutual exclusion, races are prevented by atomic updates
span-spinlock Mutual exclusion by spinlocks using atomic operations
span-race No mutual exclusion, no attempt to prevent races

• Geometric graphs: Each vertex has a fixed degree k. Geo-
metric graphs are generated by randomly placing n vertices
in a unit square and connecting each vertex with its near-
est k neighbors. Moret and Shapiro [51] use these in their
empirical study of sequential MST algorithms. AD3 (used
by Krishnamurthy et al. in [40]) is a geometric graph with
k = 3.

For MST, uniformly random weights are associated with the
edges.

Before discussing experimental results for spanning tree and
MST algorithms in Sections 4.2 and 4.3, we show that for large
data inputs, algorithms with fine-grained synchronizations do
not incur serious contention among processors.

4.1. Contention among processors

With fine-grained parallelism, contention may occur for ac-
cess to critical sections or to memory locations in shared data
structures. The amount of contention is dependent on the prob-
lem size, number of processors, memory access patterns, and
execution times for regions of the code. In this section, we in-
vestigate contention for our fine-grained synchronization meth-
ods and quantify the amount of contention in our graph theo-
retic example codes.

G. Cong, D.A. Bader / J. Parallel Distrib. Comput. 66 (2006) 854–866 861

8

10

14

12

4

6

2

0

T
im

e
(s

ec
on

ds
)

2 4 6 8 10
Number of Processors

span-lock
span-2phase
span-lockfree
span-spinlock
span-race

Random Graph, 1M vertices, 4M edges

Fig. 4. The performance on Sun E4500 of the spanning tree implementations
on an instance of a random graph with 1M vertices and 4M edges. The
vertical bars from left to right are span-lock, span-2phase, span-lockfree,
span-spinlock, and span-race, respectively.

8

10

14

12

4

6

2

0

T
im

e
(s

ec
on

ds
)

2 4 6 8 10
Number of Processors

span-lock
span-2phase
span-lockfree
span-spinlock
span-race

2DC, 1M vertices

Fig. 5. The performance on Sun E4500 of the spanning tree implementations
on an instance of a regular, complete 2D mesh graph (2DC) with 1M vertices.
The vertical bars from left to right are span-lock, span-2phase, span-lockfree,
span-spinlock, and span-race, respectively.

To measure contention, we record the number of times a
spinlock spins before it gains access to the shared data struc-
ture. For lock-free protocols it is difficult to measure the actual
contention. For example, if compare&swap is used to partition
the workload, it is impossible to tell whether the failure is due
to contention from another contending processor or due to the
fact that the location has already been claimed before. How-
ever, inspecting how spinlocks behave can give a good indica-
tion of the contention for lock-free implementations as in both
cases processors contend for the same shared data structures.

Fig. 3 shows the contention among processors for the span-
ning tree and MST algorithms with different number of pro-
cessors and sizes of inputs. The level of contention is repre-

8

10

14

12

4

6

2

0

T
im

e
(s

ec
on

ds
)

2 4 6 8 10
Number of Processors

span-lock
span-2phase
span-lockfree
span-spinlock
span-race

AD3, 1M vertices

Fig. 6. The performance on Sun E4500 of the spanning tree implementations
on an instance of AD3, a geometric graph where each vertex has fixed degree
k = 3, with 1M vertices. The vertical bars from left to right are span-lock,
span-2phase, span-lockfree, span-spinlock, and span-race, respectively.

Fig. 7. The performance on IBM p570 of the spanning tree implementations
on an instance of random graph, with 1M vertices and 20M vertices. The
vertical bars from left to right are span-lock, span-2phase, span-lockfree,
span-spinlock, and span-race, respectively.

sented by success rate, which is calculated as the total number
of locks acquired divided by the total number of times the locks
spin. The larger the success rate, the lower the contention level.
We see that contention level increases for a certain problem
size with the number of processors. This effect is more obvi-
ous when the input size is small, for example, with hundreds
of vertices. For large problem sizes, for example, millions of
vertices, there is no clear difference in contention for 2 and 16
processors. In our experiments, success rate is above 97% for
input sizes with more than 4096 vertices, and is above 99.98%
for 1M vertices, regardless the number of processors (between
2 and 16).

862 G. Cong, D.A. Bader / J. Parallel Distrib. Comput. 66 (2006) 854–866

4

5

2

3

1

0

T
im

e
(s

ec
on

ds
)

2 4 6 8 10 12 14
Number of Processors

span-lock
span-2phase
span-lockfree
span-spinlock
span-race

Mesh, 4M vertices

Fig. 8. The performance on IBM p570 of the spanning tree implementations
on an instance of a regular, complete 2D mesh graph (2DC), with 4M vertices.
The vertical bars from left to right are span-lock, span-2phase, span-lockfree,
span-spinlock, and span-race, respectively.

4

2

3

1

0

T
im

e
(s

ec
on

ds
)

2 4 6 8 10 12 14
Number of Processors

span-lock
span-2phase
span-lockfree
span-spinlock
span-race

AD3, 4M vertices

Fig. 9. The performance on IBM p570 of the spanning tree implementations
on an instance of AD3, a geometric graph where each vertex has fixed degree
k = 3, with 4M vertices. The vertical bars from left to right are span-lock,
span-2phase, span-lockfree, span-spinlock, and span-race, respectively.

4.2. Spanning tree results

We compare the performance of the lock-free Shiloach–
Vishkin spanning tree implementation with four other imple-
mentations that differ only in how the conflicts are resolved. In
Table 1 we briefly describe the four implementations.

Among the four implementations, span-race is not a correct
implementation and does not guarantee correct results as there
can be race conditions among processors. It is included as a
baseline to show how much overhead is involved with using
lock-free protocols and spinlocks.

In Figs. 4–6 we plot the performance of our spanning tree
algorithms using several graph instances on Sun E4500, and

Fig. 10. Comparison of the performance of Bor-spinlock on the Sun E4500
against the previous implementations on random graphs with 1M vertices and
4M and 6M edges on the top and bottom, respectively. The horizontal line in
each graph shows the execution time of the best sequential implementation.

in Figs. 7–9 we plot the corresponding performance using the
IBM p570. Note that we use larger instances on the IBM p570
than on the Sun E4500 because of the IBM’s larger main mem-
ory. In these performance results, we see that span-2phase,
span-lockfree, and span-spinlock scale well with the number of
processors, and the execution time of span-lockfree and span-
spinlock is roughly half of that of span-2phase. It is interesting
to note that span-lockfree, span-spinlock and span-race are al-
most as fast as each other for various inputs, which suggests
similar overhead for spinlocks and lock-free protocols, and the
overhead is negligible on both systems although the implemen-
tation of lock-free protocols and spinlocks use different hard-
ware atomic operations on the two systems. The performance
differences in these approaches is primarily due to the nonde-
terminism inherent in the algorithm. For example, in Fig. 5,
span-race runs slower than span-lockfree or span-spinlock. This
is due to races among processors that actually incur one more
round of iteration for span-race to find the spanning tree.

G. Cong, D.A. Bader / J. Parallel Distrib. Comput. 66 (2006) 854–866 863

Fig. 11. Comparison of the performance of Bor-spinlock on the Sun E4500
against the previous implementations on a random graph with 1M vertices
and 10M edges (top) and on a regular 2D mesh (bottom). The horizontal line
in each graph shows the execution time of the best sequential implementation.

There is some difference in the performance of span-lock on
the two platforms. The scaling of span-lock on IBM p570 is
better than on Sun E4500. This may be due to the different im-
plementations of mutex locks on the two systems. The imple-
mentation of system mutex locks usually adopts a hybrid ap-
proach, that is, the lock busy waits for a while before yielding
control to the operating system. Depending on the processor
speed, the cost of context switch, and the application scenario,
the implementation of system mutex lock chooses a judicious
amount of time to busy wait. On the Sun E4500, the mutex
lock implementation is not particularly friendly for the access
pattern to shared objects generated by our algorithms.

4.3. MST results

Performance results on Sun E4500 are shown in Figs. 10–12.
These empirical results demonstrate that Bor-FAL is the fastest
implementation for sparse random graphs, and Bor-ALM is the

Fig. 12. Comparison of the performance of Bor-spinlock on the Sun E4500
against the previous implementations on irregular meshes with 1M vertices:
2D60 (top) and 3D40 (bottom). The horizontal line in each graph shows the
execution time of the best sequential implementation.

fastest implementation for meshes. From our results we see
that with 12 processors Bor-spinlock beats both Bor-FAL and
Bor-ALM, and performance of Bor-spinlock scales well with
the number of processors. In Figs. 10–12, performance of Bor-
lock is also plotted. Bor-lock is the same as Bor-spinlock except
that system mutex locks are used. Bor-lock does not scale with
the number of processors. The performance of the best sequen-
tial algorithms among the three candidates, Kruskal, Prim, and
Borůvka, is plotted as a horizontal line for each input graph. For
all the input graphs shown in Figs. 10–12, Bor-spinlock tends
to perform better than the previous best implementations when
more processors are used. Note that a maximum speedup of
9.9 for 2D60 with 1M vertices is achieved with Bor-spinlock at
12 processors. These performance results demonstrate the po-
tential advantage of spinlock-based implementations for large
and irregular problems. Aside from good performance, Bor-
spinlock is also the simplest approach as it does not involve
sorting required by the other approaches.

864 G. Cong, D.A. Bader / J. Parallel Distrib. Comput. 66 (2006) 854–866

Fig. 13. Comparison of the performance of Bor-spinlock on the IBM p570
against the previous implementations on irregular meshes with 1M vertices:
random (top) and 2DC (bottom). The horizontal line in each graph shows
the execution time of the best sequential implementation.

Performance results on p570 are shown in Figs. 13–14. Com-
pared with results on Sun E4500, again Bor-lock scales better
on IBM p570, yet there is still a big gap between Bor-lock and
Bor-spinlock due to the economic memory usage of spinlock
and its simple implementation.

5. Conclusions

In this paper we present novel applications of lock-free pro-
tocols and fine-grained mutual exclusion locks to parallel algo-
rithms and show that these protocols can greatly improve the
performance of parallel algorithms for large, irregular prob-
lems. As there is currently no direct support for invoking atomic
instructions from most programming languages, our results sug-
gest it necessary that there be orchestrated support for high
performance algorithms from the hardware architecture, oper-
ating system, and programming languages. Two graph algo-
rithms are discussed in this paper. In our future work, we will
consider applying lock-free protocols and fine-grained locks to

Fig. 14. Comparison of the performance of Bor-spinlock on the IBM p570
against the previous implementations on irregular meshes with 1M vertices:
2D60 (top) and 3D40 (bottom). The horizontal line in each graph shows the
execution time of the best sequential implementation.

broader classes of irregular algorithms, for example, algorithms
for combinatorial optimization.

References

[1] J. Alemany, E.W. Felton, Performance issues in non-blocking
synchronization on shared-memory multiprocessors, in: Proceedings of
the 11th ACM Symposium on Principles of Distributed Computing,
Vancouver, Canada, August 1992, pp. 125–134.

[2] L. An, Q.S. Xiang, S. Chavez, A fast implementation of the minimum
spanning tree method for phase unwrapping, IEEE Trans. Med. Imaging
19 (8) (2000) 805–808.

[3] R.J. Anderson, H. Woll, Wait-free parallel algorithms for the union-find
problem, in: Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing (STOC), New Orleans, LA, May 1991, pp. 370–380.

[4] J. Aspnes, M.P. Herlihy, Wait-free data structures in the asynchronous
PRAM model, in: Proceedings of the 2nd Annual Symposium on Parallel
Algorithms and Architectures (SPAA-90), Crete, Greece, July 1990, pp.
340–349.

[5] H. Attiya, N. Lynch, N. Shavit, Are wait-free algorithms fast?, J. ACM
41 (4) (1994) 725–763.

[6] D.A. Bader, G. Cong, A fast, parallel spanning tree algorithm for
symmetric multiprocessors (SMPs), in: Proceedings of the International

G. Cong, D.A. Bader / J. Parallel Distrib. Comput. 66 (2006) 854–866 865

l Parallel and Distributed Processing Symposium (IPDPS 2004), Santa
Fe, NM, April 2004.

[7] D.A. Bader, G. Cong, Fast shared-memory algorithms for computing
the minimum spanning forest of sparse graphs, in: Proceedings of the
International Parallel and Distributed Processing Symposium (IPDPS
2004), Santa Fe, NM, April 2004.

[8] D.A. Bader, G. Cong, A fast parallel spanning tree algorithm for
symmetric multiprocessors (SMPs), J. Parallel Distributed Comput. 65
(9) (2005) 994–1006.

[9] D.A. Bader, A.K. Illendula, B.M.E. Moret, N. Weisse-Bernstein,
Using PRAM algorithms on a uniform-memory-access shared-memory
architecture, in: G.S. Brodal, D. Frigioni, A. Marchetti-Spaccamela
(Eds.), Proceedings of the 5th International Workshop on Algorithm
Engineering (WAE 2001), Lecture Notes in Computer Science, vol.
2141, Århus, Denmark, Springer, Berlin, 2001, pp. 129–144.

[10] D.A. Bader, S. Sreshta, N. Weisse-Bernstein, Evaluating arithmetic
expressions using tree contraction: a fast and scalable parallel
implementation for symmetric multiprocessors (SMPs), in: S. Sahni,
V.K. Prasanna, U. Shukla (Eds.), Proceedings of the 9th International
Conference on High Performance Computing (HiPC 2002), Lecture
Notes in Computer Science, vol. 2552, Bangalore, India, Springer, Berlin,
December 2002, pp. 63–75.

[11] G. Barnes, Wait-free algorithms for heaps, Technical Report TR-94-12-
07, University of Washington, Seattle, WA, 1994.

[12] M. Brinkhuis, G.A. Meijer, P.J. van Diest, L.T. Schuurmans, J.P. Baak,
Minimum spanning tree analysis in advanced ovarian carcinoma, Anal.
Quant. Cytol. Histol. 19 (3) (1997) 194–201.

[13] C. Chen, S. Morris, Visualizing evolving networks: minimum spanning
trees versus pathfinder networks, in: IEEE Symposium on Information
Visualization, Seattle, WA, IEEE Computer Society Press, 2003,
pp. 67–74.

[14] B. Chor, A. Israeli, M. Li, On processor coordination using asynchronous
hardware, in: Proceedings of the 6th ACM Symposium on Principles of
Distributed Computing, Vancouver, Canada, August 1987, pp. 86–97.

[15] S. Chung, A. Condon, Parallel implementation of Borůvka’s minimum
spanning tree algorithm, in: Proceedings of the 10th International Parallel
Processing Symposium (IPPS’96), April 1996, pp. 302–315.

[16] T. Coffman, S. Greenblatt, S. Marcus, Graph-based technologies for
intelligence analysis, Comm. ACM 47 (3) (2004) 45–47.

[17] R. Cole, P.N. Klein, R.E. Tarjan, A linear-work parallel algorithm
for finding minimum spanning trees, in: Proceedings of the 6th
Annual Symposium on Parallel Algorithms and Architectures (SPAA-
94), Newport, RI, ACM, New York, June 1994, pp. 11–15.

[18] R. Cole, P.N. Klein, R.E. Tarjan, Finding minimum spanning forests in
logarithmic time and linear work using random sampling, in: Proceedings
of the 8th Annual Symposium on Parallel Algorithms and Architectures
(SPAA-96), Newport, RI, ACM, New York, June 1996, pp. 243–250.

[19] R. Cole, O. Zajicek, The APRAM: incorporating asynchrony into the
PRAM model, in: Proceedings of the 1st Annual Symposium Parallel
Algorithms and Architectures (SPAA-89), Santa Fe, NM, June 1989, pp.
169–178.

[20] G. Cong, D.A. Bader, The Euler tour technique and parallel rooted
spanning tree, in: Proceedings of the International Conference on Parallel
Processing (ICPP), Montreal, Canada, August 2004, pp. 448–457.

[21] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E. Schauser, E.
Santos, R. Subramonian, T. von Eicken, LogP: towards a realistic model
of parallel computation, in: 4th Symposium on Principles and Practice
of Parallel Programming, ACM SIGPLAN, May 1993, pp. 1–12.

[22] D. Dolev, C. Dwork, L. Stockmeyer, On the minimal synchronism needed
for distributed consensus, J. ACM 34 (1) (1987) 77–97.

[23] J.C. Dore, J. Gilbert, E. Bignon, A. Crastes de Paulet, T. Ojasoo, M.
Pons, J.P. Raynaud, J.F. Miquel, Multivariate analysis by the minimum
spanning tree method of the structural determinants of diphenylethylenes
and triphenylacrylonitriles implicated in estrogen receptor binding,
protein kinase C activity, and MCF7 cell proliferation, J. Med. Chem.
35 (3) (1992) 573–583.

[24] C. Dwork, N. Lynch, L. Stockmeyer, Consensus in the presence of
partial synchrony, J. ACM 35 (2) (1988) 288–323.

[25] M.J. Fischer, N.A. Lynch, M.S. Paterson, Impossibility of distributed
consensus with one faulty process, J. ACM 32 (2) (1985) 374–382.

[26] K. Fraser, Practical lock-freedom, Ph.D. Thesis, King’s College,
University of Cambridge, United Kingdom, September 2003.

[27] S. Goddard, S. Kumar, J.F. Prins, Connected components algorithms
for mesh-connected parallel computers, in: S.N. Bhatt (Ed.), Parallel
Algorithms: 3rd DIMACS Implementation Challenge, October 17–19,
1994, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 30, American Mathematical Society, Providence,
RI, 1997, pp. 43–58.

[28] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe, L. Rudolph,
M. Snir, The NYU ultracomputer—designing a MIMD, shared-memory
parallel machine, IEEE Trans. Comput. C-32 (2) (1984) 175–189.

[29] J. Greiner, A comparison of data-parallel algorithms for connected
components, in: Proceedings of the 6th Annual Symposium on Parallel
Algorithms and Architectures (SPAA-94), Cape May, NJ, June 1994, pp.
16–25.

[30] M.P. Herlihy, Wait-free synchronization, ACM Trans. Programming
Languages Systems (TOPLAS) 13 (1) (1991) 124–149.

[31] M.P. Herlihy, A methodology for implementing highly concurrent data
objects, ACM Trans. Programming Languages Systems (TOPLAS) 15
(5) (1993) 745–770.

[32] M. Herlihy, J.E.B. Moss, Transactional memory: architectural support
for lock-free data structures, in: Proceedings of the 20th International
Symposium on Computer Architecture, San Diego, CA, May 1993, pp.
289–300.

[33] M.P. Herlihy, J.M. Wing, Axioms for concurrent objects, in: Proceedings
of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, Munich, West Germany, January 1987, pp.
13–26.

[34] T.-S. Hsu, V. Ramachandran, N. Dean, Parallel implementation of
algorithms for finding connected components in graphs, in: S.N. Bhatt
(Ed.), Parallel Algorithms: 3rd DIMACS Implementation Challenge,
October 17–19, 1994, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 30, American Mathematical Society,
Providence, RI, 1997, pp. 23–41.

[35] IBM, Assembler Language Reference, AIX 4.3 books, first ed., 1997.
[36] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley

Publishing Company, New York, 1992.
[37] K. Kayser, S.D. Jacinto, G. Bohm, P. Frits, W.P. Kunze, A. Nehrlich, H.J.

Gabius, Application of computer-assisted morphometry to the analysis
of prenatal development of human lung, Anat. Histol. Embryol. 26 (2)
(1997) 135–139.

[38] K. Kayser, H. Stute, M. Tacke, Minimum spanning tree, integrated optical
density and lymph node metastasis in bronchial carcinoma, Anal. Cell
Pathol. 5 (4) (1993) 225–234.

[39] V.E. Krebs, Mapping networks of terrorist cells, Connections 24 (3)
(2002) 43–52.

[40] A. Krishnamurthy, S.S. Lumetta, D.E. Culler, K. Yelick, Connected
components on distributed memory machines, in: S.N. Bhatt (Ed.),
Parallel Algorithms: 3rd DIMACS Implementation Challenge, October
17–19, 1994, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 30, American Mathematical Society, Providence,
RI, 1997, pp. 1–21.

[41] A. LaMarca, A performance evaluation of lock-free synchronization
protocols, in: Proceedings of the 13th Annual ACM Symposium on
Principles of Distributed Computing, Los Angeles, CA, August 1994,
pp. 130–140.

[42] L. Lamport, Concurrent reading and writing, Comm. ACM 20 (11)
(1977) 806–811.

[43] L. Lamport, Specifying concurrent program modules, ACM Trans.
Programming Languages Systems (TOPLAS) 5 (2) (1983) 190–222.

[44] V. Lanin, D. Shasha, Concurrent set manipulation without locking, in:
Proceedings of the 7th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, Austin, TX, March 1988, pp. 211–220.

[45] Y. Maon, B. Schieber, U. Vishkin, Parallel ear decomposition search
(EDS) and st-numbering in graphs, Theoret. Comput. Sci. 47 (3) (1986)
277–296.

866 G. Cong, D.A. Bader / J. Parallel Distrib. Comput. 66 (2006) 854–866

[46] H. Massalin, C. Pu, Threads and input/output in the synthesis
kernel, in: Proceedings of the 12th ACM Symposium on Operating
Systems Principles (SOSP), Litchfield Park, AZ, December 1989,
pp. 191–201.

[47] M. Matos, B.N. Raby, J.M. Zahm, M. Polette, P. Birembaut, N. Bonnet,
Cell migration and proliferation are not discriminatory factors in the in
vitro sociologic behavior of bronchial epithelial cell lines, Cell Motility
Cytoskeleton 53 (1) (2002) 53–65.

[48] S. Meguerdichian, F. Koushanfar, M. Potkonjak, M. Srivastava, Coverage
problems in wireless ad-hoc sensor networks, in: Proceedings of the
INFOCOM ’01, Anchorage, AK, IEEE Press, New York, April 2001, pp.
1380–1387.

[49] K. Mehlhorn, S. Näher, The LEDA Platform of Combinatorial and
Geometric Computing, Cambridge University Press, Cambridge, 1999.

[50] G.L. Miller, V. Ramachandran, Efficient parallel ear decomposition with
applications. Manuscript, UC Berkeley, MSRI, January 1986.

[51] B.M.E. Moret, H.D. Shapiro, An empirical assessment of algorithms
for constructing a minimal spanning tree, in: DIMACS Monographs in
Discrete Mathematics and Theoretical Computer Science: Computational
Support for Discrete Mathematics, vol. 15, American Mathematical
Society, Providence, RI, 1994, pp. 99–117.

[52] V. Olman, D. Xu, Y. Xu, Identification of regulatory binding sites using
minimum spanning trees, in: Proceedings of the 8th Pacific Symposium
on Biocomputing (PSB 2003), Hawaii, World Scientific Publications,
2003, pp. 327–338.

[53] S. Pettie, V. Ramachandran, A randomized time-work optimal parallel
algorithm for finding a minimum spanning forest, SIAM J. Comput. 31
(6) (2002) 1879–1895.

[54] C.K. Poon, V. Ramachandran, A randomized linear work EREW PRAM
algorithm to find a minimum spanning forest, in: Proceedings of the 8th
International Symposium on Algorithms and Computation (ISAAC’97),
Lecture Notes in Computer Science, vol. 1350, Springer, Berlin, 1997,
pp. 212–222.

[55] N. Shavit, D. Touitou, Software transactional memory, in: Proceedings
of the 14th Annual ACM Symposium on Principles of Distributed
Computing, Ottowa, Canada, August 1995, pp. 204–213.

[56] Y. Shiloach, U. Vishkin, An O(log n) parallel connectivity algorithm, J.
Algorithms 3 (1) (1982) 57–67.

[57] R.E. Tarjan, J. Van Leeuwen, Worst-case analysis of set union algorithms,
J. ACM 31 (2) (1984) 245–281.

[58] R.E. Tarjan, U. Vishkin, An efficient parallel biconnectivity algorithm,
SIAM J. Comput. 14 (4) (1985) 862–874.

[59] Y.-C. Tseng, T.T.-Y. Juang, M.-C. Du, Building a multicasting tree in a
high-speed network, IEEE Concurrency 6 (4) (1998) 57–67.

[60] P. Tsigas, Y. Zhang, A simple, fast and scalable non-blocking concurrent
FIFO queue for shared memory multiprocessor systems, in: Proceedings
of the 13th Annual Symposium on Parallel Algorithms and Architectures
(SPAA-01), Crete, Greece, September 2001, pp. 134–143.

[61] L.G. Valiant, A bridging model for parallel computation, Comm. ACM
33 (8) (1990) 103–111.

[62] J. Valois, Lock-free data structures, Ph.D. Thesis, Rensselaer Polytechnic
Institute, Troy, NY, May 1995.

[63] J.D. Valois, Lock-free linked lists using compare-and-swap, in:
Proceedings of the 14th Annual ACM Symposium on Principles of
Distributed Computing, Ottowa, Canada, August 1995, pp. 214–222.

[64] U. Vishkin, On efficient parallel strong orientation, Inform. Process. Lett.
20 (5) (1985) 235–240.

[65] U. Vishkin, S. Dascal, E. Berkovich, J. Nuzman, Explicit multi-threading
(XMT) bridging models for instruction parallelism, in: Proceedings of
the 10th Annual Symposium on Parallel Algorithms and Architectures
(SPAA-98), Puerto Vallarta, Mexico, June 1998, ACM, New York, pp.
140–151.

[66] D.L. Weaver, T. Germond (Eds.), The SPARC Architecture Manual,
Version 9, Prentice-Hall, Englewood Cliffs, NJ, 1994.

[67] S.Q. Zheng, J.S. Lim, S.S. Iyengar, Routing using implicit connection
graphs, in: 9th International Conference on VLSI Design: VLSI in
Mobile Communication, Bangalore, India, January 1996, IEEE Computer
Society Press.

Dr. Guojing Cong is currently a research staff member at IBM T.J. Watson
research center. Before joining IBM, he worked on the design and implemen-
tation of parallel algorithms for irregular problems on shared-memory ma-
chines, and presented results for the first time for several fundamental graph
problems that show good parallel speedups. At IBM, he is affilicated with
the advanced computing technology center (ACTC), working on performance
analysis and optimization for high performance computing applications. Dr.
Cong also conducts research in data-centric computing and computational
biology.

David A. Bader is an Associate Professor in the College of Computing,
Georgia Institute of Technology. He received his Ph.D. in 1996 from The
University of Maryland, was awarded a National Science Foundation (NSF)
Postdoctoral Research Associateship in Experimental Computer Science. He
is an NSF CAREER Award recipient, an investigator on several NSF awards,
a distinguished speaker in the IEEE Computer Society Distinguished Visitors
Program, and is a member of the IBM PERCS team for the DARPA High
Productivity Computing Systems program.

Dr. Bader serves on the Steering Committees of the IPDPS and HiPC con-
ferences, and was the General co-Chair for IPDPS (2004–2005), and Vice
General Chair for HiPC (2002–2004). David has chaired several major con-
ference program committees: Program Chair for HiPC 2005, Program Vice-
Chair for IPDPS 2006 and Program Vice-Chair for ICPP 2006. He has served
on numerous conference program committees related to parallel processing
and computational science & engineering, is an associate editor for several
journals including the IEEE Transactions on Parallel and Distributed Systems
(TPDS), the ACM Journal of Experimental Algorithmics (JEA), IEEE DSOn-
line, and Parallel Computing, is a Senior Member of the IEEE Computer
Society and a Member of the ACM. Dr. Bader has been a pioneer the field
of high-performance computing for problems in bioinformatics and compu-
tational genomics. He has co-chaired a series of meetings, the IEEE Interna-
tional Workshop on High-Performance Computational Biology (HiCOMB),
written several book chapters, and co-edited special issues of the Journal
of Parallel and Distributed Computing (JPDC) and IEEE TPDS on high-
performance computational biology. He has co-authored over 70 articles in
peer-reviewed journals and conferences, and his main areas of research are
in parallel algorithms, combinatorial optimization, and computational biology
and genomics.

