Available online at www.sciencedirect.com

ScienceDirect

Journal of

Parallel and
Distributed
Computing

L 4

L]

J. Parallel Distrib. Comput. 66 (2006) 1366—1378

www.elsevier.com/locate/jpdc

Fast shared-memory algorithms for computing the minimum spanning forest
of sparse graphs

David A. Bader®*'!, Guojing Cong®

ACollege of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
bIBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

Received 14 March 2005; received in revised form 20 May 2006; accepted 1 June 2006
Available online 18 July 2006

Abstract

Minimum spanning tree (MST) is one of the most studied combinatorial problems with practical applications in VLSI layout, wireless
communication, and distributed networks, recent problems in biology and medicine such as cancer detection, medical imaging, and proteomics,
and national security and bioterrorism such as detecting the spread of toxins through populations in the case of biological/chemical warfare.
Most of the previous attempts for improving the speed of MST using parallel computing are too complicated to implement or perform well
only on special graphs with regular structure. In this paper we design and implement four parallel MST algorithms (three variations of Bortivka
plus our new approach) for arbitrary sparse graphs that for the first time give speedup when compared with the best sequential algorithm.
In fact, our algorithms also solve the minimum spanning forest problem. We provide an experimental study of our algorithms on symmetric
multiprocessors such as IBMs pSeries and Sun’s Enterprise servers. Our new implementation achieves good speedups over a wide range of
input graphs with regular and irregular structures, including the graphs used by previous parallel MST studies. For example, on an arbitrary
random graph with 1M vertices and 20M edges, our new approach achieves a speedup of 5 using 8 processors. The source code for these

algorithms is freely available from our web site.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Parallel graph algorithms; Connectivity; High-performance algorithm engineering

1. Introduction

Given an undirected connected graph G with n vertices and
m edges, the minimum spanning tree (MST) problem finds a
spanning tree with the minimum sum of edge weights. MST
is one of the most studied combinatorial problems with practi-
cal applications in VLSI layout, wireless communication, and
distributed networks [26,36,38], recent problems in biology
and medicine such as cancer detection [5,21,22,25], medical
imaging [2], and proteomics [30,12], and national security and
bioterrorism such as detecting the spread of toxins through

* Corresponding author.

E-mail addresses: bader@cc.gatech.edu (D.A. Bader),
gcong@us.ibm.com (G. Cong).

UThis work was supported in part by NSF Grants CAREER CCF-
0611589, CNS 0614915, ACI-00-93039, NSF DBI-0420513, ITR ACI-00-
81404, DEB-99-10123, ITR EIA-01-21377, Biocomplexity DEB-01-20709,
and ITR EF/BIO 03-31654; and DARPA Contract NBCH30390004.

0743-7315/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2006.06.001

populations in the case of biological/chemical warfare [6], and
is often a key step in other graph problems [28,24,35,37].
While several theoretic results are known for solving MST
in parallel, many are considered impractical because they are
too complicated and have large constant factors hidden in
the asymptotic complexity. Pettie and Ramachandran [32] de-
signed a randomized, time-work optimal MST algorithm for
the EREW PRAM, and using EREW to QSM and QSM to BSP
emulations from [13], mapped the performance onto QSM and
BSP models. Cole et al. [9,10] and Poon and Ramachandran
[33] earlier had randomized linear-work algorithms on CRCW
and EREW PRAM. Chong et al. [7] gave a deterministic
EREW PRAM algorithm that runs in logarithmic time with a
linear number of processors. On the BSP model, Adler et al.
[1] presented a communication-optimal MST algorithm. Ka-
triel et al. [20] have recently developed a new pipelined algo-
rithm that uses the cycle property and provide an experimental
evaluation on the special-purpose NEC SX-5 vector computer.

http://www.elsevier.com/locate/jpdc
mailto:bader@cc.gatech.edu
mailto:gcong@us.ibm.com

D.A. Bader, G. Cong / J. Parallel Distrib. Comput. 66 (2006) 1366—1378 1367

In this paper we present our implementations of MST algo-
rithms on shared-memory multiprocessors that achieve for the
first time in practice reasonable speedups over a wide range of
input graphs, including arbitrary sparse graphs, a challenging
problem. In fact, if G is not connected, our algorithms find the
MST of each connected component; hence, solving the mini-
mum spanning forest problem.

We start with the design and implementation of a parallel
Bortuvka’s algorithm. Bortivka’s algorithm is one of the earli-
est MST approaches, and the Bortivka iteration (or its variants)
serves as a basis for several of the more complicated parallel
MST algorithms, hence its efficient implementation is critical
for parallel MST. Three steps characterize a Borivka iteration:
find-min, connect-components, and compact-graph. Find-min
and connect-components are simple and straightforward to im-
plement, and the compact-graph step performs bookkeeping
that is often left as a trivial exercise to the reader. JaJa [18] de-
scribes a compact-graph algorithm for dense inputs. For sparse
graphs, though, the compact-graph step often is the most ex-
pensive step in the Bordvka iteration. Section 2 explores differ-
ent ways to implement the compact-graph step, then proposes a
new data structure for representing sparse graphs that can dra-
matically reduce the running time of the compact-graph step
with a small cost to the find-min step. The analysis of these
approaches is given in Section 3.

In Section 4 we present a new parallel MST algorithm for
symmetric multiprocessors (SMPs) that marries the Prim and
Bortuvka approaches. In fact, the algorithm when run on one
processor behaves as Prim’s, and on n processors becomes
Bortivka’s, and runs as a hybrid combination for 1 < p < n,
where p is the number of processors.

Our target architecture is SMPs. Most of the new high-
performance computers are clusters of SMPs having from two
to over 100 processors per node. In SMPs, processors operate
in a true, hardware-based, shared-memory environment. SMP
computers bring us much closer to PRAM, yet it is by no means
the PRAM used in theoretical work—synchronization cannot
be taken for granted, memory bandwidth is limited, and good
performance requires a high degree of locality. Designing and
implementing parallel algorithms for SMPs requires special
considerations that are crucial to a fast and efficient implemen-
tation. For example, memory bandwidth often limits the scala-
bility and locality must be exploited to make good use of cache.
This paper presents the first results of actual parallel speedup
for finding an MST of irregular, arbitrary sparse graphs when
compared to the best known sequential algorithm. In Section 5
we detail the experimental evaluation, describe the input data
sets and testing environment, and present the empirical results.
Finally, Section 6 provides our conclusions and future work. A
preliminary version of this paper appears in [3].

1.1. Related experimental studies

Although several fast PRAM MST algorithms exist, to our
knowledge there is no parallel implementation of MST that
achieves significant speedup on sparse, irregular graphs when
compared against the best sequential implementation. Chung

and Condon [8] implement parallel Boruvka’s algorithm on
the TMC CM-5. On a 16-processor machine, for geometric,
structured graphs with 32,000 vertices and average degree 9
and graphs with fewer vertices but higher average degree, their
code achieves a relative parallel speedup of about four, on 16
processors, over the sequential BorGvka’s algorithm, which
was already 2-3 times slower than their sequential Kruskal
algorithm. Dehne and Gotz [11] studied practical parallel
algorithms for MST using the BSP model. They implement a
dense Bortvka parallel algorithm, on a 16-processor Parsytec
CC-48, that works well for sufficiently dense input graphs. Us-
ing a fixed-sized input graph with 1000 vertices and 400,000
edges, their code achieves a maximum speedup of 6.1 using
16 processors for a random dense graph. Their algorithm is
not suitable for the more challenging sparse graphs.

2. Designing data structures for parallel Boruvka’s
algorithms on SMPs

Bortvka’s MST algorithm lends itself more naturally to par-
allelization, since other approaches like Prim’s and Kruskal’s
are inherently sequential, with Prim’s growing a single MST
one branch at a time, while Kruskal’s approach scans the
graph’s edges in a linear fashion. Three steps comprise each
iteration of parallel Boravka’s algorithm:

1. find-min: for each vertex v label the incident edge with the
smallest weight to be in the MST.

2. connect-components: identify connected components of the
induced graph with edges found in Step 1.

3. compact-graph: compact each connected component into a
single supervertex, remove self-loops and multiple edges;
and re-label the vertices for consistency.

Steps 1 and 2 (find-min and connect-components) are rel-
atively simple and straightforward; in [8], Chung and Con-
don discuss an efficient approach using pointer-jumping on
distributed memory machines, and load balancing among the
processors as the algorithm progresses. Simple schemes for
load-balancing suffice to distribute the work roughly evenly to
each processor. For pointer-jumping, although the approaches
proposed in [8] can be applied to shared-memory machines,
experimental results show that this step only takes a small frac-
tion of the total running time.

Step 3 (compact-graph) shrinks the connected components
and relabels the vertices. For dense graphs that can be repre-
sented by an adjacency matrix, JaJ4 [18] describes a simple
and efficient implementation for this step. For sparse graphs
this step often consumes the most time yet no detailed discus-
sion appears in the literature. In the following subsections we
describe our design of three Bortivka approaches that use dif-
ferent data structures, and compare the performance of each
implementation.

2.1. Bor-EL: edge list representation

In this implementation of Bortivka’s algorithm (designated
Bor-EL), we use the edge list representation of graphs, with

1368 D.A. Bader, G. Cong / J. Parallel Distrib. Comput. 66 (2006) 1366—1378

each edge (u, v) appearing twice in the list for both directions
(u, v) and (v, u). An elegant implementation of the compact-
graph step sorts the edge list (using an efficient parallel sam-
ple sort [16]) with the supervertex of the first endpoint as the
primary key, the supervertex of the second endpoint as the sec-
ondary key, and the edge weight as the tertiary key. When sort-
ing completes, all of the self-loops and multiple edges between
two supervertices appear in consecutive locations, and can be
merged efficiently using parallel prefix-sums.

2.2. Bor-AL: adjacency list representation

With the adjacency list representation (but using the more
cache-friendly adjacency arrays [31]) each entry of an index
array of vertices points to a list of its incident edges. The
compact-graph step first sorts the vertex array according to the
supervertex label, then concurrently sorts each vertex’s adja-
cency list using the supervertex of the other endpoint of the
edge as the key. After sorting, the set of vertices with the same
supervertex label are contiguous in the array, and can be merged
efficiently. We call this approach Bor-AL.

Both Bor-EL and Bor-AL achieve the same goal that self-
loops and multiple edges are moved to consecutive locations to
be merged. Bor-EL uses one call to sample sort while Bor-AL
calls a smaller parallel sort and then a number of concurrent
sequential sorts. We make the following algorithm engineer-
ing choices for the sequential sorts used in this approach. The
O(nz) insertion sort is generally considered a bad choice for
sequential sort, yet for small inputs, it outperforms O(n log n)
sorts. Profiling shows that there could be many short lists to
be sorted for very sparse graphs. For example, for one of our
input random graphs with 1M vertices, 6M edges, 80% of all
311,535 lists to be sorted have between 1 and 100 elements.
We use insertion sort for these short lists. For longer lists we
use a non-recursive O(n logn) merge sort.

Bor-ALM is an alternative adjacency list implementation
of Bortivka’s approach for Sun Solaris 9 that uses our own
memory management routines for dynamic memory allocation
rather than using the system heap. While the algorithm and
data structures in Bor-ALM are identical to that of Bor-AL, we
allocate private data structures using a separate memory seg-
ment for each thread to reduce contention to kernel data struc-
tures, rather than using the system malloc () that manages
the heap in a single segment and causes contention for a shared
kernel lock.

2.3. Bor-FAL: flexible adjacency list representation

For the previous two approaches, conceivably the compact-
graph step could be the most expensive step for a parallel
Bortvka’s algorithm. Next we propose an alternative approach
with a new graph representation data structure (that we call
flexible adjacency list) that significantly reduces the cost for
compacting the graph. Similar to Johnson and Metaxas’s [19]
“edge-plugging” method, ours is simple to implement and we
do not need to shrink the adjacency list during the grafting

steps. However, our new approach differs significantly from
edge-plugging in that we create a data structure with more spa-
tial locality, and hence a better cache hit ratio leading to higher
performance.

The flexible adjacency list augments the traditional adja-
cency list representation by allowing each vertex to hold mul-
tiple adjacency lists instead of just a single one; in fact it is
a linked list of adjacency lists (and similar to Bor-AL, we use
the more cache-friendly adjacency array for each list). Dur-
ing initialization, each vertex points to only one adjacency list.
After the connect-components step, each vertex appends its
adjacency list to its supervertex’s adjacency list by sorting to-
gether the vertices that are labeled with the same supervertex.
We simplify the compact-graph step, allowing each superver-
tex to have self-loops and multiple edges inside its adjacency
list. Thus, the compact-graph step now uses a smaller parallel
sort plus several pointer operations instead of costly sortings
and memory copies, while the find-min step gets the added re-
sponsibility of filtering out the self-loops and multiple edges.
Note that for this new approach (designated Bor-FAL) there are
potentially fewer memory write operations compared with the
previous two approaches. This is important for an implementa-
tion on SMPs because memory writes typically generate more
cache coherency transactions than do reads.

In Fig. 1 we illustrate the use of the flexible adjacency list
for a 6-vertex input graph. After one Borivka iteration, vertices
1, 2, and 3, form one supervertex and vertices 4, 5, and 6,
form a second supervertex. Vertex labels 1 and 4 represent the
supervertices and receive the adjacency lists of vertices 2 and
3, and vertices 5 and 6, respectively. Vertices 1 and 4 are re-
labeled as 1 and 2. Note that most of the original data structure
is kept intact so that we might save memory copies. Instead of
re-labeling vertices in the adjacency list, we maintain a separate
lookup table that holds the supervertex label for each vertex.
We easily obtain this table from the connect-components step.
The find-min step uses this table to filter out self-loops and
multiple edges.

3. Analysis

Here we analyze the complexities of the different Bortivka
variants. Helman and JaJ4’s SMP complexity model [16] pro-
vides a reasonable framework for the realistic analysis that fa-
vors cache-friendly algorithms by penalizing non-contiguous
memory accesses. Under this model, there are two parts to an
algorithm’s complexity, Mg the memory access complexity and
Tc the computation complexity. The Mg term is the number
of non-contiguous memory accesses, and the T¢ term is the
running time. The Mg term recognizes the effect that memory
accesses have over an algorithm’s performance. Parameters of
the model includes the problem size #» and the number of pro-
Cessors p.

For a sparse graph G with n vertices and m edges, as the
algorithm iterates, the number of vertices decreases by at least
half in each iteration, so there are at most log n iterations for all
of the Bortivka variants. (All logarithms throughout this paper
are based two, unless otherwise noted.)

D.A. Bader, G. Cong / J. Parallel Distrib. Comput. 66 (2006) 1366—1378 1369

) T)i Vol 1 | V4|5

nil
v 2
rIEDCGIED N

JdIDGEE

<
8]

<
=)

\nﬂ Vol 2 Vel 6 2

=
=
<
<
[
‘

2 V3
v \% ni
(9 () vo [ls Lvs[3)
N Ve | 4
6 Vs \niILJ—LI—)4 3

II
V2

(a) (b)

V» A\ 6
ve | Nl Lj_“hl_)

(o] afa]e)

nil

(©)

Fig. 1. Example of flexible adjacency list representation: (a) input graph; (b) initialized flexible adjacency list; (c) flexible adjacency list for one iteration.

First we consider the complexity of Bor-EL. The find-min
and connect-components steps are straightforward. As the in-
put representation in our implementation is laid out such that
the incident edges for each vertex are in contiguous locations,
all memory accesses for the find-min step are contiguous. Non-
contiguous memory accesses occur when “graft-and-shortcut”
happens. After fin-min, each vertex v sets D[v] to u if edge
(u, v) is the lightest incident edge to v. Accesses to D are
non-contiguous, and there are in total n such accesses. To find
the connected components, pointer-jumping is performed on
D, which incurs n log n (worst-case) non-contiguous accesses.
Hence for find-min and connect-components (assuming bal-
anced load among processors),

n+nlogn
P .

The aggregate complexity in one iteration is characterized by

n+nlogn
T(l’l, p) = (ME 5 Tc) =< p g : O<m+nplogn)>.

Mg =

The parallel sample sort that we use in Bor-EL for compact-
graph has the complexity of

clog% l
T(n,p)=(Mg; Tc)=(|4+2 =3
logz) p

o(% 1ogz)>,

with high probability where [is the length of the list and ¢ and
z are constants related to cache size and sampling ratio [16].
The cost of the compact-graph step, by aggregating the cost for
sorting and for manipulating the data structure, is

T(n, p)=(Mg; Ic)
_ clog@m/p)\ 2m . (om
_<(4+2 log 2) o O(p log2m>>.

The value of m decreases with each successive iteration-
dependent on the topology and edge weight assignment of the
input graph. Because the number of vertices is reduced by at
least half each iteration, m decreases by at least 5 edges each

iteration. For the sake of simplifying the analysis, though, we
use m unchanged as the number of edges during each iteration;
clearly an upper bound of the worst case. Hence, the complexity
of Bor-EL is given as

T'(n, p)= (Mg ; Tc)
<<8m+n+nlogn 4mc10g(2m/p))
= logn ;
)4 plogz

O(%logmlogn».

We justify the use of the upper bound m as follows. For ran-
dom sparse graphs m decreases slowly in the first several itera-
tions of Bor-EL, and the graph becomes denser (as n decreases
at a faster rate than m) until a certain point, m decreases drasti-
cally. Table 1 illustrates how m changes for two random sparse
graphs. For planar or near-planar graphs often seen in practical
applications, edge density (m/n) is essentially constant across
any number of Bortivka steps.

In Table 1 for graph G, eight iterations are needed for
Bortivka’s algorithm. Until the fourth iteration, m is still more
than half of its initial value. Yet at the next iteration, m drasti-
cally reduces to about 10% of its initial value. Similar behav-
ior is also observed for G;,. As for quite a substantial number
of iterations m decreases slowly, for simplicity it is reasonable
to assume that m remains unchanged (an upper bound for the
actual m).

Table 1 also suggests that instead of growing a spanning tree
for a relatively denser graph, if we can exclude heavy edges in
the early stages of the algorithm and decrease m, we may have
a more efficient parallel implementation for many input graphs
because we may be able to greatly reduce the size of the edge
list. After all, for a graph with m/n >2, more than half of the
edges are not in the MST. In fact several MST algorithms ex-
clude edges from the graph using the “cycle” property. Cole et
al. [10] present a linear-work algorithm that first uses random
sampling to find a spanning forest F' of graph G, then identifies
the heavy edges to F' and excludes them from the final MST.
The algorithm presented in [20], an inherently sequential pro-
cedure, also excludes edges according to the “cycle” property
of MST.

1370 D.A. Bader, G. Cong / J. Parallel Distrib. Comput. 66 (2006) 1366—1378

Table 1

Example of the rate of decrease of the number m of edges for two random sparse graphs

Iteration G1 = 1,000, 000 vertices, 6,000,006 edges G> =10, 000 vertices, 30,024 edges

2m Decrease % dec. m/n 2m Decrease % dec. m/n
1 12000012 N/A N/A 6.0 60048 N/A N/A 3.0
2 10498332 1501680 12.5 21.0 44782 15266 25.4 8.9
3 10052640 445692 4.2 98.1 34378 10404 23.2 33.5
4 8332722 1719918 17.2 472.8 6376 28002 80.5 35.0
5 1446156 6886566 82.6 534.8 156 6220 97.6 6.0
6 40968 1405188 97.2 100.9 2 154 98.7 0.5
7 756 40212 98.2 13.5
8 12 744 98.4 1.5

The 2m column gives the size of the edge list, the decrease column shows how much the size of the edge list decreases in the current iteration, the %
dec. column gives the percentage that the size of the edge list decreases in the current iteration, and m/n shows the density of the graph.

Without going into the input-dependent details of how ver-
tex degrees change as the Bortivka variants progress, we com-
pare the complexity of the first iteration of Bor-AL with Bor-EL
because in each iteration these approaches compute similar re-
sults in different ways. For Bor-AL the complexity of the first
iteration is

T(n, p)=(Mg; Tc)
_[(8n+5m+nlogn
_<< P
N 2nclog (n/p) + 2mclog(m/n)>)
plogz ’

O(% logm + % log(m/n))>.

While for Bor-EL, the complexity of the first iteration is

T(n, p)= (Mg ; Tc)
_<<8m+n+nlogn 4mclog(2m/p)) .
B P plogz

O(%logm».

We see that Bor-AL is a faster algorithm than Bor-EL, as ex-
pected, since the input for Bor-AL is “bucketed” into adjacency
lists, versus Bor-EL that is an unordered list of edges, and sort-
ing each bucket first in Bor-AL saves unnecessary comparisons
between edges that have no vertices in common. We can con-
sider the complexity of Bor-EL then to be an upper bound of
Bor-AL.

In Bor-FAL n reduces at least by half while m stays the
same. Compact-graph first sorts the n vertices, then assigns
O(n) pointers to append each vertex’s adjacency list to its su-

pervertex’s. For each processor, sorting takes O(% log n) time,

and assigning pointers takes O(n/p) time assuming each pro-
cessor gets to assign roughly the same amount of pointers.

Updating the lookup table costs each processor O(n/p) time.
As n decreases at least by half, the aggregate running time for
compact-graph is

1 logn " n) logn "
—— P loe L4 2 = — o Mogn
e, g = - ZO 3 loe s+ ZO 5 = OfHoen),
1= 1=

8n 4cenlog(n/p)
Mg(n, p)eg < — + Ten o8N/ p) /P .
p plogz

With Bor-FAL, to find the smallest-weight edge for the super-
vertices, all the m edges will be checked, with each proces-
sor covering O(m/p) edges. The aggregate running time is
Tc(n, p)im = O(mlogn/p) and the memory access complex-
ity is Mg(n, p)tm = m/p. For the finding connected compo-

nent step, each processor takes 7. = O(n log %) time, and

Mg (n, p)cc <2nlogn. The complexity for the whole Bortivka’s
algorithm is

T(n,p)=Tm, p)tm + T, plec + T (n, P)cg
<8n +2nlogn +mlogn 4cnlog(n/p)
p plogz

O(”’TJr"logn>>.

<

It would be interesting and important to check how well our
analysis and claim fit with the actual experiments. Detailed
performance results are presented in Section 5. Here we show
that Bor-AL in practice runs faster than Bor-EL, and Bor-FAL
greatly reduces the compact-graph time. Fig. 2 shows for the
three approaches the breakdown of the running time for the
three steps.

Immediately we can see that for Bor-EL and Bor-AL the
compact-graph step dominates the running time. Bor-EL takes
much more time than Bor-AL, and only gets worse when the
graphs get denser. In contrast the execution time of compact-
graph step of Bor-FAL is greatly reduced: in the experimental
section with a random graph of 1M vertices and 10M edges,

D.A. Bader, G. Cong / J. Parallel Distrib. Comput. 66 (2006) 1366—1378 1371

Breakdown of the running time for the three steps for random graphs

80
H find-min
I connect-components
I compact-graph
60
m
ke
c
]
o 40
8 _
[0)
£
|_
20
0

1M_4M

1M_6M

1M_10M

Input Graphs

Fig. 2. Running times for the find-min, connect-components, and compact-graph steps of the Bor-EL, Bor-AL, and Bor-ALM approaches (the three groups
from left to right, respectively) of the parallel MST implementations using random graphs with n = 1M vertices and m = 4M, 6 M, and 10M edges (the bars

from left to right, respectively, in each group).

it is over 50 times faster than Bor-EL, and over 7 times faster
than Bor-AL. Actually the execution time of the compact-graph
step of Bor-FAL is almost the same for the three input graphs
because it only depends on the number of vertices. As predicted,
the execution time of the find-min step of Bor-FAL increases.
And the connect-components step only takes a small fraction
of the execution time for all approaches.

4. A new parallel MST algorithm

In this section we present a new non-deterministic shared-
memory algorithm for finding a minimum spanning tree/forest
that is quite different from Bortivka’s approach in that it uses
multiple, coordinated instances of Prim’s sequential algorithm
running on the graph’s shared data structure. In fact, the new
approach marries Prim’s algorithm (known as an efficient se-
quential algorithm for MST) with that of the naturally parallel
Bortvka approach. In our new algorithm essentially we let each
processor simultaneously run Prim’s algorithm from different
starting vertices. We say a tree is growing when there exists
a lightweight edge that connects the tree to a vertex not yet in
another tree, and mature otherwise. When all of the vertices
have been incorporated into mature subtrees, we contract each
subtree into a supervertex and call the approach recursively
until only one supervertex remains. When the problem size
is small enough, one processor solves the remaining problem
using the best sequential MST algorithm. If no edges remain
between supervertices, we halt the algorithm and return the
minimum spanning forest. The detailed algorithm is given in
Algorithm 1.

Input: Graph G = (V, E) represented by adjacency list
A withn = |V|
np: the base problem size to be solved sequentially.
Output: MSF for graph G
begin
while n > nj; do
1. Initialize the color and visited arrays
forv<—i%to(i+l)%—ld0
color[v] = 0, visited[v] = 0
2. Run Algorithm 2
3.f0rv<—i%to(i+l)%—ldo
if visited[v] = O then find the lightest incident
edge e to v, and label e to be in the MST
4. With the found MST edges, run connected com-
ponents on the induced graph, and shrink each
component into a supervertex
5. Remove each supervertex with degree 0 (a con-
nected component)
6. Set n < the number of remaining superver-
tices; and m < the number of edges between the
supervertices

7. Solve the remaining problem on one processor
end

Algorithm 1: Parallel algorithm for new MSF approach, for
processor p;, for (0<i < p—1). Assume w.l.o.g. that p divides
n evenly.

In Algorithm 1, step 1 initializes each vertex as uncolored and
unvisited. A processor colors a vertex if it is the first processor
to insert it into a heap, and labels a vertex as visited when it is

1372 D.A. Bader, G. Cong / J. Parallel Distrib. Comput. 66 (2006) 1366—1378

Input: (1) p processors, each with processor ID p;, (2)
a partition of adjacency list for each processor (3)
array color and visited

Output: A spanning forest that is part of graph G’s MST

begin

1.forv<—i%to(i+l)%—ldo
1.1 if color[v] # O then v is already colored,
continue
1.2 my_color = color[v] = v + 1
1.3 insert v into heap H
1.4 while H is not empty do
w = heap_extract_min(H)
if (color[w] # my_color) OR (any neighbor u
of w has color other than O or my_color) then
break
if visited[w] = 0 then
visited[w] = 1, and label the correspond-
ing edge e as in MST
for each neighbor u of w do
if color[u] = 0 then color[u] =
my_color
if u in heap H
heap_decrease_key(u, H)
else heap_insert(u, H)

then

end

Algorithm 2: Parallel algorithm for new MST approach based
on Prim’s that finds parts of MST, for processor p;, for
(0<i<p —1). Assume w.l.o.g. that p divides n evenly.

extracted from the heap; i.e., the edge associated with the vertex
has been selected to be in the MST. In step 2 (Algorithm 2)
each processor first searches its own portion of the list for
uncolored vertices from which to start Prim’s algorithm. In
each iteration a processor chooses a unique color (different
from other processors’ colors or the colors it has used before)
as its own color. After extracting the minimum element from
the heap, the processor checks whether the element is colored
by itself, and if not, a collision with another processor occurs
(meaning multiple processors try to color this element in a
race), and the processor stops growing the current sub-MST.
Otherwise, it continues.

We prove that Algorithm 1 finds a MST of the given graph.
w.l.o.g., we assume all the edges have distinct weights.

Lemma 1. On an SMP with sequential memory consistency,
subtrees grown by Algorithm 2 do not touch each other, in other
words, no two subtrees share a vertex.

Proof. Step 1.4 of Algorithm 2 grows subtrees following the
fashion of Prim’s algorithm. Suppose two subtrees 77 and 7>
share one vertex v. We have two cases:

e case 1: 71 and 75 could be two trees grown by one processor,
or
e case 2: each tree is grown by a different processor.

v will be included in a processor’s subtree only if when
it is extracted from the heap and found to be colored as the
processor’s current color (step 1.4 of Algorithm 2).

Case 1: If T1 and T, are grown by the same processor p;
(also assume without loss of generality 77 is grown before T,
in iterations k1 and k», respectively, with k; < k3), and proces-
sor p; chooses a unique color to color the vertices (step 1.2 of
Algorithm 2), then v is colored kq p +i in 71, and later colored
again in 7> with a different color k> p +i. As before coloring a
vertex, each processor will first checks whether it has already
been colored (step 1.1 of Algorithm 2), this means when pro-
cessor p; checks whether v has been colored, it does not see
the previous coloring. This is a clear contradiction of sequential
memory consistency.

Case 2: Assume that v is a vertex found in two trees 7 and
T, grown by two processors pj and p;, respectively. We denote
ty as the time that v is colored. Suppose when v is added to
T), it is connected to vertex vy, and when it is added to 73, it
is connected to v;. Since v is connected to v and vy, we have
thatt,, <t,and t,, < t,. Alsot, < t,, and t, < t,, since after
adding v to 77 we have not seen the coloring of v, yet, and
similarly after adding v to 7> we have not seen the coloring of
vy yet. This is a contradiction of step 1.4 in Algorithm 2, and
hence, a vertex will not be included in more than one growing
tree. [

Lemma 2. No cycles are formed by the edges found in
Algorithm 1.

Proof. In step 2 of Algorithm 1, each processor grows sub-
trees. Following Lemma 1, no cycles are formed among these
trees. Step 5 of Algorithm 1 is the only other step that labels
edges, and the edges found in this step do not form cycles
among themselves (otherwise it is a direct contradiction of the
correctness of Borlivka’s algorithm). Also these edges do not
form any cycles with the subtrees grown in step 2. To see this,
note that each of these edges has at least one endpoint that is
not shared by any of the subtrees, so the subtrees can be treated
as “vertices.” Suppose / such edges and m subtrees form a cy-
cle, we have [edges and / + m vertices, which means m = 0.
Similarly edges found in step 5 do not connect two subtrees
together, but may increase the sizes of subtrees. [l

Lemma 3. Edges found in Algorithm lare in the MST.

Proof. Consider a single iteration of Algorithm 1 on graph G.
Assume after step 5, we run parallel Bortvka’s algorithm to
get the MST for the reduced graph. Now we prove that for the
spanning tree T we get from G, every edge e of G that is not
in T is a T-heavy edge. Let us consider the following cases:

e Two endpoints of e are in two different subtrees. Obviously
e is T-heavy because we run Boruvka’s algorithm to get the
MST of the reduced graph (in which each subtree is now a
vertex).

e Two endpoints u, v of e are in the same subtree that is
generated by step 1.4. According to Prim’s algorithm e is
T -heavy.

D.A. Bader, G. Cong / J. Parallel Distrib. Comput. 66 (2006) 1366—1378 1373

100
I Kruskal
80 I Prim
I Boruvka
)
S 60
1]
o
o)
2
o
£ 40 1
'_
20 A
0 - T T

R4M R6M R10M R20M Mesh Mesh40 Mesh60 Str0 Str2 Str3 GM6

Input Graphs

Fig. 3. Comparison of three sequential MST algorithms across several input graphs.

e Two endpoints u, v of e are in the same subtree, u is in the
part grown by step 1.4 and v is in part grown by step 3. It
is easy to prove that e has larger weight than all the weights
of the edges along the path from u to v in 7.

e Two endpoints u, v are in the same subtree, both u and v
are in parts generated by step 5. Again e is T-heavy.

In summary, we have a spanning tree 7', yet all the edges of G
that are not in 7' are T-heavy, so T is a MST. 0

Theorem 1. For connected graph G, Algorithm 1 finds the
MST of G.

Proof. Theorem 1 follows by repeatedly applying Lemma 3.
O

The algorithm as given may not keep all of the processors
equally busy, since each may visit a different number of ver-
tices during an iteration. We balance the load simply by us-
ing the work stealing technique as follows. When a processor
completes its partition of 2 vertices, an unfinished partition is
randomly selected, and processing begins from a decreasing
pointer that marks the end of the unprocessed list. It is theoret-
ically possible that no edges are selected for the growing trees,
and hence, no progress made during an iteration of the algo-
rithm (although this case is highly unlikely in practice). For
example, if the input contains % cycles, with cycle i defined as
vertices {iZ, i + DZ,...,(G+p— 12}, for0<i < Z, and
. p P P
if the processors are perfectly synchronized, each vertex would
be a singleton in its own mature tree. A practical solution that
guarantees progress with high probability is to randomly re-
order the vertex set, which can be done simply in parallel and
without added asymptotic complexity [34].

4.1. Analysis

Our new parallel MST algorithm possesses an interesting
feature: when run on one processor the algorithm behaves as
Prim’s, and on n processors becomes Bortivka’s, and runs as
a hybrid combination for 1 < p < n, where p is the number
of processors. In addition, our new algorithm is novel when
compared with Bortivka’s approach in the following ways.

1. Each of p processors in our algorithm finds for its starting
vertex the smallest-weight edge, contracts that edge, and
then finds the smallest-weight edge again for the contracted
supervertex. We do not find all the smallest-weight edges
for all vertices, synchronize, and then compact as in the
parallel Boruvka’s algorithm.

2. Our algorithm adapts for any number p of processors in a
practical way for SMPs, where p is often much less than
n, rather than in parallel implementations of Bortvka’s ap-
proach that appear as PRAM emulations with p coarse-
grained processors that emulate n virtual processors.

The performance of our new algorithm is dependent on its
granularity %, for 1< p<n. The worst-case is when the gran-
ularity is small, i.e., a granularity of 1 when p = n and the
approach turns to Bortivka. Hence, the worst case complexities
are similar to that of the parallel Borivka variants analyzed pre-
viously. Yet in practice we expect our algorithm to perform bet-
ter than parallel Borvka’s algorithm on sparse graphs because
their lower connectivity implies that our algorithm behaves like
p simultaneous copies of Prim’s algorithm with some synchro-
nization overhead. In this case, the computation complexity is
0(%) (assuming balanced load among processors). We do
not give Mg as the memory access behavior is dependent on the
various heap implementations. Instead, we compare the perfor-

1374 D.A. Bader, G. Cong / J. Parallel Distrib. Comput. 66 (2006) 1366—1378

Random Graph, 1M vertices, 4M edges

100
—@—— Bor-AL
) Bor-ALM
w0l B
\ — —& — Bor-EL
a \ —— Kruskal
2 60 AN
8 AN
[n_
[0] ™~ ~
£ 40 A ~
[= e
——a
209 7
v \m% °
-
0 . . .)
2 4 6 8 10
Number of Processors
Random Graph, 1M vertices, 6M edges
120
—@&— Bor-AL
e Bor-ALM
1001 '~ v Bor-FAL
AN ——V-— - Bor-EL
~ — @ — MST-BC
80 A ~N — Prim
g "
c ~
g 60 ~
~
) v
© 40 - Trwe—
£ Ty
= .\
20 A —~ 9 ® Y
v \'_“‘\'——___ o
v v ¥ =y
0 m
2 4 6 8 10

Number of Processors

Fig. 4. Comparison of parallel MST algorithms for a random graph with
n = 1M vertices and m = 4M and 6M edges.

mance of the new algorithm with implementations of Bortivka’s
algorithms in Section 5.

5. Experimental results

This section summarizes the experimental results of our im-
plementations and compares our results with previous experi-
mental results. We tested our shared-memory implementation
on the Sun E4500, a uniform-memory-access (UMA) shared-
memory parallel machine with 14 UltraSPARC II 400 MHz pro-
cessors and 14 GB of memory. Each processor has 16 Kbytes of
direct-mapped data (L1) cache and 4 Mbytes of external (L2)
cache. The algorithms are implemented using POSIX threads
and a library of parallel primitives developed by our group [4].

5.1. Experimental data
Next we describe the collection of sparse graph generators

that we use to compare the performance of the parallel MST
graph algorithms. Our generators include several employed in

Random Graph, 1M vertices, 10M edges

300
L —@—— Bor-AL
) Bor-ALM
250 A \ v Bor-FAL
\ — =V — - Bor-EL
— @ — MST-BC
& 200 A \ ————— Prim
'g \
o \
ﬁ 150 A N
£ T~
= 100 BTN -
< TV v
50§ o .
——————— —
o . T
2 4 6 8 10
Number of Processors
Random Graph, 1M vertices, 20M edges
140
P —@— Bor-AL
¢ Bor-ALM
120 v Bor-FAL
— = MST-BC
Prim
100 A
) i *
§ 80 .\
2 AN
) AN
e 60 g N
= AN
40 I
20 \3\3\~~
0

Number of Processors

Fig. 5. Comparison of parallel MST algorithms for a random graph with
n = 1M vertices and m = 10M and 20M edges.

previous experimental studies of parallel graph algorithms for
related problems. For instance, we include the 2D60 and 3D40
mesh topologies used in the connected component studies of
[15,23,17,14], the random graphs used by [15,8,17,14], and the
geometric graphs used by [15,17,23,14,8].

Regular and irregular meshes: Computational science ap-
plications for physics-based simulations and computer vision
commonly use mesh-based graphs. All of the edge weights are
uniformly random.

e 2D Mesh: The vertices of the graph are placed on a 2D mesh,
with each vertex connected to its four neighbors whenever
they exist.

e 2D60: 2D mesh with the probability of 60% for each edge
to be present.

e 3D40: 3D mesh with the probability of 40% for each edge
to be present.

Structured graphs: These graphs are used by Chung and Con-
don (see [8] for detailed descriptions) to study the performance
of parallel Bortivka’s algorithm. They have recursive structures

D.A. Bader, G. Cong / J. Parallel Distrib. Comput. 66 (2006) 1366—1378 1375

Mesh, 1M vertices

—@—— Bor-AL
Bor-ALM
Bor-FAL

- Bor-EL

Kruskal

Time (Seconds)

Number of Processors

Geometric Graph, 1M vertices (k=6)

70
60 —@—— BorAL
'S] Bor-ALM
v Bor-FAL
- N\ ——V-—- Bor-EL
50
. N — - — MST-BC
2 —— B
‘g AN oruvka
g 40 A N
[0
28 AN
o 304 A\
£ N
= ~
20 V=
————
Ty
10 \F " -
__.‘_“—l—————?
0+ T T T i
2 4 6 8 10

Number of Processors

Fig. 6. Comparison of parallel MST algorithms for a regular mesh with
n = 1M vertices (top) and for a geometric graph with fixed degree k = 6
(bottom).

that correspond to the iteration of Bortivka’s algorithm and are
degenerate (the input is already a tree).

e str0: At each iteration with n vertices, two vertices form a
pair. So with Bortivka’s algorithm, the number of vertices
decrease exactly by a half in each iteration.

e sirl: At each iteration with n vertices, 4/n vertices form a
linear chain.

e str2: At each iteration with n vertices, n/2 vertices form
linear chain, and the other n/2 form pairs.

e str3: At each iteration with n vertices, \/n vertices form a
complete binary tree.

Random graph: We create a random graph of n vertices and
m edges by randomly adding m unique edges to the vertex set.
Several software packages generate random graphs this way,
including LEDA [27]. The edge weights are selected uniformly
and at random.

Geometric graphs: In these k-regular graphs, n points are
chosen uniformly and at random in a unit square in the Cartesian
plane, and each vertex is connected to its k nearest neighbors.

2D60, 1M vertices

12
——@—— Bor-AL
10 N) Bor-ALM
AN v Bor-FAL
~ e Wertso
:g 8 \ N —— Kiruskal
5
[&]
Q
@
Q
£
|_
0 T T T |
2 4 6 8 10
Number of Processors
3D40, 1M vertices
20 JK
18 1 ———— BorAL
16 N ° Bor-ALM
AN v Bor-FAL
——V'— - Bor-EL
. 141 N\ — —® — MST-BC
é 19 4 AN ——————— Kruskal
9] Avd
3 ~
& 10 4 ~
~N
Q
E 83
i= i
S SN Vo ~
q ~. V———
4 ~ . 1
° TR
21) ®
0 T T T |
2 4 6 8 10

Number of Processors

Fig. 7. Comparison of parallel MST algorithms for regular and irregular
meshes: the 2D60 (top) and 3D40 (bottom).

Moret and Shapiro [29] use these in their empirical study of
sequential MST algorithms.

5.2. Performance results and analysis

In this section we offer a collection of our performance re-
sults that demonstrate for the first time a parallel MST imple-
mentation that exhibits speedup when compared with the best
sequential approach over a wide range of sparse input graphs.
We implemented three sequential algorithms: Prim’s algorithm
with binary heap, Kruskal’s algorithm with non-recursive merge
sort (which in our experiments has superior performance over
gsort, GNU quicksort, and recursive merge sort for large in-
puts) and the m logm Boravka’s algorithm.

Previous studies such as [8] compare their parallel imple-
mentations with sequential Borivka (even though they report
that sequential Bortivka is several times slower than other MST
algorithms) and Kruskal’s algorithm. We observe Prim’s algo-
rithm can be 3 times faster than Kruskal’s algorithm for some
inputs. Density of the graphs is not the only determining fac-

1376 D.A. Bader, G. Cong / J. Parallel Distrib. Comput. 66 (2006) 1366—1378

Structured Graph 0, 1M vertices

12
—@— Bor-AL
o Bor-ALM
10 v Bor-FAL
g —- BorEL
— -® — MST-BC
= 8 —— Prim
©
j
o
[&]
[
@
[0]
£
'_
Number of Processors
Structured Graph 1, 64K vertices
——@—— Bor-AL
) Bor-ALM
0.3 1 v Bor-FAL
——V¥-—- Bor-EL
— —® — MST-BC
—— Prim
™
©
c
o
o
Q
@
Q
£
'_
[=
—
~ — _ _— — &
— — —e—
- —— —n
0.0 T T T
2 4 6 8 10

Number of Processors

Fig. 8. Comparison of parallel MST algorithms for the structured graphs str0
and strl. Note that strl requires 2° vertices for z a power of two; and thus,
we use 64K vertices here due to this size limitation.

tor of the empirical performance of the three sequential algo-
rithms. Different assignment of edge weights is also important.
Fig. 3 shows the performance rankings of the three sequential
algorithms over a range of our input graphs.

In our performance results we specify which sequential
algorithm achieves the best result for the input and use this
algorithm when determining parallel speedup. In our experi-
mental studies, Bor-EL, Bor-AL, Bor-ALM, and Bor-FAL, are
the parallel Bortivka variants using edge lists, adjacency lists,
adjacency lists and our memory management, and flexible
adjacency lists, respectively. MST-BC is our new minimum
spanning forest parallel algorithm.

The performance plots in Figs. 4-9 are for the random graphs,
the regular and irregular meshes (mesh, 2D60, and 3D40) and a
geometric graph with k = 6, and the structured graphs. In these
plots, the thick horizontal line represents the time taken for the
best sequential MST algorithm (named in each legend) to find

Structured Graph 2, 1M vertices

1417 ——e—— Bor-AL
[} Bor-ALM
12 4 v Bor-FAL
— =¥ —-- Bor-EL
10 4 — -@ — MST-BC
—_ Prim
(2]
2
& 8%
3 v
L 6 t v v v
Q .
£ Bl ° ° °
F 4 ~. e b i
N N
p— L
2
——8— ————— —— — — — —%
0 -
2 4 6 8 10

Number of Processors

Structured Graph 3, 1M vertices

—@—— Bor-AL
¢] Bor-ALM
v Bor-FAL
——-—-- Bor-EL
— —& — MST-BC
— Kruskal
%)
©
c
[]
[$]
3 _,./0—/4'
g S
=) v v
Ve——
o B~ __) TV~ —
~— ° ° i
~—_ _
1 - — — —
0+ T T T 1
2 4 6 8 10

Number of Processors

Fig. 9. Comparison of parallel MST algorithms for the structured graphs str2
and str3.

a solution on the same input graph using a single processor on
the Sun E4500.

For the random, sparse graphs, we find that our Bortivka
variant with flexible adjacency lists often has superior perfor-
mance, with a speedup of approximately 5 using eight proces-
sors over the best sequential algorithm (Prim’s in this case). In
the regular and irregular meshes, the adjacency list represen-
tation with our memory management (Bor-ALM) often is the
best performing parallel approach with parallel speedups near
6 for eight processors. Finally, for the structured graphs that are
worst-cases for Bortvka algorithms, our new MST algorithm
often is the only approach that runs faster than the sequential
algorithm, although speedups are more modest with at most 4
for eight processors in some instances.

6. Conclusions and future work

In summary, we present promising results that for the first
time show that parallel MST algorithms run efficiently on paral-
lel SMPs for graphs with irregular topologies. We present a new
non-deterministic MST algorithm that uses a load-balancing

D.A. Bader, G. Cong / J. Parallel Distrib. Comput. 66 (2006) 1366—1378 1377

scheme based upon work stealing that, unlike Bortivka vari-
ants, gives reasonable speedup when compared with the best
sequential algorithms on several structured inputs that are hard
to achieve parallel speedup. Through comparison with the best
sequential implementation, we see our implementations ex-
hibiting parallel speedup, which is remarkable to note since the
sequential algorithm has very low overhead. Further, these re-
sults provide optimistic evidence that complex graph problems
that have efficient PRAM solutions, but often no known effi-
cient parallel implementations, may scale gracefully on SMPs.
Our future work includes validating these experiments on larger
SMPs, and since the code is portable, on other vendors’ plat-
forms. We plan to apply the techniques discussed in this pa-
per to other related graph problems, for instance, maximum
flow, connected components, and planarity testing algorithms,
for SMPs.

References

[1] M. Adler, W. Dittrich, B. Juurlink, M. Kutylowski, I. Rieping,
Communication-optimal paralle]l minimum spanning tree algorithms, in:
Proceedings of the 10th Annual Symposium on Parallel Algorithms and
Architectures (SPAA-98), Newport, RI, ACM, New York, June 1998,
pp. 27-36.

[2] L. An, Q.S. Xiang, S. Chavez, A fast implementation of the minimum
spanning tree method for phase unwrapping, IEEE Trans. Med. Imaging
19 (8) (2000) 805-808.

[3] D.A. Bader, G. Cong, Fast shared-memory algorithms for computing
the minimum spanning forest of sparse graphs, in: Proceedings of
International Parallel and Distributed Processing Symposium (IPDPS
2004), Santa Fe, NM, April 2004.

[4] D.A. Bader, J. JaJa, SIMPLE: a methodology for programming
high performance algorithms on clusters of symmetric multiprocessors
(SMPs), J. Parallel and Distributed Comput. 58 (1) (1999) 92-108.

[5] M. Brinkhuis, G.A. Meijer, P.J. van Diest, L.T. Schuurmans, J.P. Baak,
Minimum spanning tree analysis in advanced ovarian carcinoma, Anal.
Quant. Cytol. Histol. 19 (3) (1997) 194-201.

[6] C. Chen, S. Morris, Visualizing evolving networks: minimum spanning
trees versus Pathfinder networks, in: IEEE Symposium on Information
Visualization, Seattle, WA, October 2003, 8 pp. http://doi.ieeecomputer
society.org/10.1109/INFVIS.2003.1249010.

[7] K.W. Chong, Y. Han, T.W. Lam, Concurrent threads and optimal parallel
minimum spanning tree algorithm, J. ACM 48 (2001) 297-323.

[8] S. Chung, A. Condon, Parallel implementation of Bortivka’s minimum
spanning tree algorithm, in: Proceedings of the 10th International Parallel
Processing Symposium (IPPS’96), April 1996, pp. 302-315.

[9] R. Cole, PN. Klein, R.E. Tarjan, A linear-work parallel algorithm
for finding minimum spanning trees, in: Proceedings of the Sixth
Annual Symposium on Parallel Algorithms and Architectures (SPAA-
94), Newport, RI, ACM, New York, June 1994, pp. 11-15.

[10] R. Cole, PN. Klein, R.E. Tarjan, Finding minimum spanning forests
in logarithmic time and linear work using random sampling, in:
Proceedings of the Eighth Annual Symposium on Parallel Algorithms
and Architectures (SPAA-96), Newport, RI, ACM, New York, June 1996,
pp. 243-250.

[11] E. Dehne, S. Gotz, Practical parallel algorithms for minimum spanning
trees, in: Workshop on Advances in Parallel and Distributed Systems,
West Lafayette, IN, October 1998, pp. 366-371.

[12] J.C. Dore, J. Gilbert, E. Bignon, A. Crastes de Paulet, T. Ojasoo, M.
Pons, J.P. Raynaud, J.F. Miquel, Multivariate analysis by the minimum
spanning tree method of the structural determinants of diphenylethylenes
and triphenylacrylonitriles implicated in estrogen receptor binding,
protein kinase C activity, and MCF7 cell proliferation, J. Med. Chem.
35 (3) (1992) 573-583.

[13] P.B. Gibbons, Y. Matias, V. Ramachandran, Can shared-memory model
serve as a bridging model for parallel computation?, in: Proceedings of
the Ninth Annual Symposium on Parallel Algorithms and Architectures
(SPAA-97), Newport, RI, ACM, New York, June 1997, pp. 72-83.

[14] S. Goddard, S. Kumar, J.F. Prins, Connected components algorithms
for mesh-connected parallel computers, in: S.N. Bhatt (Ed.), Parallel
Algorithms: Third DIMACS Implementation Challenge, October 17-19,
1994, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 30, American Mathematical Society, Providence,
RI, 1997, pp. 43-58.

[15] J. Greiner, A comparison of data-parallel algorithms for connected
components, in: Proceedings of the Sixth Annual Symposium on Parallel
Algorithms and Architectures (SPAA-94), Cape May, NJ, June 1994,
pp. 16-25.

[16] D.R. Helman, J. JaJ4, Designing practical efficient algorithms
for symmetric multiprocessors, in: Algorithm Engineering and
Experimentation (ALENEX’99), Lecture Notes in Computer Science,
vol. 1619, Baltimore, MD, Springer, Berlin, January 1999, pp. 37-56.

[17] T.-S. Hsu, V. Ramachandran, N. Dean, Parallel implementation of
algorithms for finding connected components in graphs, in: S.N. Bhatt
(Ed.), Parallel Algorithms: Third DIMACS Implementation Challenge,
October 17-19, 1994, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 30, American Mathematical Society,
Providence, RI, 1997, pp. 23-41.

[18] J. JaJ4, An Introduction to Parallel Algorithms, Addison-Wesley, New
York, 1992.

[19] D.B. Johnson, P. Metaxas, A parallel algorithm for computing minimum
spanning trees, in: Proceedings of the Fourth Annual Symposium on
Parallel Algorithms and Architectures (SPAA-92), San Diego, CA, 1992,
pp. 363-372.

[20] I. Katriel, P. Sanders, J. L. Triff, A practical minimum spanning
tree algorithm using the cycle property, in: 11th Annual European
Symposium on Algorithms (ESA 2003), Lecture Notes in Computer
Science, vol. 2832, Budapest, Hungary, Springer, Berlin, September
2003, pp. 679-690.

[21] K. Kayser, S.D. Jacinto, G. Bohm, P. Frits, W.P. Kunze, A. Nehrlich, H.J.
Gabius, Application of computer-assisted morphometry to the analysis
of prenatal development of human lung, Anat. Histol. Embryol. 26 (2)
(1997) 135-139.

[22] K. Kayser, H. Stute, M. Tacke, Minimum spanning tree, integrated optical
density and lymph node metastasis in bronchial carcinoma, Anal. Cell
Pathol. 5 (4) (1993) 225-234.

[23] A. Krishnamurthy, S.S. Lumetta, D.E. Culler, K. Yelick, Connected
components on distributed memory machines, in: S.N. Bhatt (Ed.),
Parallel Algorithms: Third DIMACS Implementation Challenge, October
17-19, 1994, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol. 30, American Mathematical Society, Providence,
RI, 1997, pp. 1-21.

[24] Y. Maon, B. Schieber, U. Vishkin, Parallel ear decomposition search
(EDS) and st-numbering in graphs, Theoret. Comput. Sci. 47 (3) (1986)
277-296.

[25] M. Matos, B.N. Raby, J.M. Zahm, M. Polette, P. Birembaut, N. Bonnet,
Cell migration and proliferation are not discriminatory factors in the in
vitro sociologic behavior of bronchial epithelial cell lines, Cell Motility
and the Cytoskeleton 53 (1) (2002) 53-65.

[26] S. Meguerdichian, F. Koushanfar, M. Potkonjak, M. Srivastava, Coverage
problems in wireless ad-hoc sensor networks, in: Proceedings of the
INFOCOM °01, Anchorage, AK, IEEE Press, New York, April 2001,
pp. 1380-1387.

[27] K. Mehlhorn, S. Niher, The LEDA Platform of Combinatorial and
Geometric Computing, Cambridge University Press, Cambridge, 1999.

[28] G.L. Miller, V. Ramachandran, Efficient parallel ear decomposition with
applications, Manuscript, UC Berkeley, MSRI, January 1986.

[29] B.M.E. Moret, H.D. Shapiro, An empirical assessment of algorithms
for constructing a minimal spanning tree, in: DIMACS Monographs in
Discrete Mathematics and Theoretical Computer Science: Computational
Support for Discrete Mathematics, vol. 15, American Mathematical
Society, Providence, RI, 1994, pp. 99-117.

http://doi.ieeecomputersociety.org/10.1109/INFVIS.2003.1249010
http://doi.ieeecomputersociety.org/10.1109/INFVIS.2003.1249010

1378 D.A. Bader, G. Cong / J. Parallel Distrib. Comput. 66 (2006) 1366—1378

[30] V. Olman, D. Xu, Y. Xu, Identification of regulatory binding sites
using minimum spanning trees, in: Proceedings of the Eighth Pacific
Symposium on Biocomputing (PSB 2003), Hawaii, World Scientific,
Singapore, 2003, pp. 327-338.

[31] J. Park, M. Penner, V.K. Prasanna, Optimizing graph algorithms for
improved cache performance, in: Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS 2002), Fort Lauderdale,
FL, April 2002.

[32] S. Pettie, V. Ramachandran, A randomized time-work optimal parallel
algorithm for finding a minimum spanning forest, SIAM J. Comput. 31
(6) (2002) 1879-1895.

[33] C.K. Poon, V. Ramachandran, A randomized linear work EREW PRAM
algorithm to find a minimum spanning forest, in: Proceedings of
the Eighth International Symposium on Algorithms and Computation
(ISAAC’97), Lecture Notes in Computer Science, vol. 1350, Springer,
Berlin, 1997, pp. 212-222.

[34] P. Sanders, Random permutations on distributed, external and hierarchical
memory, Inform. Process. Lett. 67 (6) (1998) 305-309.

[35] R.E. Tarjan, U. Vishkin, An efficient parallel biconnectivity algorithm,
SIAM J. Comput. 14 (4) (1985) 862-874.

[36] Y.-C. Tseng, T.T.-Y. Juang, M.-C. Du, Building a multicasting tree in a
high-speed network, IEEE Concurrency 6 (4) (1998) 57-67.

[37] U. Vishkin, On efficient parallel strong orientation, Inform. Process.
Lett. 20 (5) (1985) 235-240.

[38] S.Q. Zheng, J.S. Lim, S.S. Iyengar, Routing using implicit connection
graphs, in: Ninth International Conference on VLSI Design: VLSI in
Mobile Communication, Bangalore, India, IEEE Computer Society Press,
Silver Spring, MD, January 1996.

David A. Bader is an Associate Professor in the College of Computing,
Georgia Institute of Technology. He received his Ph.D. in 1996 from The
University of Maryland, was awarded a National Science Foundation (NSF)

Postdoctoral Research Associateship in Experimental Computer Science.
He is an NSF CAREER Award recipient, an investigator on several NSF
awards, a distinguished speaker in the IEEE Computer Society Distinguished
Visitors Program, and is a member of the IBM PERCS team for the DARPA
High Productivity Computing Systems program. Dr. Bader serves on the
Steering Committees of the IPDPS and HiPC conferences, and was the
General co-Chair for IPDPS (2004-2005), and Vice General Chair for HiPC
(2002-2004). David has chaired several major conference program commit-
tees: Program Chair for HiPC 2005, Program Vice-Chair for IPDPS 2006 and
Program Vice-Chair for ICPP 2006. He has served on numerous conference
program committees related to parallel processing and computational science
& engineering, is an associate editor for several high impact publications in-
cluding the IEEE Transactions on Parallel and Distributed Systems (TPDS),
the ACM Journal of Experimental Algorithmics (JEA), IEEE DSOnline, and
Parallel Computing, is a Senior Member of the IEEE Computer Society and
a Member of the ACM. Dr. Bader has been a pioneer the field of high-
performance computing for problems in bioinformatics and computational
genomics. He has co-chaired a series of meetings, the IEEE International
Workshop on High-Performance Computational Biology (HICOMB), written
several book chapters, and co-edited special issues of the Journal of Parallel
and Distributed Computing (JPDC) and IEEE TPDS on high-performance
computational biology. He has co-authored over 75 articles in peer-reviewed
journals and conferences, and his main areas of research are in parallel
algorithms, combinatorial optimization, and computational biology and
genomics.

Dr. Guojing Cong is a research staff member at IBM T.J. Watson research
center. Before joining IBM, he worked on the design and implementation
of parallel algorithms for irregular problems on shared-memory machines,
and presented results for the first time for several fundamental graph prob-
lems that show good parallel speedups. At IBM, he is affiliated with the
advanced computing technology center (ACTC), working on performance
analysis and optimization for high performance computing applications.
Dr. Cong also conducts research in data-centric computing and computational
biology.

