
An Experimental Study of Parallel Biconnected Components Algorithms on
Symmetric Multiprocessors (SMPs)

Guojing Cong
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598 USA
gcong@us.ibm.com

David A. Bader ∗

Department of Electrical and Computer Engineering
University of New Mexico, Albuquerque, NM 87131 USA

dbader@ece.unm.edu

Abstract

We present an experimental study of parallel bicon-
nected components algorithms employing several funda-
mental parallel primitives, e.g., prefix sum, list ranking,
sorting, connectivity, spanning tree, and tree computations.
Previous experimental studies of these primitives demon-
strate reasonable parallel speedups. However, when these
algorithms are used as subroutines to solve higher-level
problems, there are two factors that hinder fast parallel im-
plementations. One is parallel overhead, i.e., the large con-
stant factors hidden in the asymptotic bounds; the other is
the discrepancy among the data structures used in the prim-
itives that brings non-negligible conversion cost. We present
various optimization techniques and a new parallel al-
gorithm that significantly improve the performance of
finding biconnected components of a graph on sym-
metric multiprocessors (SMPs). Finding biconnected
components has application in fault-tolerant network de-
sign, and is also used in graph planarity testing. Our
parallel implementation achieves speedups up to 4 us-
ing 12 processors on a Sun E4500 for large, sparse graphs,
and the source code is freely-available at our web site
http://www.ece.unm.edu/˜dbader.

1. Introduction

A connected graph is said to be separable if there exists
a vertex v such that removal of v results in two or more con-
nected components of the graph. Given a connected, undi-
rected graph G = (V, E) with |V | = n and |E| = m, the
biconnected components problem finds the maximal in-
duced subgraphs of G that are not separable. Tarjan [19]
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presents an optimal O(n + m) algorithm that finds the bi-
connected components of a graph based on depth-first
search (DFS). Eckstein [7] gave the first parallel algo-
rithm that takes O

(
d log2 n

)
time with O((n + m)/d) pro-

cessors on CREW PRAM, where d is the diameter of the
graph. Savage and JáJá [17] designed two parallel algo-
rithms on CREW PRAM. The first one takes O

(
log2 n

)
time with O

(
n3/ logn

)
processors. The second one is suit-

able for sparse graphs, and requires O
(
log2 n log k

)
time

and O
(
mn + n2 log n

)
processors where k is the num-

ber of biconnected components in the graph. Tsin and Chin
[21] developed an algorithm on CREW PRAM that takes
O

(
log2 n

)
time with O

(
n2/ log2 n

)
processors and is op-

timal for dense graphs. Tarjan and Vishkin [20] present
an O(log n) time algorithm on CRCW PRAM that uses
O(n + m) processors. The fundamental Euler-tour tech-
nique is also introduced in [20]. Liang et al. [14] studied
the biconnected components problems for graphs with spe-
cial properties, e.g., interval graphs, circular-arc graphs and
permutation graphs and achieved better complexity bounds.
There are also other biconnected components related stud-
ies, e.g., finding the smallest augmentation to make a
graph biconnected [11], and finding the smallest bicon-
nected spanning subgraph (an NP-hard problem) [13, 5].

Woo and Sahni [22] presented an experimental study of
computing biconnected components on a hypercube for Tar-
jan and Vishkin’s algorithm and Read’s algorithm [16].
Their test cases are graphs that retain 70 and 90 per-
cent edges of the complete graphs, and they achieved par-
allel efficiencies up to 0.7 for these dense inputs. The
implementation uses an adjacency matrix as the input rep-
resentation, and the size of the input graphs is limited to
less than 2,000 vertices.

In this paper we present an experimental study of
adapting the Tarjan-Vishkin biconnected components al-
gorithm to run on symmetric multiprocessors (SMPs)
solving sparse, irregular graph instances. The algo-
rithm is representative of many parallel algorithms that
take drastically different approaches than the sequen-
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tial algorithm to solve certain problems and employ basic
parallel primitives such as prefix sum, pointer jump-
ing, list ranking, sorting, connected components, span-
ning tree, Euler-tour construction and tree computations,
as building blocks. Previous studies demonstrated rea-
sonable parallel speedups for these parallel primitives on
SMPs [9, 3, 4, 6, 2]. It is not clear whether an imple-
mentation using these techniques achieves good speedup
compared with the best sequential implementation be-
cause of the cost of parallel overheads. Here we focus on
algorithmic overhead instead of communication and syn-
chronization overhead. For example, Tarjan’s sequen-
tial biconnected components algorithm [19] uses DFS
with an auxiliary stack, while the Tarjan-Vishkin paral-
lel algorithm (denoted as TV in this paper) employs all
the parallel techniques mentioned earlier. Another fac-
tor that makes it hard to achieve good parallel speedups
is the discrepancies among the input representations as-
sumed by different primitives. TV finds a spanning tree,
roots the tree, and performs various tree computations. Al-
gorithms for finding spanning trees take edge list or ad-
jacency list data structures as input representations, while
rooting a tree and tree computations assume an Eulerian cir-
cuit for the tree that is derived from a circular adjacency
list representation. Converting representations is not triv-
ial and incurs a real cost in implementations. In our studies,
direct implementation of TV on SMPs does not outper-
form the sequential implementation even at 12 processors.
In our optimized adaptation of TV onto SMPs, we fol-
low the major steps of TV , yet we use different approaches
for several of the steps. For example, we use a differ-
ent spanning tree algorithm and new approaches to root the
tree, construct the Euler-tour and perform the tree computa-
tions. With our new algorithm design and engineering tech-
niques, our optimized adaptation of TV achieves speedups
up to 2.5 when employing 12 processors.

We also present a new parallel algorithm that eliminates
edges that are not essential in computing the biconnected
components. For any input graph, edges are first elimi-
nated before the computation of biconnected components is
done so that at most min(m, 2n) edges are considered. Al-
though applying this filtering algorithm does not improve
the asymptotic complexity, in practice, the performance of
the biconnected components algorithm can be significantly
improved. In fact we achieve speedups up to 4 with 12 pro-
cessors using the filtering technique. This is remarkable,
given that the sequential algorithm runs in linear time with
a very small hidden constant in the asymptotic complexity.

The organization of this paper is as follows. Sec-
tion 2 introduces TV; section 3 discusses its implementa-
tion and optimization for SMPs; section 4 presents our new
edge-filtering algorithm; section 5 gives analysis and per-
formance results; and in section 6 we conclude.

2. The Tarjan-Vishkin Algorithm

First we give a brief review of the Tarjan-Vishkin bi-
connected components algorithm. For an undirected, con-
nected graph G = (V, E) and a spanning tree T of G, each
nontree edge introduces a simple cycle that itself is bi-
connected. If two cycles C1 and C2 share an edge, then
C1∪C2 are biconnected. Let Rc be the relation that two cy-
cles share an edge, then the transitive closure of Rc (de-
noted as R∗

c ) partitions the graph into equivalence classes
of biconnected components. If we are able to compute Rc,
we can find all the biconnected components of graph G.

The size of Rc is too large (O
(
n2

)
even for sparse

graphs where m = O(n)) to be usable in fast parallel al-
gorithms. Tarjan and Vishkin defined a smaller relation
R′

c with |R′
c| = O(m) and proved that the transitive clo-

sure of R′
c is the same as that of Rc [20, 12]. For any pair

(e, g) of edges, (e, g) ∈ R′ (or simply denoted as eR′
cg) if

and only if one of the following three conditions holds (de-
note the parent of a vertex u as p(u), and the root of T as r):

1. e = (u, p(u)) and g = (u, v) in G − T , and v < u in
preorder numbering

2. e = (u, p(u)) and g = (v, p(v)), and (u, v) in G − T
such that u and v are not related (having no ancestral
relationships)

3. e = (u, p(u)), v �= r, and g = (v, p(v)), and some
nontree edge of G joins a descendant of u to a nonde-
scendant of v

Once R′
c is computed, TV builds an auxiliary graph

G′ = (V ′, E′) where V ′ is the set E of edges of G, and
(e, g) ∈ E′ if eR′

cg. The connected components of G′ cor-
respond to the equivalence classes of R′

c
∗ and identify the

biconnected components of G.
TV has six steps:

1. Spanning-tree computes a spanning tree T for the input
graph G. A spanning tree algorithm derived from the
Shiloach-Vishkin’s connected components algorithm
[18] is used.

2. Euler-tour constructs an Eulerian circuit for T .

3. Root-tree roots T at an arbitrary vertex by applying the
Euler-tour technique on the circuit obtained in the pre-
vious step.

4. Low-high computes two values low(v) and high(v) for
each vertex v. The value low(v) denotes the smallest
vertex (in preorder numbering) that is either a descen-
dant of v or adjacent to a descendent of v by a non-
tree edge. Similarly, high(v) denotes the largest vertex
(in preorder numbering) that is either a descendant of
v or adjacent to a descendent of v by a nontree edge.

2
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5. Label-edge tests the appropriate conditions of R′
c and

builds the auxiliary graph G′ using the low, high val-
ues.

6. Connected-components finds the connected compo-
nents of G′ with the Shiloach-Vishkin connected com-
ponents algorithm.

TV takes an edge list as input. The parallel implemen-
tations of the six steps within the complexity bound of
O(log n) time and O(m) processors on CRCW PRAM
are straightforward except for the Label-edge step. Tar-
jan and Vishkin claim that the Label-edge step takes
constant time with O(m) processors because the condi-
tions for R′

c can be tested within these bounds. Note that if
two edges e and g satisfy one of the conditions for R′

c, map-
ping (e, g) ∈ R′

c into an edge in G′ = (V ′, E′) is not
straightforward because no information is available about
which vertices e and g are mapped to in V ′. Take condi-
tion 1 for example. For each nontree edge g1 = (u, v) ∈ E,
if u < v and let g2 = (u, p(u)), (g1, g2) maps to an
edge in E′. If we map each edge e ∈ E into a ver-
tex v′ ∈ V ′ whose number is the location of e in the edge
list, we need to search for the location of g2 in the edge list.

Input: L: an edge list representation for graph G =
(V, E) where |V | = n and |E| = m
Preorder: preorder numbering for the vertices

Output: G′: an edge list representation of the auxil-
iary graph

begin
for 0 ≤ i ≤ m − 1 parallel do

if L[i].is tree edge=true then N [i] ← 1;
else N [i] ← 0;

prefix-sum(N ,m);
for 0 ≤ i ≤ m − 1 parallel do

u=L[i].v1; v=L[i].v2;
if L[i].is tree edge=true then

if Preorder[v]<Preorder[u] then L′[i]
← (u,N [i] + n);
if u and v not related then L′[m + i] ←
(u,v);

else
if u �= root and v �= root then L′[2m + i]
← (u,v);

compact L′ into G′ using prefix-sum;
end

Algorithm 1: building the auxiliary graph.

Here we present an algorithm for this missing step in TV
that builds the auxiliary graph in O(log m) time with O(m)
processors, which does not violate the claimed overall com-
plexity bounds of TV . The basic idea of the algorithm

is as follows. Assume, w.l.o.g., V = [1, n] (In this pa-
per we use [a, b] denote the integer interval between a and
b). V ′ = [1, m]. We map each tree edge (u, p(u)) ∈ E to
vertex u ∈ V ′. For each nontree edge e, we assign a dis-
tinct integer ne between [0, m − n], and map e to ver-
tex ne + n ∈ V ′. Assigning numbers to nontree edges can
be done by a prefix sum. The formal description of the al-
gorithm is shown in Alg. 1.

We prove Alg. 1 builds an auxiliary graph within the
complexity bound of TV .

Theorem 1 Alg. 1 builds an auxiliary graph G′ = (V ′, E′)
in O(log m) time with O(m) processors and O(m) space on
EREW PRAM.

Proof: According to the mapping scheme,
V ′ = [1, m + n]. Each tree edge L[i] = (u, p(u)) is
uniquely mapped to u ∈ V ′. For each nontree edge L[j],
a unique number N [j] ∈ [1, m] is assigned. Nontree edge
L[j] is mapped to N [j] + n ∈ V ′ so that it is not mapped
to a vertex number assigned to a tree edge and no two non-
tree edges share the same vertex number. It is easy to ver-
ify that this is a one-to-one mapping from E to V ′ and can
be done in O(log m) time with O(m) processors. As for
E′, testing the conditions, i.e., finding all the edges in E′,
can be done in constant time with O(m) processors.

A complication arises in the determination of where to
store the edge information each time we add a new edge
e′ (image of (e, g) where e, g ∈ E) to E′. A straightfor-
ward approach uses an (n + m) × (n + m) matrix so
that each edge of E′ maps to a unique location. A bet-
ter, space-efficient approach is as follows. If we inspect
the conditions for R′

c closely, we see that for each condi-
tion we add at most m edges to the edge list. L′ is a tempo-
rary structure that has 3m locations. Locations [0, m − 1],
[m, 2m − 1], and [2m, 3m − 1], are allocated for condi-
tion 1, 2 and 3, respectively. After all the edges are dis-
covered, L′ is compacted into G′ using prefix sums. Prefix
sums dominate the running time of Alg. 1, and no con-
current reads or writes are required. So Alg. 1 builds G′

(the auxiliary graph) in O(log m) time with O(m) proces-
sors and O(m) space on EREW PRAM. �

3. Implementation and optimization

In this section we show our adaptation of TV on SMPs
(TV-SMP) and an optimized version of the Tarjan-Vishkin
algorithm (TV-opt). TV-SMP emulates TV on SMPs, and
serves as a baseline implementation for comparison with
the optimized version and our new algorithm. TV-opt op-
timizes TV to run on SMPs by reorganizing some of the
steps of TV and substituting several steps with more effi-
cient algorithms.

3
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3.1. TV-SMP

TV-SMP emulates TV in a coarse-grained fashion by
scaling down the parallelism of TV to the number of pro-
cessors available from an SMP. The emulation of each step
is straightforward except for the Euler-tour step. In the lit-
erature the Euler-tour technique usually assumes a circular
adjacency list as input where there are cross pointers be-
tween the two anti-parallel arcs (u, v) and (v, u) of an edge
e = (u, v) in the edge list. For the tree edges found in the
Spanning-tree step, such a circular adjacency list has to
be constructed on the fly. The major task is to find for an
arc (u, v) the location of its anti-parallel mate, (v, u). Af-
ter selecting the spanning tree edges, we sort all the arcs
(u, v) with min(u, v) as the primary key, and max(u, v) as
the secondary key. The arcs (u, v) and (v, u) are then next
to each other in the resulting list so that the cross point-
ers can be easily set. We use the efficient parallel sample
sorting routine designed by Helman and JáJá [8]. Our ex-
perimental study shows that the parallel overheads of
TV-SMP are too high for the implementation to achieve par-
allel speedup with a moderate number of processors. De-
tailed performance results are given in section 5.

3.2. TV-opt

With TV-opt we optimize TV to run on SMPs by using al-
gorithm engineering techniques to reduce the parallel over-
head. Two major optimizations are considered. First we re-
duce the number of parallel primitives and subroutines used
in our implementation by rearranging and merging some
of the steps. Second we substitute the algorithms for cer-
tain steps with more efficient and cache-friendly versions.

We merge the Spanning-tree and Root-tree steps because
a rooted spanning tree algorithm can usually be derived
from the spanning tree algorithm with very little overhead.
In our previous studies [6], we propose parallel algorithms
that compute a rooted spanning tree for an input graph di-
rectly without invoking the standard Euler-tour technique.
With any spanning tree algorithm that adapts the “graft
and shortcut” approach (e.g., the Shiloach-Vishkin algo-
rithm (SV) [18, 1], and Hirschberg et al.’s algorithm (HCS)
[10]), we observe that grafting defines the parent relation-
ship naturally on the vertices (extra care needs to be taken
to resolve the conflicts when a vertex’s parent is set mul-
tiple times by grafting). Better still is our work-stealing
graph-traversal spanning tree algorithm that computes
a spanning tree (also a rooted spanning tree) by set-
ting the parent for each vertex. Our algorithm achieves su-
perior speedup over the best sequential algorithms (BFS
or DFS, which also compute a rooted spanning tree) com-
pared with other spanning tree algorithms (e.g., SV and
HCS). We refer interested readers to [6, 3] for details.

With a rooted spanning tree, we construct a cache-
friendly Euler-tour for the tree (Euler-tour is needed for the
preorder numbering of vertices). Generally list ranking is
needed to perform tree computations with the Euler-tour.
For an edge (u, v), the next edge (v, w) could be far away
from (u, v) in the tour with no spatial locality, which hin-
ders cache performance. It is desirable that for an Euler-tour
the consecutive edges are placed nearby each other in the
list. As an Euler-tour for a tree is essentially a DFS traver-
sal of the tree, we construct the tour based on DFS traver-
sal. A formal description of the algorithm and complexity
bound proof are given in [6]. With high probability, the al-

gorithm runs in O
(

n
p

)
time. The algorithm produces an

Euler-tour where prefix sum can be used for tree computa-
tions instead of the more expensive list ranking.

The remaining steps of TV-opt are the same as those
of TV-SMP. We compare the performances of TV-opt
and TV-SMP, and demonstrate the effect of the optimiza-
tions in section 5.

4. A New Algorithm and Further Improve-
ment (TV-filter)

The motivation to further improve TV comes from
the following observation for many graphs: not all non-
tree edges are necessary for maintaining the biconnectiv-
ity of the biconnected components. We say an edge e is
non-essential for biconnectivity if removing e does not
change the biconnectivity of the component to which it be-
longs. Filtering out non-essential edges when computing bi-
connected components (of course we will place these edges
back in later) may produce performance advantages. Re-
call that the goal of TV is to find R′∗

c . Of the three conditions
for R′

c, it is trivial to check for condition 1 which is for a tree
edge and a non-tree edge. Conditions 2 and 3, however, are
for two tree edges and checking involves the computation
of high and low values. To compute high and low, we need
to inspect every nontree edge of the graph, which is very
time consuming when the graph is not extremely sparse.
The fewer edges the graph has, the faster the Low-high step.
Also when we build the auxiliary graph, the fewer edges in
the original graph means the smaller the auxiliary graph and
the faster the Label-edge and Connected-components steps.

Take Fig. 1 for example. On the left in Fig. 1 is a bicon-
nected graph G1. After we remove nontree edges e1 and e2,
we get a graph G2 shown on the right in Fig. 1, which is still
biconnected. G1 has a R′

c relation of size 11 (4, 4, and 3 for
conditions 1, 2, and 3, respectively), while graph G2 has
a R′

c relation of size 7 (2, 2, and 3 for conditions 1, 2, and
3, respectively). So the auxiliary graph of G1 has 10 ver-
tices and 11 edges, while the auxiliary graph for G2 has only
8 vertices and 7 edges. When there are many non-essential
edges, filtering can greatly speedup the computation.

4
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Figure 1. Two graphs G1 and G2. The solid
edges are tree edges and the dashed edges
are nontree edges. G2 is derived from G1

by removing non-essential nontree edges e1

and e2. Below the graphs are the correspond-
ing R′

c relations defined by the three condi-
tions.

Now the questions are how many edges can be fil-
tered out and how to identify the non-essential edges for a
graph G = (V, E) with a spanning tree T . We postpone the
discussion of the first question until later in this section be-
cause it is dependent on how filtering is done. First we
present an algorithm for identifying non-essential edges.
The basic idea is to compute a spanning forest F for G−T .
We note that if T is a breadth-first search (BFS) tree, then
the nontree edges of G that are not in F can be filtered out.

Assuming T is a BFS tree, next we prove several lem-
mas.

Lemma 1 For any edge e = (u, v) in F , there is no ances-
tral relationship between u and v in T .

Proof: Clearly u and v cannot be the parent of each
other as e is not in T . Suppose w.l.o.g. that u is an an-
cestor of v, and w is the parent of v (w �= u), consider-
ing the fact that T is a BFS tree, v is at most one level away
from u and w is at least one level away from u. So w can-
not be v’s parent, and we get a contradiction. �

Lemma 2 Each connected component of F is in some bi-
connected component of graph G.

Proof: Let C be a connected component of F . Note
that C itself is also a tree. Each edge in C is a non-
tree edge to T , and is in a simple cycle, hence some bicon-
nected component, of G. We show by induction that the
simple cycles determined by the edges of C form one bi-
connected component.

Starting with an empty set of edges, we consider the pro-
cess of growing C by adding one edge at each step and

keeping C connected. Suppose there are k edges in C, and
the sequence in which they are added is e1, e2, · · · , ek.

As e1 is a non-tree edge to T , e1 and the paths from its
two endpoints to the lowest common ancestor (lca) of the
two endpoints form a simple cycle. And e1 is in a bicon-
nected component of G.

Suppose the first l edges in the sequence are in one bi-
connected component Bc. We now consider adding the
(l + 1)th edge. As C is connected, el+1 = (u, w) is adja-
cent to some edge, say, es = (v, w) (where 1 ≤ s ≤ l) in
the tree we have grown so far at vertex w. By Lemma 1
there are no ancestral relationships between u and w, and
v and w in tree T . If there is also no ancestral relation-
ship between u and w as illustrated in part (a) of Fig. 2,
then the paths in T from u to lca(u, v) and from v to
lca(u, v) plus the edges (u, w) and (v, w) in C form a sim-
ple cycle S. As (v, w) is in Bc and (u, w) is in S,
and Bc shares with S the edge (v, w), so (u, w) and
(v, w) are both in the biconnected component that con-
tains Bc∪S. If there is some ancestral relationship between
u and v, then there are two cases: either u is the ances-
tor of v or v is the ancestor of u. These two cases are illus-
trated respectively by parts (b) and (c) in Fig. 2. Let’s first
consider the case that u is the ancestor of v. The paths in
T from u to lca(u, w), from w to lca(u, w), and from v to
u, and edge (v, w) form a simple cycle S. S shares with
Bc edge (v, w), again (u, w) and (v, w) are both in the bi-
connected component that includes Bc ∪ S. Similarly we
can prove (u, w) and (v, w) are in one biconnected compo-
nent for the case that v is the ancestor of u. By induction, it
follows that all edges of C are in one biconnected compo-
nent. �

Part (d) of Fig. 2 shows an example that (u, w) and
(v, w) are not in one biconnected component if T is
not a BFS tree and there are ancestral relationships be-
tween u, v, and w.

Theorem 2 The edges of each connected component of
G − T are in one biconnected component.

Proof: Let C be a connected component of G−T . If C is a
tree, by Lemma 2, all edges of C are in a biconnected com-
ponent. If C is not a tree, then there exits a spanning tree
TC of C. All edges of TC are in a biconnected compo-
nent by Lemma 2. Each nontree edge e (relative to TC )
in C forms a simple cycle with paths in TC , and the cy-
cle shares the paths with the biconnected component
that TC is in, so e is also in the biconnected compo-
nent. �

The immediate corollary to Theorem 2 is that we can
compute the number of biconnected components in a graph
using breadth-first traversal. The first run of BFS computes

5
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Figure 2. Illustration of the proof of theo-
rem 2. el+1 = (u, w), and es = (v, w). The dot-
ted lines are the paths in T while the solid
lines are edges in C

a rooted spanning tree T . The second run of BFS computes
a spanning forest F for G − T , and the number of compo-
nents in F is the number of biconnected components in G.

Next we apply the idea of filtering out non-essential
edges to the parallel biconnected components prob-
lem. First T and F for G are computed. Then biconnected
components for T ∪ F are computed using a suitable bi-
connected components algorithm, e.g., the Tarjan-Vishkin
algorithm. We are yet to find the biconnected compo-
nents to which they belong for all the edges that are filtered
out, i.e., edges in G − (T ∪ F ). According to condi-
tion 1 (which holds for arbitrary rooted spanning tree),
edge e = (u, v) ∈ G − (T ∪ F ) is in the same bicon-
nected component of (u, p(u)) if v < u. A new algorithm
using the filtering technique is shown in Alg. 2.

In Alg. 2, step 1 takes O(d) time with O(n) proces-
sors on arbitrary CRCW PRAM where d is the diameter of
the graph; step 2 can be done in O(log n) time with O(n)
processors on arbitrary CRCW PRAM [20]; step 3 is the
Tarjan-Vishkin algorithm which can be done in O(log n)
time with O(n) processors; finally, step 4 can be imple-
mented in O(1) time with O(n) processors. So Alg. 2 runs
in O(d + log n) time with O(n) processors on CRCW
PRAM.

Asymptotically, the new algorithm does not im-
prove the complexity bound of TV . In practice, how-

Input: A connected graph G = (V, E)
Output: Biconnected components of G

begin
1. compute a breadth-first search tree T for G;
2. for G − T , compute a spanning forest F ;
3. invoke TV on F ∪ T ;
4. for each edge e = (u, v) ∈ G − (F ∪ T ) do

label e to be in the biconnected component
that contains (u, p(u));

end

Algorithm 2: An improved algorithm for biconnected
components.

ever, step 2 filters out at least max(m− 2(n− 1), 0) edges.
The denser the graph becomes, the more edges are fil-
tered out. This can greatly speedup the execution of step
3. Recall that TV inspects each nontree edge to com-
pute the low and high values for the vertices, and builds
an auxiliary graph with the number of vertices equal to the
number of edges in G. In Section 5 we demonstrate the ef-
ficiency of this edge filtering technique.

For very sparse graphs, d can be greater than O(log n)
and becomes the dominating factor in the running time of
the algorithm. One pathological case is that G is a chain
(d = O(n)), and computing the BFS tree takes O(n) time.
However, pathological cases are rare. Palmer [15] proved
that almost all random graphs have diameter two. And even
if d > log n, in many cases, as long as the number of ver-
tices in the BFS frontier is greater than the number of pro-
cessors employed, the algorithm will perform well on a
machine with p processors (p � n) with expected run-

ning time of O
(

n+m
p

)
. Finally, if m ≤ 4n, we can always

fall back to TV-opt.

5. Performance Results and Analysis

This section summarizes the experimental results of our
implementation. We tested our shared-memory implemen-
tation on the Sun E4500, a uniform-memory-access (UMA)
shared memory parallel machine with 14 UltraSPARC II
400MHz processors and 14 GB of memory. Each proces-
sor has 16 Kbytes of direct-mapped data (L1) cache and
4 Mbytes of external (L2) cache. We implement the algo-
rithms using POSIX threads and software-based barriers.

We test our implementation on arbitrary, sparse in-
puts which are the most challenging instances for previous
experimental studies. We create a random graph of n ver-
tices and m edges by randomly adding m unique edges
to the vertex set. The sequential implementation imple-
ments Tarjan’s algorithm.

Fig. 3 shows the performance of TV-SMP, TV-opt and
TV-filter on random graphs of 1M vertices with vari-
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Figure 3. Comparison of the performance of TV-SMP, TV-opt and TV-filter for graphs with n = 1M
vertices and various edge densities. “Sequential” is the time taken for the implementation of Tarjan’s
biconnected components algorithm for the same problem instance.

ous edge densities. For all the instances, TV-SMP does not
beat the best sequential implementation even at 12 pro-
cessors. TV-opt takes roughly half the execution time of
TV-SMP. As predicted by our analysis earlier, the denser
the graph, the better the performance of TV-filter com-
pared with TV-opt. For the instance with 1M vertices, 20M
edges (m = n logn), TV-filter is twice as fast as TV-opt
and achieves speedups up to 4 compared with the best se-
quential implementation.

Fig. 4 shows the breakdown of execution time for dif-
ferent parts of the algorithm for TV-SMP, TV-opt, and TV-
filter. Comparing TV-SMP and TV-opt, we see that TV-SMP
takes much more time than TV-opt to compute a span-

ning tree and constructing the Euler-tour. Also for tree com-
putations, TV-opt is much faster than TV-SMP because
in TV-opt prefix sum is used while in TV-SMP list rank-
ing is used. For the rest of the computations, TV-SMP
and TV-opt take roughly the same amount of time. Com-
pared with TV-opt, TV-filter has an extra step, i.e., fil-
tering out non-essential edges. The extra cost of filter-
ing out edges is worthwhile if the graph is not extremely
sparse. As our analysis predicted in Section 4, we ex-
pect reduced execution time for TV-filter in computing
low-high values, labeling, and computing connected com-
ponents. Fig. 4 confirms our analysis.
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Figure 4. Breakdown of execution time at 12 processors for the Spanning-tree, Euler-tour, root, Low-
high, Label-edge, Connected-components, and Filtering steps. All graphs have 1M vertices with dif-
ferent number of edges shown on the x-axis. The three columns for each input graph, from left to
right, are the execution times for TV-SMP, TV-opt, and TV-filter, respectively.

6. Conclusions

We present an experimental study of biconnected com-
ponents algorithms based on the Tarjan-Vishkin approach
on SMPs. Our implementation achieves speedups up to 4
with 12 processors on the Sun E4500. As quite a few fun-
damental parallel primitives and routines such as prefix
sum, list ranking, Euler-tour construction, tree compu-
tation, connectivity and spanning tree are employed as
building blocks, our study shows optimistic results for par-
allel algorithms that take drastically different approach than
the straightforward sequential approach.
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